blob: a2ca5b43d5ac80f41002238091deaf3aa204076b [file] [log] [blame]
// Copyright 2021 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SRC_TINT_PROGRAM_BUILDER_H_
#define SRC_TINT_PROGRAM_BUILDER_H_
#include <string>
#include <unordered_set>
#include <utility>
#include "tint/override_id.h"
#include "src/tint/ast/alias.h"
#include "src/tint/ast/array.h"
#include "src/tint/ast/assignment_statement.h"
#include "src/tint/ast/atomic.h"
#include "src/tint/ast/binary_expression.h"
#include "src/tint/ast/binding_attribute.h"
#include "src/tint/ast/bitcast_expression.h"
#include "src/tint/ast/bool.h"
#include "src/tint/ast/bool_literal_expression.h"
#include "src/tint/ast/break_if_statement.h"
#include "src/tint/ast/break_statement.h"
#include "src/tint/ast/call_expression.h"
#include "src/tint/ast/call_statement.h"
#include "src/tint/ast/case_statement.h"
#include "src/tint/ast/compound_assignment_statement.h"
#include "src/tint/ast/const.h"
#include "src/tint/ast/continue_statement.h"
#include "src/tint/ast/depth_multisampled_texture.h"
#include "src/tint/ast/depth_texture.h"
#include "src/tint/ast/disable_validation_attribute.h"
#include "src/tint/ast/discard_statement.h"
#include "src/tint/ast/enable.h"
#include "src/tint/ast/extension.h"
#include "src/tint/ast/external_texture.h"
#include "src/tint/ast/f16.h"
#include "src/tint/ast/f32.h"
#include "src/tint/ast/float_literal_expression.h"
#include "src/tint/ast/for_loop_statement.h"
#include "src/tint/ast/i32.h"
#include "src/tint/ast/id_attribute.h"
#include "src/tint/ast/if_statement.h"
#include "src/tint/ast/increment_decrement_statement.h"
#include "src/tint/ast/index_accessor_expression.h"
#include "src/tint/ast/int_literal_expression.h"
#include "src/tint/ast/interpolate_attribute.h"
#include "src/tint/ast/invariant_attribute.h"
#include "src/tint/ast/let.h"
#include "src/tint/ast/loop_statement.h"
#include "src/tint/ast/matrix.h"
#include "src/tint/ast/member_accessor_expression.h"
#include "src/tint/ast/module.h"
#include "src/tint/ast/multisampled_texture.h"
#include "src/tint/ast/override.h"
#include "src/tint/ast/parameter.h"
#include "src/tint/ast/phony_expression.h"
#include "src/tint/ast/pointer.h"
#include "src/tint/ast/return_statement.h"
#include "src/tint/ast/sampled_texture.h"
#include "src/tint/ast/sampler.h"
#include "src/tint/ast/stage_attribute.h"
#include "src/tint/ast/static_assert.h"
#include "src/tint/ast/storage_texture.h"
#include "src/tint/ast/stride_attribute.h"
#include "src/tint/ast/struct_member_align_attribute.h"
#include "src/tint/ast/struct_member_offset_attribute.h"
#include "src/tint/ast/struct_member_size_attribute.h"
#include "src/tint/ast/switch_statement.h"
#include "src/tint/ast/type_name.h"
#include "src/tint/ast/u32.h"
#include "src/tint/ast/unary_op_expression.h"
#include "src/tint/ast/var.h"
#include "src/tint/ast/variable_decl_statement.h"
#include "src/tint/ast/vector.h"
#include "src/tint/ast/void.h"
#include "src/tint/ast/while_statement.h"
#include "src/tint/ast/workgroup_attribute.h"
#include "src/tint/number.h"
#include "src/tint/program.h"
#include "src/tint/program_id.h"
#include "src/tint/sem/array_count.h"
#include "src/tint/sem/constant.h"
#include "src/tint/sem/struct.h"
#include "src/tint/type/array.h"
#include "src/tint/type/bool.h"
#include "src/tint/type/depth_texture.h"
#include "src/tint/type/external_texture.h"
#include "src/tint/type/f16.h"
#include "src/tint/type/f32.h"
#include "src/tint/type/i32.h"
#include "src/tint/type/matrix.h"
#include "src/tint/type/multisampled_texture.h"
#include "src/tint/type/pointer.h"
#include "src/tint/type/sampled_texture.h"
#include "src/tint/type/storage_texture.h"
#include "src/tint/type/u32.h"
#include "src/tint/type/vector.h"
#include "src/tint/type/void.h"
#ifdef CURRENTLY_IN_TINT_PUBLIC_HEADER
#error "internal tint header being #included from tint.h"
#endif
// Forward declarations
namespace tint {
class CloneContext;
} // namespace tint
namespace tint::ast {
class VariableDeclStatement;
} // namespace tint::ast
namespace tint {
namespace detail {
/// IsVectorLike<T>::value is true if T is a utils::Vector or utils::VectorRef.
template <typename T>
struct IsVectorLike {
/// Non-specialized form of IsVectorLike defaults to false
static constexpr bool value = false;
};
/// IsVectorLike specialization for utils::Vector
template <typename T, size_t N>
struct IsVectorLike<utils::Vector<T, N>> {
/// True for the IsVectorLike specialization of utils::Vector
static constexpr bool value = true;
};
/// IsVectorLike specialization for utils::VectorRef
template <typename T>
struct IsVectorLike<utils::VectorRef<T>> {
/// True for the IsVectorLike specialization of utils::VectorRef
static constexpr bool value = true;
};
} // namespace detail
/// ProgramBuilder is a mutable builder for a Program.
/// To construct a Program, populate the builder and then `std::move` it to a
/// Program.
class ProgramBuilder {
/// A helper used to disable overloads if the first type in `TYPES` is a
/// Source. Used to avoid ambiguities in overloads that take a Source as the
/// first parameter and those that perfectly-forward the first argument.
template <typename... TYPES>
using DisableIfSource =
traits::EnableIfIsNotType<traits::Decay<traits::NthTypeOf<0, TYPES..., void>>, Source>;
/// A helper used to disable overloads if the first type in `TYPES` is a utils::Vector,
/// utils::VectorRef or utils::VectorRef.
template <typename... TYPES>
using DisableIfVectorLike = traits::EnableIf<
!detail::IsVectorLike<traits::Decay<traits::NthTypeOf<0, TYPES..., void>>>::value>;
/// VarOptions is a helper for accepting an arbitrary number of order independent options for
/// constructing an ast::Var.
struct VarOptions {
template <typename... ARGS>
explicit VarOptions(ARGS&&... args) {
(Set(std::forward<ARGS>(args)), ...);
}
~VarOptions();
const ast::Type* type = nullptr;
ast::AddressSpace address_space = ast::AddressSpace::kNone;
ast::Access access = ast::Access::kUndefined;
const ast::Expression* initializer = nullptr;
utils::Vector<const ast::Attribute*, 4> attributes;
private:
void Set(const ast::Type* t) { type = t; }
void Set(ast::AddressSpace addr_space) { address_space = addr_space; }
void Set(ast::Access ac) { access = ac; }
void Set(const ast::Expression* c) { initializer = c; }
void Set(utils::VectorRef<const ast::Attribute*> l) { attributes = std::move(l); }
void Set(const ast::Attribute* a) { attributes.Push(a); }
};
/// LetOptions is a helper for accepting an arbitrary number of order independent options for
/// constructing an ast::Let.
struct LetOptions {
template <typename... ARGS>
explicit LetOptions(ARGS&&... args) {
static constexpr bool has_init =
(traits::IsTypeOrDerived<std::remove_pointer_t<std::remove_reference_t<ARGS>>,
ast::Expression> ||
...);
static_assert(has_init, "Let() must be constructed with an initializer expression");
(Set(std::forward<ARGS>(args)), ...);
}
~LetOptions();
const ast::Type* type = nullptr;
const ast::Expression* initializer = nullptr;
utils::Vector<const ast::Attribute*, 4> attributes;
private:
void Set(const ast::Type* t) { type = t; }
void Set(const ast::Expression* c) { initializer = c; }
void Set(utils::VectorRef<const ast::Attribute*> l) { attributes = std::move(l); }
void Set(const ast::Attribute* a) { attributes.Push(a); }
};
/// ConstOptions is a helper for accepting an arbitrary number of order independent options for
/// constructing an ast::Const.
struct ConstOptions {
template <typename... ARGS>
explicit ConstOptions(ARGS&&... args) {
static constexpr bool has_init =
(traits::IsTypeOrDerived<std::remove_pointer_t<std::remove_reference_t<ARGS>>,
ast::Expression> ||
...);
static_assert(has_init, "Const() must be constructed with an initializer expression");
(Set(std::forward<ARGS>(args)), ...);
}
~ConstOptions();
const ast::Type* type = nullptr;
const ast::Expression* initializer = nullptr;
utils::Vector<const ast::Attribute*, 4> attributes;
private:
void Set(const ast::Type* t) { type = t; }
void Set(const ast::Expression* c) { initializer = c; }
void Set(utils::VectorRef<const ast::Attribute*> l) { attributes = std::move(l); }
void Set(const ast::Attribute* a) { attributes.Push(a); }
};
/// OverrideOptions is a helper for accepting an arbitrary number of order independent options
/// for constructing an ast::Override.
struct OverrideOptions {
template <typename... ARGS>
explicit OverrideOptions(ARGS&&... args) {
(Set(std::forward<ARGS>(args)), ...);
}
~OverrideOptions();
const ast::Type* type = nullptr;
const ast::Expression* initializer = nullptr;
utils::Vector<const ast::Attribute*, 4> attributes;
private:
void Set(const ast::Type* t) { type = t; }
void Set(const ast::Expression* c) { initializer = c; }
void Set(utils::VectorRef<const ast::Attribute*> l) { attributes = std::move(l); }
void Set(const ast::Attribute* a) { attributes.Push(a); }
};
public:
/// ASTNodeAllocator is an alias to BlockAllocator<ast::Node>
using ASTNodeAllocator = utils::BlockAllocator<ast::Node>;
/// SemNodeAllocator is an alias to BlockAllocator<sem::Node>
using SemNodeAllocator = utils::BlockAllocator<sem::Node>;
/// ConstantAllocator is an alias to BlockAllocator<sem::Constant>
using ConstantAllocator = utils::BlockAllocator<sem::Constant>;
/// Constructor
ProgramBuilder();
/// Move constructor
/// @param rhs the builder to move
ProgramBuilder(ProgramBuilder&& rhs);
/// Destructor
virtual ~ProgramBuilder();
/// Move assignment operator
/// @param rhs the builder to move
/// @return this builder
ProgramBuilder& operator=(ProgramBuilder&& rhs);
/// Wrap returns a new ProgramBuilder wrapping the Program `program` without
/// making a deep clone of the Program contents.
/// ProgramBuilder returned by Wrap() is intended to temporarily extend an
/// existing immutable program.
/// As the returned ProgramBuilder wraps `program`, `program` must not be
/// destructed or assigned while using the returned ProgramBuilder.
/// TODO(bclayton) - Evaluate whether there are safer alternatives to this
/// function. See crbug.com/tint/460.
/// @param program the immutable Program to wrap
/// @return the ProgramBuilder that wraps `program`
static ProgramBuilder Wrap(const Program* program);
/// @returns the unique identifier for this program
ProgramID ID() const { return id_; }
/// @returns a reference to the program's types
type::Manager& Types() {
AssertNotMoved();
return types_;
}
/// @returns a reference to the program's types
const type::Manager& Types() const {
AssertNotMoved();
return types_;
}
/// @returns a reference to the program's AST nodes storage
ASTNodeAllocator& ASTNodes() {
AssertNotMoved();
return ast_nodes_;
}
/// @returns a reference to the program's AST nodes storage
const ASTNodeAllocator& ASTNodes() const {
AssertNotMoved();
return ast_nodes_;
}
/// @returns a reference to the program's semantic nodes storage
SemNodeAllocator& SemNodes() {
AssertNotMoved();
return sem_nodes_;
}
/// @returns a reference to the program's semantic nodes storage
const SemNodeAllocator& SemNodes() const {
AssertNotMoved();
return sem_nodes_;
}
/// @returns a reference to the program's semantic constant storage
ConstantAllocator& ConstantNodes() {
AssertNotMoved();
return constant_nodes_;
}
/// @returns a reference to the program's AST root Module
ast::Module& AST() {
AssertNotMoved();
return *ast_;
}
/// @returns a reference to the program's AST root Module
const ast::Module& AST() const {
AssertNotMoved();
return *ast_;
}
/// @returns a reference to the program's semantic info
sem::Info& Sem() {
AssertNotMoved();
return sem_;
}
/// @returns a reference to the program's semantic info
const sem::Info& Sem() const {
AssertNotMoved();
return sem_;
}
/// @returns a reference to the program's SymbolTable
SymbolTable& Symbols() {
AssertNotMoved();
return symbols_;
}
/// @returns a reference to the program's SymbolTable
const SymbolTable& Symbols() const {
AssertNotMoved();
return symbols_;
}
/// @returns a reference to the program's diagnostics
diag::List& Diagnostics() {
AssertNotMoved();
return diagnostics_;
}
/// @returns a reference to the program's diagnostics
const diag::List& Diagnostics() const {
AssertNotMoved();
return diagnostics_;
}
/// Controls whether the Resolver will be run on the program when it is built.
/// @param enable the new flag value (defaults to true)
void SetResolveOnBuild(bool enable) { resolve_on_build_ = enable; }
/// @return true if the Resolver will be run on the program when it is
/// built.
bool ResolveOnBuild() const { return resolve_on_build_; }
/// @returns true if the program has no error diagnostics and is not missing
/// information
bool IsValid() const;
/// @returns the last allocated (numerically highest) AST node identifier.
ast::NodeID LastAllocatedNodeID() const { return last_ast_node_id_; }
/// @returns the next sequentially unique node identifier.
ast::NodeID AllocateNodeID() {
auto out = ast::NodeID{last_ast_node_id_.value + 1};
last_ast_node_id_ = out;
return out;
}
/// Creates a new ast::Node owned by the ProgramBuilder. When the
/// ProgramBuilder is destructed, the ast::Node will also be destructed.
/// @param source the Source of the node
/// @param args the arguments to pass to the type constructor
/// @returns the node pointer
template <typename T, typename... ARGS>
traits::EnableIfIsType<T, ast::Node>* create(const Source& source, ARGS&&... args) {
AssertNotMoved();
return ast_nodes_.Create<T>(id_, AllocateNodeID(), source, std::forward<ARGS>(args)...);
}
/// Creates a new ast::Node owned by the ProgramBuilder, injecting the current
/// Source as set by the last call to SetSource() as the only argument to the
/// constructor.
/// When the ProgramBuilder is destructed, the ast::Node will also be
/// destructed.
/// @returns the node pointer
template <typename T>
traits::EnableIfIsType<T, ast::Node>* create() {
AssertNotMoved();
return ast_nodes_.Create<T>(id_, AllocateNodeID(), source_);
}
/// Creates a new ast::Node owned by the ProgramBuilder, injecting the current
/// Source as set by the last call to SetSource() as the first argument to the
/// constructor.
/// When the ProgramBuilder is destructed, the ast::Node will also be
/// destructed.
/// @param arg0 the first arguments to pass to the type constructor
/// @param args the remaining arguments to pass to the type constructor
/// @returns the node pointer
template <typename T, typename ARG0, typename... ARGS>
traits::EnableIf</* T is ast::Node and ARG0 is not Source */
traits::IsTypeOrDerived<T, ast::Node> &&
!traits::IsTypeOrDerived<ARG0, Source>,
T>*
create(ARG0&& arg0, ARGS&&... args) {
AssertNotMoved();
return ast_nodes_.Create<T>(id_, AllocateNodeID(), source_, std::forward<ARG0>(arg0),
std::forward<ARGS>(args)...);
}
/// Creates a new sem::Node owned by the ProgramBuilder.
/// When the ProgramBuilder is destructed, the sem::Node will also be destructed.
/// @param args the arguments to pass to the constructor
/// @returns the node pointer
template <typename T, typename... ARGS>
traits::EnableIf<traits::IsTypeOrDerived<T, sem::Node> &&
!traits::IsTypeOrDerived<T, type::Node>,
T>*
create(ARGS&&... args) {
AssertNotMoved();
return sem_nodes_.Create<T>(std::forward<ARGS>(args)...);
}
/// Creates a new sem::Constant owned by the ProgramBuilder.
/// When the ProgramBuilder is destructed, the sem::Node will also be destructed.
/// @param args the arguments to pass to the constructor
/// @returns the node pointer
template <typename T, typename... ARGS>
traits::EnableIf<traits::IsTypeOrDerived<T, sem::Constant>, T>* create(ARGS&&... args) {
AssertNotMoved();
return constant_nodes_.Create<T>(std::forward<ARGS>(args)...);
}
/// Creates a new type::Type owned by the ProgramBuilder.
/// When the ProgramBuilder is destructed, owned ProgramBuilder and the
/// returned `Type` will also be destructed.
/// Types are unique (de-aliased), and so calling create() for the same `T`
/// and arguments will return the same pointer.
/// @param args the arguments to pass to the type constructor
/// @returns the de-aliased type pointer
template <typename T, typename... ARGS>
traits::EnableIfIsType<T, type::Type>* create(ARGS&&... args) {
AssertNotMoved();
return types_.Get<T>(std::forward<ARGS>(args)...);
}
/// Creates a new type::ArrayCount owned by the ProgramBuilder.
/// When the ProgramBuilder is destructed, owned ProgramBuilder and the
/// returned `ArrayCount` will also be destructed.
/// ArrayCounts are unique (de-aliased), and so calling create() for the same `T`
/// and arguments will return the same pointer.
/// @param args the arguments to pass to the array count constructor
/// @returns the de-aliased array count pointer
template <typename T, typename... ARGS>
traits::EnableIf<traits::IsTypeOrDerived<T, type::ArrayCount> ||
traits::IsTypeOrDerived<T, type::StructMemberBase>,
T>*
create(ARGS&&... args) {
AssertNotMoved();
return types_.GetNode<T>(std::forward<ARGS>(args)...);
}
/// Marks this builder as moved, preventing any further use of the builder.
void MarkAsMoved();
//////////////////////////////////////////////////////////////////////////////
// TypesBuilder
//////////////////////////////////////////////////////////////////////////////
/// TypesBuilder holds basic `tint` types and methods for constructing
/// complex types.
class TypesBuilder {
public:
/// Constructor
/// @param builder the program builder
explicit TypesBuilder(ProgramBuilder* builder);
/// @return the tint AST type for the C type `T`.
template <typename T>
const ast::Type* Of() const {
return CToAST<T>::get(this);
}
/// @returns a boolean type
const ast::Bool* bool_() const { return builder->create<ast::Bool>(); }
/// @param source the Source of the node
/// @returns a boolean type
const ast::Bool* bool_(const Source& source) const {
return builder->create<ast::Bool>(source);
}
/// @returns a f16 type
const ast::F16* f16() const { return builder->create<ast::F16>(); }
/// @param source the Source of the node
/// @returns a f16 type
const ast::F16* f16(const Source& source) const {
return builder->create<ast::F16>(source);
}
/// @returns a f32 type
const ast::F32* f32() const { return builder->create<ast::F32>(); }
/// @param source the Source of the node
/// @returns a f32 type
const ast::F32* f32(const Source& source) const {
return builder->create<ast::F32>(source);
}
/// @returns a i32 type
const ast::I32* i32() const { return builder->create<ast::I32>(); }
/// @param source the Source of the node
/// @returns a i32 type
const ast::I32* i32(const Source& source) const {
return builder->create<ast::I32>(source);
}
/// @returns a u32 type
const ast::U32* u32() const { return builder->create<ast::U32>(); }
/// @param source the Source of the node
/// @returns a u32 type
const ast::U32* u32(const Source& source) const {
return builder->create<ast::U32>(source);
}
/// @returns a void type
const ast::Void* void_() const { return builder->create<ast::Void>(); }
/// @param source the Source of the node
/// @returns a void type
const ast::Void* void_(const Source& source) const {
return builder->create<ast::Void>(source);
}
/// @param type vector subtype
/// @param n vector width in elements
/// @return the tint AST type for a `n`-element vector of `type`.
const ast::Vector* vec(const ast::Type* type, uint32_t n) const {
return builder->create<ast::Vector>(type, n);
}
/// @param source the Source of the node
/// @param type vector subtype
/// @param n vector width in elements
/// @return the tint AST type for a `n`-element vector of `type`.
const ast::Vector* vec(const Source& source, const ast::Type* type, uint32_t n) const {
return builder->create<ast::Vector>(source, type, n);
}
/// @param type vector subtype
/// @return the tint AST type for a 2-element vector of `type`.
const ast::Vector* vec2(const ast::Type* type) const { return vec(type, 2u); }
/// @param source the vector source
/// @param type vector subtype
/// @return the tint AST type for a 2-element vector of `type`.
const ast::Vector* vec2(const Source& source, const ast::Type* type) const {
return vec(source, type, 2u);
}
/// @param type vector subtype
/// @return the tint AST type for a 3-element vector of `type`.
const ast::Vector* vec3(const ast::Type* type) const { return vec(type, 3u); }
/// @param source the vector source
/// @param type vector subtype
/// @return the tint AST type for a 3-element vector of `type`.
const ast::Vector* vec3(const Source& source, const ast::Type* type) const {
return vec(source, type, 3u);
}
/// @param type vector subtype
/// @return the tint AST type for a 4-element vector of `type`.
const ast::Vector* vec4(const ast::Type* type) const { return vec(type, 4u); }
/// @param source the vector source
/// @param type vector subtype
/// @return the tint AST type for a 4-element vector of `type`.
const ast::Vector* vec4(const Source& source, const ast::Type* type) const {
return vec(source, type, 4u);
}
/// @param n vector width in elements
/// @return the tint AST type for a `n`-element vector of `type`.
template <typename T>
const ast::Vector* vec(uint32_t n) const {
return vec(Of<T>(), n);
}
/// @return the tint AST type for a 2-element vector of the C type `T`.
template <typename T>
const ast::Vector* vec2() const {
return vec2(Of<T>());
}
/// @param source the Source of the node
/// @return the tint AST type for a 2-element vector of the C type `T`.
template <typename T>
const ast::Vector* vec2(const Source& source) const {
return vec2(source, Of<T>());
}
/// @return the tint AST type for a 3-element vector of the C type `T`.
template <typename T>
const ast::Vector* vec3() const {
return vec3(Of<T>());
}
/// @param source the Source of the node
/// @return the tint AST type for a 3-element vector of the C type `T`.
template <typename T>
const ast::Vector* vec3(const Source& source) const {
return vec3(source, Of<T>());
}
/// @return the tint AST type for a 4-element vector of the C type `T`.
template <typename T>
const ast::Vector* vec4() const {
return vec4(Of<T>());
}
/// @param source the Source of the node
/// @return the tint AST type for a 4-element vector of the C type `T`.
template <typename T>
const ast::Vector* vec4(const Source& source) const {
return vec4(source, Of<T>());
}
/// @param type matrix subtype
/// @param columns number of columns for the matrix
/// @param rows number of rows for the matrix
/// @return the tint AST type for a matrix of `type`
const ast::Matrix* mat(const ast::Type* type, uint32_t columns, uint32_t rows) const {
return builder->create<ast::Matrix>(type, rows, columns);
}
/// @param source the Source of the node
/// @param type matrix subtype
/// @param columns number of columns for the matrix
/// @param rows number of rows for the matrix
/// @return the tint AST type for a matrix of `type`
const ast::Matrix* mat(const Source& source,
const ast::Type* type,
uint32_t columns,
uint32_t rows) const {
return builder->create<ast::Matrix>(source, type, rows, columns);
}
/// @param type matrix subtype
/// @return the tint AST type for a 2x3 matrix of `type`.
const ast::Matrix* mat2x2(const ast::Type* type) const { return mat(type, 2u, 2u); }
/// @param type matrix subtype
/// @return the tint AST type for a 2x3 matrix of `type`.
const ast::Matrix* mat2x3(const ast::Type* type) const { return mat(type, 2u, 3u); }
/// @param type matrix subtype
/// @return the tint AST type for a 2x4 matrix of `type`.
const ast::Matrix* mat2x4(const ast::Type* type) const { return mat(type, 2u, 4u); }
/// @param type matrix subtype
/// @return the tint AST type for a 3x2 matrix of `type`.
const ast::Matrix* mat3x2(const ast::Type* type) const { return mat(type, 3u, 2u); }
/// @param type matrix subtype
/// @return the tint AST type for a 3x3 matrix of `type`.
const ast::Matrix* mat3x3(const ast::Type* type) const { return mat(type, 3u, 3u); }
/// @param type matrix subtype
/// @return the tint AST type for a 3x4 matrix of `type`.
const ast::Matrix* mat3x4(const ast::Type* type) const { return mat(type, 3u, 4u); }
/// @param type matrix subtype
/// @return the tint AST type for a 4x2 matrix of `type`.
const ast::Matrix* mat4x2(const ast::Type* type) const { return mat(type, 4u, 2u); }
/// @param type matrix subtype
/// @return the tint AST type for a 4x3 matrix of `type`.
const ast::Matrix* mat4x3(const ast::Type* type) const { return mat(type, 4u, 3u); }
/// @param type matrix subtype
/// @return the tint AST type for a 4x4 matrix of `type`.
const ast::Matrix* mat4x4(const ast::Type* type) const { return mat(type, 4u, 4u); }
/// @param columns number of columns for the matrix
/// @param rows number of rows for the matrix
/// @return the tint AST type for a matrix of `type`
template <typename T>
const ast::Matrix* mat(uint32_t columns, uint32_t rows) const {
return mat(Of<T>(), columns, rows);
}
/// @return the tint AST type for a 2x3 matrix of the C type `T`.
template <typename T>
const ast::Matrix* mat2x2() const {
return mat2x2(Of<T>());
}
/// @return the tint AST type for a 2x3 matrix of the C type `T`.
template <typename T>
const ast::Matrix* mat2x3() const {
return mat2x3(Of<T>());
}
/// @return the tint AST type for a 2x4 matrix of the C type `T`.
template <typename T>
const ast::Matrix* mat2x4() const {
return mat2x4(Of<T>());
}
/// @return the tint AST type for a 3x2 matrix of the C type `T`.
template <typename T>
const ast::Matrix* mat3x2() const {
return mat3x2(Of<T>());
}
/// @return the tint AST type for a 3x3 matrix of the C type `T`.
template <typename T>
const ast::Matrix* mat3x3() const {
return mat3x3(Of<T>());
}
/// @return the tint AST type for a 3x4 matrix of the C type `T`.
template <typename T>
const ast::Matrix* mat3x4() const {
return mat3x4(Of<T>());
}
/// @return the tint AST type for a 4x2 matrix of the C type `T`.
template <typename T>
const ast::Matrix* mat4x2() const {
return mat4x2(Of<T>());
}
/// @return the tint AST type for a 4x3 matrix of the C type `T`.
template <typename T>
const ast::Matrix* mat4x3() const {
return mat4x3(Of<T>());
}
/// @return the tint AST type for a 4x4 matrix of the C type `T`.
template <typename T>
const ast::Matrix* mat4x4() const {
return mat4x4(Of<T>());
}
/// @param subtype the array element type
/// @param n the array size. nullptr represents a runtime-array
/// @param attrs the optional attributes for the array
/// @return the tint AST type for a array of size `n` of type `T`
template <typename EXPR = ast::Expression*>
const ast::Array* array(
const ast::Type* subtype,
EXPR&& n = nullptr,
utils::VectorRef<const ast::Attribute*> attrs = utils::Empty) const {
return builder->create<ast::Array>(subtype, builder->Expr(std::forward<EXPR>(n)),
std::move(attrs));
}
/// @param source the Source of the node
/// @param subtype the array element type
/// @param n the array size. nullptr represents a runtime-array
/// @param attrs the optional attributes for the array
/// @return the tint AST type for a array of size `n` of type `T`
template <typename EXPR = ast::Expression*>
const ast::Array* array(
const Source& source,
const ast::Type* subtype,
EXPR&& n = nullptr,
utils::VectorRef<const ast::Attribute*> attrs = utils::Empty) const {
return builder->create<ast::Array>(
source, subtype, builder->Expr(std::forward<EXPR>(n)), std::move(attrs));
}
/// @param subtype the array element type
/// @param n the array size. nullptr represents a runtime-array
/// @param stride the array stride. 0 represents implicit stride
/// @return the tint AST type for a array of size `n` of type `T`
template <typename EXPR>
const ast::Array* array(const ast::Type* subtype, EXPR&& n, uint32_t stride) const {
utils::Vector<const ast::Attribute*, 2> attrs;
if (stride) {
attrs.Push(builder->create<ast::StrideAttribute>(stride));
}
return array(subtype, std::forward<EXPR>(n), std::move(attrs));
}
/// @param source the Source of the node
/// @param subtype the array element type
/// @param n the array size. nullptr represents a runtime-array
/// @param stride the array stride. 0 represents implicit stride
/// @return the tint AST type for a array of size `n` of type `T`
template <typename EXPR>
const ast::Array* array(const Source& source,
const ast::Type* subtype,
EXPR&& n,
uint32_t stride) const {
utils::Vector<const ast::Attribute*, 2> attrs;
if (stride) {
attrs.Push(builder->create<ast::StrideAttribute>(stride));
}
return array(source, subtype, std::forward<EXPR>(n), std::move(attrs));
}
/// @return the tint AST type for a runtime-sized array of type `T`
template <typename T>
const ast::Array* array() const {
return array(Of<T>(), nullptr);
}
/// @return the tint AST type for an array of size `N` of type `T`
template <typename T, int N>
const ast::Array* array() const {
return array(Of<T>(), builder->Expr(tint::u32(N)));
}
/// @param stride the array stride
/// @return the tint AST type for a runtime-sized array of type `T`
template <typename T>
const ast::Array* array(uint32_t stride) const {
return array(Of<T>(), nullptr, stride);
}
/// @param stride the array stride
/// @return the tint AST type for an array of size `N` of type `T`
template <typename T, int N>
const ast::Array* array(uint32_t stride) const {
return array(Of<T>(), builder->Expr(tint::u32(N)), stride);
}
/// Creates a type name
/// @param name the name
/// @returns the type name
template <typename NAME>
const ast::TypeName* type_name(NAME&& name) const {
return builder->create<ast::TypeName>(builder->Sym(std::forward<NAME>(name)));
}
/// Creates a type name
/// @param source the Source of the node
/// @param name the name
/// @returns the type name
template <typename NAME>
const ast::TypeName* type_name(const Source& source, NAME&& name) const {
return builder->create<ast::TypeName>(source, builder->Sym(std::forward<NAME>(name)));
}
/// Creates an alias type
/// @param name the alias name
/// @param type the alias type
/// @returns the alias pointer
template <typename NAME>
const ast::Alias* alias(NAME&& name, const ast::Type* type) const {
auto sym = builder->Sym(std::forward<NAME>(name));
return builder->create<ast::Alias>(sym, type);
}
/// Creates an alias type
/// @param source the Source of the node
/// @param name the alias name
/// @param type the alias type
/// @returns the alias pointer
template <typename NAME>
const ast::Alias* alias(const Source& source, NAME&& name, const ast::Type* type) const {
auto sym = builder->Sym(std::forward<NAME>(name));
return builder->create<ast::Alias>(source, sym, type);
}
/// @param type the type of the pointer
/// @param address_space the address space of the pointer
/// @param access the optional access control of the pointer
/// @return the pointer to `type` with the given ast::AddressSpace
const ast::Pointer* pointer(const ast::Type* type,
ast::AddressSpace address_space,
ast::Access access = ast::Access::kUndefined) const {
return builder->create<ast::Pointer>(type, address_space, access);
}
/// @param source the Source of the node
/// @param type the type of the pointer
/// @param address_space the address space of the pointer
/// @param access the optional access control of the pointer
/// @return the pointer to `type` with the given ast::AddressSpace
const ast::Pointer* pointer(const Source& source,
const ast::Type* type,
ast::AddressSpace address_space,
ast::Access access = ast::Access::kUndefined) const {
return builder->create<ast::Pointer>(source, type, address_space, access);
}
/// @param address_space the address space of the pointer
/// @param access the optional access control of the pointer
/// @return the pointer to type `T` with the given ast::AddressSpace.
template <typename T>
const ast::Pointer* pointer(ast::AddressSpace address_space,
ast::Access access = ast::Access::kUndefined) const {
return pointer(Of<T>(), address_space, access);
}
/// @param source the Source of the node
/// @param address_space the address space of the pointer
/// @param access the optional access control of the pointer
/// @return the pointer to type `T` with the given ast::AddressSpace.
template <typename T>
const ast::Pointer* pointer(const Source& source,
ast::AddressSpace address_space,
ast::Access access = ast::Access::kUndefined) const {
return pointer(source, Of<T>(), address_space, access);
}
/// @param source the Source of the node
/// @param type the type of the atomic
/// @return the atomic to `type`
const ast::Atomic* atomic(const Source& source, const ast::Type* type) const {
return builder->create<ast::Atomic>(source, type);
}
/// @param type the type of the atomic
/// @return the atomic to `type`
const ast::Atomic* atomic(const ast::Type* type) const {
return builder->create<ast::Atomic>(type);
}
/// @return the atomic to type `T`
template <typename T>
const ast::Atomic* atomic() const {
return atomic(Of<T>());
}
/// @param kind the kind of sampler
/// @returns the sampler
const ast::Sampler* sampler(ast::SamplerKind kind) const {
return builder->create<ast::Sampler>(kind);
}
/// @param source the Source of the node
/// @param kind the kind of sampler
/// @returns the sampler
const ast::Sampler* sampler(const Source& source, ast::SamplerKind kind) const {
return builder->create<ast::Sampler>(source, kind);
}
/// @param dims the dimensionality of the texture
/// @returns the depth texture
const ast::DepthTexture* depth_texture(ast::TextureDimension dims) const {
return builder->create<ast::DepthTexture>(dims);
}
/// @param source the Source of the node
/// @param dims the dimensionality of the texture
/// @returns the depth texture
const ast::DepthTexture* depth_texture(const Source& source,
ast::TextureDimension dims) const {
return builder->create<ast::DepthTexture>(source, dims);
}
/// @param dims the dimensionality of the texture
/// @returns the multisampled depth texture
const ast::DepthMultisampledTexture* depth_multisampled_texture(
ast::TextureDimension dims) const {
return builder->create<ast::DepthMultisampledTexture>(dims);
}
/// @param source the Source of the node
/// @param dims the dimensionality of the texture
/// @returns the multisampled depth texture
const ast::DepthMultisampledTexture* depth_multisampled_texture(
const Source& source,
ast::TextureDimension dims) const {
return builder->create<ast::DepthMultisampledTexture>(source, dims);
}
/// @param dims the dimensionality of the texture
/// @param subtype the texture subtype.
/// @returns the sampled texture
const ast::SampledTexture* sampled_texture(ast::TextureDimension dims,
const ast::Type* subtype) const {
return builder->create<ast::SampledTexture>(dims, subtype);
}
/// @param source the Source of the node
/// @param dims the dimensionality of the texture
/// @param subtype the texture subtype.
/// @returns the sampled texture
const ast::SampledTexture* sampled_texture(const Source& source,
ast::TextureDimension dims,
const ast::Type* subtype) const {
return builder->create<ast::SampledTexture>(source, dims, subtype);
}
/// @param dims the dimensionality of the texture
/// @param subtype the texture subtype.
/// @returns the multisampled texture
const ast::MultisampledTexture* multisampled_texture(ast::TextureDimension dims,
const ast::Type* subtype) const {
return builder->create<ast::MultisampledTexture>(dims, subtype);
}
/// @param source the Source of the node
/// @param dims the dimensionality of the texture
/// @param subtype the texture subtype.
/// @returns the multisampled texture
const ast::MultisampledTexture* multisampled_texture(const Source& source,
ast::TextureDimension dims,
const ast::Type* subtype) const {
return builder->create<ast::MultisampledTexture>(source, dims, subtype);
}
/// @param dims the dimensionality of the texture
/// @param format the texel format of the texture
/// @param access the access control of the texture
/// @returns the storage texture
const ast::StorageTexture* storage_texture(ast::TextureDimension dims,
ast::TexelFormat format,
ast::Access access) const {
auto* subtype = ast::StorageTexture::SubtypeFor(format, *builder);
return builder->create<ast::StorageTexture>(dims, format, subtype, access);
}
/// @param source the Source of the node
/// @param dims the dimensionality of the texture
/// @param format the texel format of the texture
/// @param access the access control of the texture
/// @returns the storage texture
const ast::StorageTexture* storage_texture(const Source& source,
ast::TextureDimension dims,
ast::TexelFormat format,
ast::Access access) const {
auto* subtype = ast::StorageTexture::SubtypeFor(format, *builder);
return builder->create<ast::StorageTexture>(source, dims, format, subtype, access);
}
/// @returns the external texture
const ast::ExternalTexture* external_texture() const {
return builder->create<ast::ExternalTexture>();
}
/// @param source the Source of the node
/// @returns the external texture
const ast::ExternalTexture* external_texture(const Source& source) const {
return builder->create<ast::ExternalTexture>(source);
}
/// Constructs a TypeName for the type declaration.
/// @param type the type
/// @return either type or a pointer to a new ast::TypeName
const ast::TypeName* Of(const ast::TypeDecl* type) const;
/// The ProgramBuilder
ProgramBuilder* const builder;
private:
/// CToAST<T> is specialized for various `T` types and each specialization
/// contains a single static `get()` method for obtaining the corresponding
/// AST type for the C type `T`.
/// `get()` has the signature:
/// `static const ast::Type* get(Types* t)`
template <typename T>
struct CToAST {};
};
//////////////////////////////////////////////////////////////////////////////
// AST helper methods
//////////////////////////////////////////////////////////////////////////////
/// @return a new unnamed symbol
Symbol Sym() { return Symbols().New(); }
/// @param name the symbol string
/// @return a Symbol with the given name
Symbol Sym(const std::string& name) { return Symbols().Register(name); }
/// @param sym the symbol
/// @return `sym`
Symbol Sym(Symbol sym) { return sym; }
/// @param expr the expression
/// @return expr
template <typename T>
traits::EnableIfIsType<T, ast::Expression>* Expr(T* expr) {
return expr;
}
/// Passthrough for nullptr
/// @return nullptr
const ast::IdentifierExpression* Expr(std::nullptr_t) { return nullptr; }
/// @param source the source information
/// @param symbol the identifier symbol
/// @return an ast::IdentifierExpression with the given symbol
const ast::IdentifierExpression* Expr(const Source& source, Symbol symbol) {
return create<ast::IdentifierExpression>(source, symbol);
}
/// @param symbol the identifier symbol
/// @return an ast::IdentifierExpression with the given symbol
const ast::IdentifierExpression* Expr(Symbol symbol) {
return create<ast::IdentifierExpression>(symbol);
}
/// @param source the source information
/// @param variable the AST variable
/// @return an ast::IdentifierExpression with the variable's symbol
const ast::IdentifierExpression* Expr(const Source& source, const ast::Variable* variable) {
return create<ast::IdentifierExpression>(source, variable->symbol);
}
/// @param variable the AST variable
/// @return an ast::IdentifierExpression with the variable's symbol
const ast::IdentifierExpression* Expr(const ast::Variable* variable) {
return create<ast::IdentifierExpression>(variable->symbol);
}
/// @param source the source information
/// @param name the identifier name
/// @return an ast::IdentifierExpression with the given name
const ast::IdentifierExpression* Expr(const Source& source, const char* name) {
return create<ast::IdentifierExpression>(source, Symbols().Register(name));
}
/// @param name the identifier name
/// @return an ast::IdentifierExpression with the given name
const ast::IdentifierExpression* Expr(const char* name) {
return create<ast::IdentifierExpression>(Symbols().Register(name));
}
/// @param source the source information
/// @param name the identifier name
/// @return an ast::IdentifierExpression with the given name
const ast::IdentifierExpression* Expr(const Source& source, const std::string& name) {
return create<ast::IdentifierExpression>(source, Symbols().Register(name));
}
/// @param name the identifier name
/// @return an ast::IdentifierExpression with the given name
const ast::IdentifierExpression* Expr(const std::string& name) {
return create<ast::IdentifierExpression>(Symbols().Register(name));
}
/// @param source the source information
/// @param value the boolean value
/// @return a Scalar constructor for the given value
template <typename BOOL>
std::enable_if_t<std::is_same_v<BOOL, bool>, const ast::BoolLiteralExpression*> Expr(
const Source& source,
BOOL value) {
return create<ast::BoolLiteralExpression>(source, value);
}
/// @param value the boolean value
/// @return a Scalar constructor for the given value
template <typename BOOL>
std::enable_if_t<std::is_same_v<BOOL, bool>, const ast::BoolLiteralExpression*> Expr(
BOOL value) {
return create<ast::BoolLiteralExpression>(value);
}
/// @param source the source information
/// @param value the float value
/// @return a 'f'-suffixed FloatLiteralExpression for the f32 value
const ast::FloatLiteralExpression* Expr(const Source& source, f32 value) {
return create<ast::FloatLiteralExpression>(source, static_cast<double>(value.value),
ast::FloatLiteralExpression::Suffix::kF);
}
/// @param value the float value
/// @return a 'f'-suffixed FloatLiteralExpression for the f32 value
const ast::FloatLiteralExpression* Expr(f32 value) {
return create<ast::FloatLiteralExpression>(static_cast<double>(value.value),
ast::FloatLiteralExpression::Suffix::kF);
}
/// @param source the source information
/// @param value the float value
/// @return a 'h'-suffixed FloatLiteralExpression for the f16 value
const ast::FloatLiteralExpression* Expr(const Source& source, f16 value) {
return create<ast::FloatLiteralExpression>(source, static_cast<double>(value.value),
ast::FloatLiteralExpression::Suffix::kH);
}
/// @param value the float value
/// @return a 'h'-suffixed FloatLiteralExpression for the f16 value
const ast::FloatLiteralExpression* Expr(f16 value) {
return create<ast::FloatLiteralExpression>(static_cast<double>(value.value),
ast::FloatLiteralExpression::Suffix::kH);
}
/// @param source the source information
/// @param value the integer value
/// @return an unsuffixed IntLiteralExpression for the AInt value
const ast::IntLiteralExpression* Expr(const Source& source, AInt value) {
return create<ast::IntLiteralExpression>(source, value,
ast::IntLiteralExpression::Suffix::kNone);
}
/// @param value the integer value
/// @return an unsuffixed IntLiteralExpression for the AInt value
const ast::IntLiteralExpression* Expr(AInt value) {
return create<ast::IntLiteralExpression>(value, ast::IntLiteralExpression::Suffix::kNone);
}
/// @param source the source information
/// @param value the integer value
/// @return an unsuffixed FloatLiteralExpression for the AFloat value
const ast::FloatLiteralExpression* Expr(const Source& source, AFloat value) {
return create<ast::FloatLiteralExpression>(source, value.value,
ast::FloatLiteralExpression::Suffix::kNone);
}
/// @param value the integer value
/// @return an unsuffixed FloatLiteralExpression for the AFloat value
const ast::FloatLiteralExpression* Expr(AFloat value) {
return create<ast::FloatLiteralExpression>(value.value,
ast::FloatLiteralExpression::Suffix::kNone);
}
/// @param source the source information
/// @param value the integer value
/// @return a signed 'i'-suffixed IntLiteralExpression for the i32 value
const ast::IntLiteralExpression* Expr(const Source& source, i32 value) {
return create<ast::IntLiteralExpression>(source, value,
ast::IntLiteralExpression::Suffix::kI);
}
/// @param value the integer value
/// @return a signed 'i'-suffixed IntLiteralExpression for the i32 value
const ast::IntLiteralExpression* Expr(i32 value) {
return create<ast::IntLiteralExpression>(value, ast::IntLiteralExpression::Suffix::kI);
}
/// @param source the source information
/// @param value the unsigned int value
/// @return an unsigned 'u'-suffixed IntLiteralExpression for the u32 value
const ast::IntLiteralExpression* Expr(const Source& source, u32 value) {
return create<ast::IntLiteralExpression>(source, value,
ast::IntLiteralExpression::Suffix::kU);
}
/// @param value the unsigned int value
/// @return an unsigned 'u'-suffixed IntLiteralExpression for the u32 value
const ast::IntLiteralExpression* Expr(u32 value) {
return create<ast::IntLiteralExpression>(value, ast::IntLiteralExpression::Suffix::kU);
}
/// Converts `arg` to an `ast::Expression` using `Expr()`, then appends it to
/// `list`.
/// @param list the list to append too
/// @param arg the arg to create
template <size_t N, typename ARG>
void Append(utils::Vector<const ast::Expression*, N>& list, ARG&& arg) {
list.Push(Expr(std::forward<ARG>(arg)));
}
/// Converts `arg0` and `args` to `ast::Expression`s using `Expr()`,
/// then appends them to `list`.
/// @param list the list to append too
/// @param arg0 the first argument
/// @param args the rest of the arguments
template <size_t N, typename ARG0, typename... ARGS>
void Append(utils::Vector<const ast::Expression*, N>& list, ARG0&& arg0, ARGS&&... args) {
Append(list, std::forward<ARG0>(arg0));
Append(list, std::forward<ARGS>(args)...);
}
/// @return utils::EmptyType
utils::EmptyType ExprList() { return utils::Empty; }
/// @param args the list of expressions
/// @return the list of expressions converted to `ast::Expression`s using
/// `Expr()`,
template <typename... ARGS, typename = DisableIfVectorLike<ARGS...>>
auto ExprList(ARGS&&... args) {
utils::Vector<const ast::Expression*, sizeof...(ARGS)> list;
Append(list, std::forward<ARGS>(args)...);
return list;
}
/// @param list the list of expressions
/// @return `list`
template <typename T, size_t N>
utils::Vector<T, N> ExprList(utils::Vector<T, N>&& list) {
return std::move(list);
}
/// @param list the list of expressions
/// @return `list`
utils::VectorRef<const ast::Expression*> ExprList(
utils::VectorRef<const ast::Expression*> list) {
return list;
}
/// @param args the arguments for the type constructor
/// @return an `ast::CallExpression` of type `ty`, with the values
/// of `args` converted to `ast::Expression`s using `Expr()`
template <typename T, typename... ARGS>
const ast::CallExpression* Construct(ARGS&&... args) {
return Construct(ty.Of<T>(), std::forward<ARGS>(args)...);
}
/// @param type the type to construct
/// @param args the arguments for the constructor
/// @return an `ast::CallExpression` of `type` constructed with the
/// values `args`.
template <typename... ARGS>
const ast::CallExpression* Construct(const ast::Type* type, ARGS&&... args) {
return Construct(source_, type, std::forward<ARGS>(args)...);
}
/// @param source the source information
/// @param type the type to construct
/// @param args the arguments for the constructor
/// @return an `ast::CallExpression` of `type` constructed with the
/// values `args`.
template <typename... ARGS>
const ast::CallExpression* Construct(const Source& source,
const ast::Type* type,
ARGS&&... args) {
return create<ast::CallExpression>(source, type, ExprList(std::forward<ARGS>(args)...));
}
/// @param expr the expression for the bitcast
/// @return an `ast::BitcastExpression` of type `ty`, with the values of
/// `expr` converted to `ast::Expression`s using `Expr()`
template <typename T, typename EXPR>
const ast::BitcastExpression* Bitcast(EXPR&& expr) {
return Bitcast(ty.Of<T>(), std::forward<EXPR>(expr));
}
/// @param type the type to cast to
/// @param expr the expression for the bitcast
/// @return an `ast::BitcastExpression` of `type` constructed with the values
/// `expr`.
template <typename EXPR>
const ast::BitcastExpression* Bitcast(const ast::Type* type, EXPR&& expr) {
return create<ast::BitcastExpression>(type, Expr(std::forward<EXPR>(expr)));
}
/// @param source the source information
/// @param type the type to cast to
/// @param expr the expression for the bitcast
/// @return an `ast::BitcastExpression` of `type` constructed with the values
/// `expr`.
template <typename EXPR>
const ast::BitcastExpression* Bitcast(const Source& source,
const ast::Type* type,
EXPR&& expr) {
return create<ast::BitcastExpression>(source, type, Expr(std::forward<EXPR>(expr)));
}
/// @param args the arguments for the vector initializer
/// @param type the vector type
/// @param size the vector size
/// @return an `ast::CallExpression` of a `size`-element vector of
/// type `type`, constructed with the values `args`.
template <typename... ARGS>
const ast::CallExpression* vec(const ast::Type* type, uint32_t size, ARGS&&... args) {
return Construct(ty.vec(type, size), std::forward<ARGS>(args)...);
}
/// @param args the arguments for the vector initializer
/// @return an `ast::CallExpression` of a 2-element vector of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS, typename _ = DisableIfSource<ARGS...>>
const ast::CallExpression* vec2(ARGS&&... args) {
return Construct(ty.vec2<T>(), std::forward<ARGS>(args)...);
}
/// @param source the vector source
/// @param args the arguments for the vector initializer
/// @return an `ast::CallExpression` of a 2-element vector of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
const ast::CallExpression* vec2(const Source& source, ARGS&&... args) {
return Construct(source, ty.vec2<T>(), std::forward<ARGS>(args)...);
}
/// @param args the arguments for the vector initializer
/// @return an `ast::CallExpression` of a 3-element vector of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS, typename _ = DisableIfSource<ARGS...>>
const ast::CallExpression* vec3(ARGS&&... args) {
return Construct(ty.vec3<T>(), std::forward<ARGS>(args)...);
}
/// @param source the vector source
/// @param args the arguments for the vector initializer
/// @return an `ast::CallExpression` of a 3-element vector of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
const ast::CallExpression* vec3(const Source& source, ARGS&&... args) {
return Construct(source, ty.vec3<T>(), std::forward<ARGS>(args)...);
}
/// @param args the arguments for the vector initializer
/// @return an `ast::CallExpression` of a 4-element vector of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS, typename _ = DisableIfSource<ARGS...>>
const ast::CallExpression* vec4(ARGS&&... args) {
return Construct(ty.vec4<T>(), std::forward<ARGS>(args)...);
}
/// @param source the vector source
/// @param args the arguments for the vector initializer
/// @return an `ast::CallExpression` of a 4-element vector of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
const ast::CallExpression* vec4(const Source& source, ARGS&&... args) {
return Construct(source, ty.vec4<T>(), std::forward<ARGS>(args)...);
}
/// @param args the arguments for the matrix initializer
/// @return an `ast::CallExpression` of a 2x2 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS, typename _ = DisableIfSource<ARGS...>>
const ast::CallExpression* mat2x2(ARGS&&... args) {
return Construct(ty.mat2x2<T>(), std::forward<ARGS>(args)...);
}
/// @param source the matrix source
/// @param args the arguments for the matrix initializer
/// @return an `ast::CallExpression` of a 2x2 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
const ast::CallExpression* mat2x2(const Source& source, ARGS&&... args) {
return Construct(source, ty.mat2x2<T>(), std::forward<ARGS>(args)...);
}
/// @param args the arguments for the matrix initializer
/// @return an `ast::CallExpression` of a 2x3 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS, typename _ = DisableIfSource<ARGS...>>
const ast::CallExpression* mat2x3(ARGS&&... args) {
return Construct(ty.mat2x3<T>(), std::forward<ARGS>(args)...);
}
/// @param source the matrix source
/// @param args the arguments for the matrix initializer
/// @return an `ast::CallExpression` of a 2x3 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
const ast::CallExpression* mat2x3(const Source& source, ARGS&&... args) {
return Construct(source, ty.mat2x3<T>(), std::forward<ARGS>(args)...);
}
/// @param args the arguments for the matrix initializer
/// @return an `ast::CallExpression` of a 2x4 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS, typename _ = DisableIfSource<ARGS...>>
const ast::CallExpression* mat2x4(ARGS&&... args) {
return Construct(ty.mat2x4<T>(), std::forward<ARGS>(args)...);
}
/// @param source the matrix source
/// @param args the arguments for the matrix initializer
/// @return an `ast::CallExpression` of a 2x4 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
const ast::CallExpression* mat2x4(const Source& source, ARGS&&... args) {
return Construct(source, ty.mat2x4<T>(), std::forward<ARGS>(args)...);
}
/// @param args the arguments for the matrix initializer
/// @return an `ast::CallExpression` of a 3x2 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS, typename _ = DisableIfSource<ARGS...>>
const ast::CallExpression* mat3x2(ARGS&&... args) {
return Construct(ty.mat3x2<T>(), std::forward<ARGS>(args)...);
}
/// @param source the matrix source
/// @param args the arguments for the matrix initializer
/// @return an `ast::CallExpression` of a 3x2 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
const ast::CallExpression* mat3x2(const Source& source, ARGS&&... args) {
return Construct(source, ty.mat3x2<T>(), std::forward<ARGS>(args)...);
}
/// @param args the arguments for the matrix initializer
/// @return an `ast::CallExpression` of a 3x3 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS, typename _ = DisableIfSource<ARGS...>>
const ast::CallExpression* mat3x3(ARGS&&... args) {
return Construct(ty.mat3x3<T>(), std::forward<ARGS>(args)...);
}
/// @param source the matrix source
/// @param args the arguments for the matrix initializer
/// @return an `ast::CallExpression` of a 3x3 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
const ast::CallExpression* mat3x3(const Source& source, ARGS&&... args) {
return Construct(source, ty.mat3x3<T>(), std::forward<ARGS>(args)...);
}
/// @param args the arguments for the matrix initializer
/// @return an `ast::CallExpression` of a 3x4 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS, typename _ = DisableIfSource<ARGS...>>
const ast::CallExpression* mat3x4(ARGS&&... args) {
return Construct(ty.mat3x4<T>(), std::forward<ARGS>(args)...);
}
/// @param source the matrix source
/// @param args the arguments for the matrix initializer
/// @return an `ast::CallExpression` of a 3x4 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
const ast::CallExpression* mat3x4(const Source& source, ARGS&&... args) {
return Construct(source, ty.mat3x4<T>(), std::forward<ARGS>(args)...);
}
/// @param args the arguments for the matrix initializer
/// @return an `ast::CallExpression` of a 4x2 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS, typename _ = DisableIfSource<ARGS...>>
const ast::CallExpression* mat4x2(ARGS&&... args) {
return Construct(ty.mat4x2<T>(), std::forward<ARGS>(args)...);
}
/// @param source the matrix source
/// @param args the arguments for the matrix initializer
/// @return an `ast::CallExpression` of a 4x2 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
const ast::CallExpression* mat4x2(const Source& source, ARGS&&... args) {
return Construct(source, ty.mat4x2<T>(), std::forward<ARGS>(args)...);
}
/// @param args the arguments for the matrix initializer
/// @return an `ast::CallExpression` of a 4x3 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS, typename _ = DisableIfSource<ARGS...>>
const ast::CallExpression* mat4x3(ARGS&&... args) {
return Construct(ty.mat4x3<T>(), std::forward<ARGS>(args)...);
}
/// @param source the matrix source
/// @param args the arguments for the matrix initializer
/// @return an `ast::CallExpression` of a 4x3 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
const ast::CallExpression* mat4x3(const Source& source, ARGS&&... args) {
return Construct(source, ty.mat4x3<T>(), std::forward<ARGS>(args)...);
}
/// @param args the arguments for the matrix initializer
/// @return an `ast::CallExpression` of a 4x4 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS, typename _ = DisableIfSource<ARGS...>>
const ast::CallExpression* mat4x4(ARGS&&... args) {
return Construct(ty.mat4x4<T>(), std::forward<ARGS>(args)...);
}
/// @param source the matrix source
/// @param args the arguments for the matrix initializer
/// @return an `ast::CallExpression` of a 4x4 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
const ast::CallExpression* mat4x4(const Source& source, ARGS&&... args) {
return Construct(source, ty.mat4x4<T>(), std::forward<ARGS>(args)...);
}
/// @param args the arguments for the array initializer
/// @return an `ast::CallExpression` of an array with element type
/// `T` and size `N`, constructed with the values `args`.
template <typename T, int N, typename... ARGS>
const ast::CallExpression* array(ARGS&&... args) {
return Construct(ty.array<T, N>(), std::forward<ARGS>(args)...);
}
/// @param source the array source
/// @param args the arguments for the array initializer
/// @return an `ast::CallExpression` of an array with element type
/// `T` and size `N`, constructed with the values `args`.
template <typename T, int N, typename... ARGS>
const ast::CallExpression* array(const Source& source, ARGS&&... args) {
return Construct(source, ty.array<T, N>(), std::forward<ARGS>(args)...);
}
/// @param subtype the array element type
/// @param n the array size. nullptr represents a runtime-array.
/// @param args the arguments for the array initializer
/// @return an `ast::CallExpression` of an array with element type
/// `subtype`, constructed with the values `args`.
template <typename EXPR, typename... ARGS>
const ast::CallExpression* array(const ast::Type* subtype, EXPR&& n, ARGS&&... args) {
return Construct(ty.array(subtype, std::forward<EXPR>(n)), std::forward<ARGS>(args)...);
}
/// @param source the array source
/// @param subtype the array element type
/// @param n the array size. nullptr represents a runtime-array.
/// @param args the arguments for the array initializer
/// @return an `ast::CallExpression` of an array with element type
/// `subtype`, constructed with the values `args`.
template <typename EXPR, typename... ARGS>
const ast::CallExpression* array(const Source& source,
const ast::Type* subtype,
EXPR&& n,
ARGS&&... args) {
return Construct(source, ty.array(subtype, std::forward<EXPR>(n)),
std::forward<ARGS>(args)...);
}
/// Adds the extension to the list of enable directives at the top of the module.
/// @param ext the extension to enable
/// @return an `ast::Enable` enabling the given extension.
const ast::Enable* Enable(ast::Extension ext) {
auto* enable = create<ast::Enable>(ext);
AST().AddEnable(enable);
return enable;
}
/// Adds the extension to the list of enable directives at the top of the module.
/// @param source the enable source
/// @param ext the extension to enable
/// @return an `ast::Enable` enabling the given extension.
const ast::Enable* Enable(const Source& source, ast::Extension ext) {
auto* enable = create<ast::Enable>(source, ext);
AST().AddEnable(enable);
return enable;
}
/// @param name the variable name
/// @param options the extra options passed to the ast::Var initializer
/// Can be any of the following, in any order:
/// * ast::Type* - specifies the variable type
/// * ast::AddressSpace - specifies the variable address space
/// * ast::Access - specifies the variable's access control
/// * ast::Expression* - specifies the variable's initializer expression
/// * ast::Attribute* - specifies the variable's attributes (repeatable, or vector)
/// Note that non-repeatable arguments of the same type will use the last argument's value.
/// @returns a `ast::Var` with the given name, type and additional
/// options
template <typename NAME, typename... OPTIONS, typename = DisableIfSource<NAME>>
const ast::Var* Var(NAME&& name, OPTIONS&&... options) {
VarOptions opts(std::forward<OPTIONS>(options)...);
return create<ast::Var>(Sym(std::forward<NAME>(name)), opts.type, opts.address_space,
opts.access, opts.initializer, std::move(opts.attributes));
}
/// @param source the variable source
/// @param name the variable name
/// @param options the extra options passed to the ast::Var initializer
/// Can be any of the following, in any order:
/// * ast::Type* - specifies the variable type
/// * ast::AddressSpace - specifies the variable address space
/// * ast::Access - specifies the variable's access control
/// * ast::Expression* - specifies the variable's initializer expression
/// * ast::Attribute* - specifies the variable's attributes (repeatable, or vector)
/// Note that non-repeatable arguments of the same type will use the last argument's value.
/// @returns a `ast::Var` with the given name, address_space and type
template <typename NAME, typename... OPTIONS>
const ast::Var* Var(const Source& source, NAME&& name, OPTIONS&&... options) {
VarOptions opts(std::forward<OPTIONS>(options)...);
return create<ast::Var>(source, Sym(std::forward<NAME>(name)), opts.type,
opts.address_space, opts.access, opts.initializer,
std::move(opts.attributes));
}
/// @param name the variable name
/// @param options the extra options passed to the ast::Var initializer
/// Can be any of the following, in any order:
/// * ast::Expression* - specifies the variable's initializer expression (required)
/// * ast::Type* - specifies the variable type
/// * ast::Attribute* - specifies the variable's attributes (repeatable, or vector)
/// Note that non-repeatable arguments of the same type will use the last argument's value.
/// @returns an `ast::Const` with the given name, type and additional options
template <typename NAME, typename... OPTIONS, typename = DisableIfSource<NAME>>
const ast::Const* Const(NAME&& name, OPTIONS&&... options) {
ConstOptions opts(std::forward<OPTIONS>(options)...);
return create<ast::Const>(Sym(std::forward<NAME>(name)), opts.type, opts.initializer,
std::move(opts.attributes));
}
/// @param source the variable source
/// @param name the variable name
/// @param options the extra options passed to the ast::Var initializer
/// Can be any of the following, in any order:
/// * ast::Expression* - specifies the variable's initializer expression (required)
/// * ast::Type* - specifies the variable type
/// * ast::Attribute* - specifies the variable's attributes (repeatable, or vector)
/// Note that non-repeatable arguments of the same type will use the last argument's value.
/// @returns an `ast::Const` with the given name, type and additional options
template <typename NAME, typename... OPTIONS>
const ast::Const* Const(const Source& source, NAME&& name, OPTIONS&&... options) {
ConstOptions opts(std::forward<OPTIONS>(options)...);
return create<ast::Const>(source, Sym(std::forward<NAME>(name)), opts.type,
opts.initializer, std::move(opts.attributes));
}
/// @param name the variable name
/// @param options the extra options passed to the ast::Var initializer
/// Can be any of the following, in any order:
/// * ast::Expression* - specifies the variable's initializer expression (required)
/// * ast::Type* - specifies the variable type
/// * ast::Attribute* - specifies the variable's attributes (repeatable, or vector)
/// Note that non-repeatable arguments of the same type will use the last argument's value.
/// @returns an `ast::Let` with the given name, type and additional options
template <typename NAME, typename... OPTIONS, typename = DisableIfSource<NAME>>
const ast::Let* Let(NAME&& name, OPTIONS&&... options) {
LetOptions opts(std::forward<OPTIONS>(options)...);
return create<ast::Let>(Sym(std::forward<NAME>(name)), opts.type, opts.initializer,
std::move(opts.attributes));
}
/// @param source the variable source
/// @param name the variable name
/// @param options the extra options passed to the ast::Var initializer
/// Can be any of the following, in any order:
/// * ast::Expression* - specifies the variable's initializer expression (required)
/// * ast::Type* - specifies the variable type
/// * ast::Attribute* - specifies the variable's attributes (repeatable, or vector)
/// Note that non-repeatable arguments of the same type will use the last argument's value.
/// @returns an `ast::Let` with the given name, type and additional options
template <typename NAME, typename... OPTIONS>
const ast::Let* Let(const Source& source, NAME&& name, OPTIONS&&... options) {
LetOptions opts(std::forward<OPTIONS>(options)...);
return create<ast::Let>(source, Sym(std::forward<NAME>(name)), opts.type, opts.initializer,
std::move(opts.attributes));
}
/// @param name the parameter name
/// @param type the parameter type
/// @param attributes optional parameter attributes
/// @returns an `ast::Parameter` with the given name and type
template <typename NAME>
const ast::Parameter* Param(NAME&& name,
const ast::Type* type,
utils::VectorRef<const ast::Attribute*> attributes = utils::Empty) {
return create<ast::Parameter>(Sym(std::forward<NAME>(name)), type, attributes);
}
/// @param source the parameter source
/// @param name the parameter name
/// @param type the parameter type
/// @param attributes optional parameter attributes
/// @returns an `ast::Parameter` with the given name and type
template <typename NAME>
const ast::Parameter* Param(const Source& source,
NAME&& name,
const ast::Type* type,
utils::VectorRef<const ast::Attribute*> attributes = utils::Empty) {
return create<ast::Parameter>(source, Sym(std::forward<NAME>(name)), type, attributes);
}
/// @param name the variable name
/// @param options the extra options passed to the ast::Var initializer
/// Can be any of the following, in any order:
/// * ast::Type* - specifies the variable type
/// * ast::AddressSpace - specifies the variable address space
/// * ast::Access - specifies the variable's access control
/// * ast::Expression* - specifies the variable's initializer expression
/// * ast::Attribute* - specifies the variable's attributes (repeatable, or vector)
/// Note that non-repeatable arguments of the same type will use the last argument's value.
/// @returns a new `ast::Var`, which is automatically registered as a global variable with the
/// ast::Module.
template <typename NAME, typename... OPTIONS, typename = DisableIfSource<NAME>>
const ast::Var* GlobalVar(NAME&& name, OPTIONS&&... options) {
auto* variable = Var(std::forward<NAME>(name), std::forward<OPTIONS>(options)...);
AST().AddGlobalVariable(variable);
return variable;
}
/// @param source the variable source
/// @param name the variable name
/// @param options the extra options passed to the ast::Var initializer
/// Can be any of the following, in any order:
/// * ast::Type* - specifies the variable type
/// * ast::AddressSpace - specifies the variable address space
/// * ast::Access - specifies the variable's access control
/// * ast::Expression* - specifies the variable's initializer expression
/// * ast::Attribute* - specifies the variable's attributes (repeatable, or vector)
/// Note that non-repeatable arguments of the same type will use the last argument's value.
/// @returns a new `ast::Var`, which is automatically registered as a global variable with the
/// ast::Module.
template <typename NAME, typename... OPTIONS>
const ast::Var* GlobalVar(const Source& source, NAME&& name, OPTIONS&&... options) {
auto* variable = Var(source, std::forward<NAME>(name), std::forward<OPTIONS>(options)...);
AST().AddGlobalVariable(variable);
return variable;
}
/// @param name the variable name
/// @param options the extra options passed to the ast::Const initializer
/// Can be any of the following, in any order:
/// * ast::Expression* - specifies the variable's initializer expression (required)
/// * ast::Type* - specifies the variable type
/// * ast::Attribute* - specifies the variable's attributes (repeatable, or vector)
/// Note that non-repeatable arguments of the same type will use the last argument's value.
/// @returns an `ast::Const` with the given name, type and additional options, which is
/// automatically registered as a global variable with the ast::Module.
template <typename NAME, typename... OPTIONS, typename = DisableIfSource<NAME>>
const ast::Const* GlobalConst(NAME&& name, OPTIONS&&... options) {
auto* variable = Const(std::forward<NAME>(name), std::forward<OPTIONS>(options)...);
AST().AddGlobalVariable(variable);
return variable;
}
/// @param source the variable source
/// @param name the variable name
/// @param options the extra options passed to the ast::Const initializer
/// Can be any of the following, in any order:
/// * ast::Expression* - specifies the variable's initializer expression (required)
/// * ast::Type* - specifies the variable type
/// * ast::Attribute* - specifies the variable's attributes (repeatable, or vector)
/// Note that non-repeatable arguments of the same type will use the last argument's value.
/// @returns an `ast::Const` with the given name, type and additional options, which is
/// automatically registered as a global variable with the ast::Module.
template <typename NAME, typename... OPTIONS>
const ast::Const* GlobalConst(const Source& source, NAME&& name, OPTIONS&&... options) {
auto* variable = Const(source, std::forward<NAME>(name), std::forward<OPTIONS>(options)...);
AST().AddGlobalVariable(variable);
return variable;
}
/// @param name the variable name
/// @param options the extra options passed to the ast::Override initializer
/// Can be any of the following, in any order:
/// * ast::Expression* - specifies the variable's initializer expression (required)
/// * ast::Type* - specifies the variable type
/// * ast::Attribute* - specifies the variable's attributes (repeatable, or vector)
/// Note that non-repeatable arguments of the same type will use the last argument's value.
/// @returns an `ast::Override` with the given name, type and additional options, which is
/// automatically registered as a global variable with the ast::Module.
template <typename NAME, typename... OPTIONS, typename = DisableIfSource<NAME>>
const ast::Override* Override(NAME&& name, OPTIONS&&... options) {
OverrideOptions opts(std::forward<OPTIONS>(options)...);
auto* variable = create<ast::Override>(Sym(std::forward<NAME>(name)), opts.type,
opts.initializer, std::move(opts.attributes));
AST().AddGlobalVariable(variable);
return variable;
}
/// @param source the variable source
/// @param name the variable name
/// @param options the extra options passed to the ast::Override initializer
/// Can be any of the following, in any order:
/// * ast::Expression* - specifies the variable's initializer expression (required)
/// * ast::Type* - specifies the variable type
/// * ast::Attribute* - specifies the variable's attributes (repeatable, or vector)
/// Note that non-repeatable arguments of the same type will use the last argument's value.
/// @returns an `ast::Override` with the given name, type and additional options, which is
/// automatically registered as a global variable with the ast::Module.
template <typename NAME, typename... OPTIONS>
const ast::Override* Override(const Source& source, NAME&& name, OPTIONS&&... options) {
OverrideOptions opts(std::forward<OPTIONS>(options)...);
auto* variable = create<ast::Override>(source, Sym(std::forward<NAME>(name)), opts.type,
opts.initializer, std::move(opts.attributes));
AST().AddGlobalVariable(variable);
return variable;
}
/// @param source the source information
/// @param condition the assertion condition
/// @returns a new `ast::StaticAssert`, which is automatically registered as a global statement
/// with the ast::Module.
template <typename EXPR>
const ast::StaticAssert* GlobalStaticAssert(const Source& source, EXPR&& condition) {
auto* sa = StaticAssert(source, std::forward<EXPR>(condition));
AST().AddStaticAssert(sa);
return sa;
}
/// @param condition the assertion condition
/// @returns a new `ast::StaticAssert`, which is automatically registered as a global statement
/// with the ast::Module.
template <typename EXPR, typename = DisableIfSource<EXPR>>
const ast::StaticAssert* GlobalStaticAssert(EXPR&& condition) {
auto* sa = StaticAssert(std::forward<EXPR>(condition));
AST().AddStaticAssert(sa);
return sa;
}
/// @param source the source information
/// @param condition the assertion condition
/// @returns a new `ast::StaticAssert` with the given assertion condition
template <typename EXPR>
const ast::StaticAssert* StaticAssert(const Source& source, EXPR&& condition) {
return create<ast::StaticAssert>(source, Expr(std::forward<EXPR>(condition)));
}
/// @param condition the assertion condition
/// @returns a new `ast::StaticAssert` with the given assertion condition
template <typename EXPR, typename = DisableIfSource<EXPR>>
const ast::StaticAssert* StaticAssert(EXPR&& condition) {
return create<ast::StaticAssert>(Expr(std::forward<EXPR>(condition)));
}
/// @param source the source information
/// @param expr the expression to take the address of
/// @return an ast::UnaryOpExpression that takes the address of `expr`
template <typename EXPR>
const ast::UnaryOpExpression* AddressOf(const Source& source, EXPR&& expr) {
return create<ast::UnaryOpExpression>(source, ast::UnaryOp::kAddressOf,
Expr(std::forward<EXPR>(expr)));
}
/// @param expr the expression to take the address of
/// @return an ast::UnaryOpExpression that takes the address of `expr`
template <typename EXPR>
const ast::UnaryOpExpression* AddressOf(EXPR&& expr) {
return create<ast::UnaryOpExpression>(ast::UnaryOp::kAddressOf,
Expr(std::forward<EXPR>(expr)));
}
/// @param source the source information
/// @param expr the expression to perform an indirection on
/// @return an ast::UnaryOpExpression that dereferences the pointer `expr`
template <typename EXPR>
const ast::UnaryOpExpression* Deref(const Source& source, EXPR&& expr) {
return create<ast::UnaryOpExpression>(source, ast::UnaryOp::kIndirection,
Expr(std::forward<EXPR>(expr)));
}
/// @param expr the expression to perform an indirection on
/// @return an ast::UnaryOpExpression that dereferences the pointer `expr`
template <typename EXPR>
const ast::UnaryOpExpression* Deref(EXPR&& expr) {
return create<ast::UnaryOpExpression>(ast::UnaryOp::kIndirection,
Expr(std::forward<EXPR>(expr)));
}
/// @param expr the expression to perform a unary not on
/// @return an ast::UnaryOpExpression that is the unary not of the input
/// expression
template <typename EXPR>
const ast::UnaryOpExpression* Not(EXPR&& expr) {
return create<ast::UnaryOpExpression>(ast::UnaryOp::kNot, Expr(std::forward<EXPR>(expr)));
}
/// @param expr the expression to perform a unary complement on
/// @return an ast::UnaryOpExpression that is the unary complement of the
/// input expression
template <typename EXPR>
const ast::UnaryOpExpression* Complement(EXPR&& expr) {
return create<ast::UnaryOpExpression>(ast::UnaryOp::kComplement,
Expr(std::forward<EXPR>(expr)));
}
/// @param expr the expression to perform a unary negation on
/// @return an ast::UnaryOpExpression that is the unary negation of the
/// input expression
template <typename EXPR>
const ast::UnaryOpExpression* Negation(EXPR&& expr) {
return create<ast::UnaryOpExpression>(ast::UnaryOp::kNegation,
Expr(std::forward<EXPR>(expr)));
}
/// @param source the source information
/// @param func the function name
/// @param args the function call arguments
/// @returns a `ast::CallExpression` to the function `func`, with the
/// arguments of `args` converted to `ast::Expression`s using `Expr()`.
template <typename NAME, typename... ARGS>
const ast::CallExpression* Call(const Source& source, NAME&& func, ARGS&&... args) {
return create<ast::CallExpression>(source, Expr(func),
ExprList(std::forward<ARGS>(args)...));
}
/// @param func the function name
/// @param args the function call arguments
/// @returns a `ast::CallExpression` to the function `func`, with the
/// arguments of `args` converted to `ast::Expression`s using `Expr()`.
template <typename NAME, typename... ARGS, typename = DisableIfSource<NAME>>
const ast::CallExpression* Call(NAME&& func, ARGS&&... args) {
return create<ast::CallExpression>(Expr(func), ExprList(std::forward<ARGS>(args)...));
}
/// @param source the source information
/// @param call the call expression to wrap in a call statement
/// @returns a `ast::CallStatement` for the given call expression
const ast::CallStatement* CallStmt(const Source& source, const ast::CallExpression* call) {
return create<ast::CallStatement>(source, call);
}
/// @param call the call expression to wrap in a call statement
/// @returns a `ast::CallStatement` for the given call expression
const ast::CallStatement* CallStmt(const ast::CallExpression* call) {
return create<ast::CallStatement>(call);
}
/// @param source the source information
/// @returns a `ast::PhonyExpression`
const ast::PhonyExpression* Phony(const Source& source) {
return create<ast::PhonyExpression>(source);
}
/// @returns a `ast::PhonyExpression`
const ast::PhonyExpression* Phony() { return create<ast::PhonyExpression>(); }
/// @param expr the expression to ignore
/// @returns a `ast::AssignmentStatement` that assigns 'expr' to the phony
/// (underscore) variable.
template <typename EXPR>
const ast::AssignmentStatement* Ignore(EXPR&& expr) {
return create<ast::AssignmentStatement>(Phony(), Expr(expr));
}
/// @param lhs the left hand argument to the addition operation
/// @param rhs the right hand argument to the addition operation
/// @returns a `ast::BinaryExpression` summing the arguments `lhs` and `rhs`
template <typename LHS, typename RHS>
const ast::BinaryExpression* Add(LHS&& lhs, RHS&& rhs) {
return create<ast::BinaryExpression>(ast::BinaryOp::kAdd, Expr(std::forward<LHS>(lhs)),
Expr(std::forward<RHS>(rhs)));
}
/// @param source the source information
/// @param lhs the left hand argument to the addition operation
/// @param rhs the right hand argument to the addition operation
/// @returns a `ast::BinaryExpression` summing the arguments `lhs` and `rhs`
template <typename LHS, typename RHS>
const ast::BinaryExpression* Add(const Source& source, LHS&& lhs, RHS&& rhs) {
return create<ast::BinaryExpression>(source, ast::BinaryOp::kAdd,
Expr(std::forward<LHS>(lhs)),
Expr(std::forward<RHS>(rhs)));
}
/// @param lhs the left hand argument to the and operation
/// @param rhs the right hand argument to the and operation
/// @returns a `ast::BinaryExpression` bitwise anding `lhs` and `rhs`
template <typename LHS, typename RHS>
const ast::BinaryExpression* And(LHS&& lhs, RHS&& rhs) {
return create<ast::BinaryExpression>(ast::BinaryOp::kAnd, Expr(std::forward<LHS>(lhs)),
Expr(std::forward<RHS>(rhs)));
}
/// @param lhs the left hand argument to the or operation
/// @param rhs the right hand argument to the or operation
/// @returns a `ast::BinaryExpression` bitwise or-ing `lhs` and `rhs`
template <typename LHS, typename RHS>
const ast::BinaryExpression* Or(LHS&& lhs, RHS&& rhs) {
return create<ast::BinaryExpression>(ast::BinaryOp::kOr, Expr(std::forward<LHS>(lhs)),
Expr(std::forward<RHS>(rhs)));
}
/// @param lhs the left hand argument to the subtraction operation
/// @param rhs the right hand argument to the subtraction operation
/// @returns a `ast::BinaryExpression` subtracting `rhs` from `lhs`
template <typename LHS, typename RHS>
const ast::BinaryExpression* Sub(LHS&& lhs, RHS&& rhs) {
return create<ast::BinaryExpression>(ast::BinaryOp::kSubtract, Expr(std::forward<LHS>(lhs)),
Expr(std::forward<RHS>(rhs)));
}
/// @param lhs the left hand argument to the multiplication operation
/// @param rhs the right hand argument to the multiplication operation
/// @returns a `ast::BinaryExpression` multiplying `rhs` from `lhs`
template <typename LHS, typename RHS>
const ast::BinaryExpression* Mul(LHS&& lhs, RHS&& rhs) {
return create<ast::BinaryExpression>(ast::BinaryOp::kMultiply, Expr(std::forward<LHS>(lhs)),
Expr(std::forward<RHS>(rhs)));
}
/// @param source the source information
/// @param lhs the left hand argument to the multiplication operation
/// @param rhs the right hand argument to the multiplication operation
/// @returns a `ast::BinaryExpression` multiplying `rhs` from `lhs`
template <typename LHS, typename RHS>
const ast::BinaryExpression* Mul(const Source& source, LHS&& lhs, RHS&& rhs) {
return create<ast::BinaryExpression>(source, ast::BinaryOp::kMultiply,
Expr(std::forward<LHS>(lhs)),
Expr(std::forward<RHS>(rhs)));
}
/// @param lhs the left hand argument to the division operation
/// @param rhs the right hand argument to the division operation
/// @returns a `ast::BinaryExpression` dividing `lhs` by `rhs`
template <typename LHS, typename RHS>
const ast::BinaryExpression* Div(LHS&& lhs, RHS&& rhs) {
return create<ast::BinaryExpression>(ast::BinaryOp::kDivide, Expr(std::forward<LHS>(lhs)),
Expr(std::forward<RHS>(rhs)));
}
/// @param lhs the left hand argument to the modulo operation
/// @param rhs the right hand argument to the modulo operation
/// @returns a `ast::BinaryExpression` applying modulo of `lhs` by `rhs`
template <typename LHS, typename RHS>
const ast::BinaryExpression* Mod(LHS&& lhs, RHS&& rhs) {
return create<ast::BinaryExpression>(ast::BinaryOp::kModulo, Expr(std::forward<LHS>(lhs)),
Expr(std::forward<RHS>(rhs)));
}
/// @param lhs the left hand argument to the bit shift right operation
/// @param rhs the right hand argument to the bit shift right operation
/// @returns a `ast::BinaryExpression` bit shifting right `lhs` by `rhs`
template <typename LHS, typename RHS>
const ast::BinaryExpression* Shr(LHS&& lhs, RHS&& rhs) {
return create<ast::BinaryExpression>(
ast::BinaryOp::kShiftRight, Expr(std::forward<LHS>(lhs)), Expr(std::forward<RHS>(rhs)));
}
/// @param lhs the left hand argument to the bit shift left operation
/// @param rhs the right hand argument to the bit shift left operation
/// @returns a `ast::BinaryExpression` bit shifting left `lhs` by `rhs`
template <typename LHS, typename RHS>
const ast::BinaryExpression* Shl(LHS&& lhs, RHS&& rhs) {
return create<ast::BinaryExpression>(
ast::BinaryOp::kShiftLeft, Expr(std::forward<LHS>(lhs)), Expr(std::forward<RHS>(rhs)));
}
/// @param source the source information
/// @param lhs the left hand argument to the bit shift left operation
/// @param rhs the right hand argument to the bit shift left operation
/// @returns a `ast::BinaryExpression` bit shifting left `lhs` by `rhs`
template <typename LHS, typename RHS>
const ast::BinaryExpression* Shl(const Source& source, LHS&& lhs, RHS&& rhs) {
return create<ast::BinaryExpression>(source, ast::BinaryOp::kShiftLeft,
Expr(std::forward<LHS>(lhs)),
Expr(std::forward<RHS>(rhs)));
}
/// @param lhs the left hand argument to the xor operation
/// @param rhs the right hand argument to the xor operation
/// @returns a `ast::BinaryExpression` bitwise xor-ing `lhs` and `rhs`
template <typename LHS, typename RHS>
const ast::BinaryExpression* Xor(LHS&& lhs, RHS&& rhs) {
return create<ast::BinaryExpression>(ast::BinaryOp::kXor, Expr(std::forward<LHS>(lhs)),
Expr(std::forward<RHS>(rhs)));
}
/// @param lhs the left hand argument to the logical and operation
/// @param rhs the right hand argument to the logical and operation
/// @returns a `ast::BinaryExpression` of `lhs` && `rhs`
template <typename LHS, typename RHS>
const ast::BinaryExpression* LogicalAnd(LHS&& lhs, RHS&& rhs) {
return create<ast::BinaryExpression>(
ast::BinaryOp::kLogicalAnd, Expr(std::forward<LHS>(lhs)), Expr(std::forward<RHS>(rhs)));
}
/// @param lhs the left hand argument to the logical or operation
/// @param rhs the right hand argument to the logical or operation
/// @returns a `ast::BinaryExpression` of `lhs` || `rhs`
template <typename LHS, typename RHS>
const ast::BinaryExpression* LogicalOr(LHS&& lhs, RHS&& rhs) {
return create<ast::BinaryExpression>(
ast::BinaryOp::kLogicalOr, Expr(std::forward<LHS>(lhs)), Expr(std::forward<RHS>(rhs)));
}
/// @param lhs the left hand argument to the greater than operation
/// @param rhs the right hand argument to the greater than operation
/// @returns a `ast::BinaryExpression` of `lhs` > `rhs`
template <typename LHS, typename RHS>
const ast::BinaryExpression* GreaterThan(LHS&& lhs, RHS&& rhs) {
return create<ast::BinaryExpression>(ast::BinaryOp::kGreaterThan,
Expr(std::forward<LHS>(lhs)),
Expr(std::forward<RHS>(rhs)));
}
/// @param lhs the left hand argument to the greater than or equal operation
/// @param rhs the right hand argument to the greater than or equal operation
/// @returns a `ast::BinaryExpression` of `lhs` >= `rhs`
template <typename LHS, typename RHS>
const ast::BinaryExpression* GreaterThanEqual(LHS&& lhs, RHS&& rhs) {
return create<ast::BinaryExpression>(ast::BinaryOp::kGreaterThanEqual,
Expr(std::forward<LHS>(lhs)),
Expr(std::forward<RHS>(rhs)));
}
/// @param lhs the left hand argument to the less than operation
/// @param rhs the right hand argument to the less than operation
/// @returns a `ast::BinaryExpression` of `lhs` < `rhs`
template <typename LHS, typename RHS>
const ast::BinaryExpression* LessThan(LHS&& lhs, RHS&& rhs) {
return create<ast::BinaryExpression>(ast::BinaryOp::kLessThan, Expr(std::forward<LHS>(lhs)),
Expr(std::forward<RHS>(rhs)));
}
/// @param lhs the left hand argument to the less than or equal operation
/// @param rhs the right hand argument to the less than or equal operation
/// @returns a `ast::BinaryExpression` of `lhs` <= `rhs`
template <typename LHS, typename RHS>
const ast::BinaryExpression* LessThanEqual(LHS&& lhs, RHS&& rhs) {
return create<ast::BinaryExpression>(ast::BinaryOp::kLessThanEqual,
Expr(std::forward<LHS>(lhs)),
Expr(std::forward<RHS>(rhs)));
}
/// @param lhs the left hand argument to the equal expression
/// @param rhs the right hand argument to the equal expression
/// @returns a `ast::BinaryExpression` comparing `lhs` equal to `rhs`
template <typename LHS, typename RHS>
const ast::BinaryExpression* Equal(LHS&& lhs, RHS&& rhs) {
return create<ast::BinaryExpression>(ast::BinaryOp::kEqual, Expr(std::forward<LHS>(lhs)),
Expr(std::forward<RHS>(rhs)));
}
/// @param lhs the left hand argument to the not-equal expression
/// @param rhs the right hand argument to the not-equal expression
/// @returns a `ast::BinaryExpression` comparing `lhs` equal to `rhs` for
/// disequality
template <typename LHS, typename RHS>
const ast::BinaryExpression* NotEqual(LHS&& lhs, RHS&& rhs) {
return create<ast::BinaryExpression>(ast::BinaryOp::kNotEqual, Expr(std::forward<LHS>(lhs)),
Expr(std::forward<RHS>(rhs)));
}
/// @param source the source information
/// @param obj the object for the index accessor expression
/// @param idx the index argument for the index accessor expression
/// @returns a `ast::IndexAccessorExpression` that indexes `arr` with `idx`
template <typename OBJ, typename IDX>
const ast::IndexAccessorExpression* IndexAccessor(const Source& source, OBJ&& obj, IDX&& idx) {
return create<ast::IndexAccessorExpression>(source, Expr(std::forward<OBJ>(obj)),
Expr(std::forward<IDX>(idx)));
}
/// @param obj the object for the index accessor expression
/// @param idx the index argument for the index accessor expression
/// @returns a `ast::IndexAccessorExpression` that indexes `arr` with `idx`
template <typename OBJ, typename IDX>
const ast::IndexAccessorExpression* IndexAccessor(OBJ&& obj, IDX&& idx) {
return create<ast::IndexAccessorExpression>(Expr(std::forward<OBJ>(obj)),
Expr(std::forward<IDX>(idx)));
}
/// @param source the source information
/// @param obj the object for the member accessor expression
/// @param idx the index argument for the member accessor expression
/// @returns a `ast::MemberAccessorExpression` that indexes `obj` with `idx`
template <typename OBJ, typename IDX>
const ast::MemberAccessorExpression* MemberAccessor(const Source& source,
OBJ&& obj,
IDX&& idx) {
return create<ast::MemberAccessorExpression>(source, Expr(std::forward<OBJ>(obj)),
Expr(std::forward<IDX>(idx)));
}
/// @param obj the object for the member accessor expression
/// @param idx the index argument for the member accessor expression
/// @returns a `ast::MemberAccessorExpression` that indexes `obj` with `idx`
template <typename OBJ, typename IDX>
const ast::MemberAccessorExpression* MemberAccessor(OBJ&& obj, IDX&& idx) {
return create<ast::MemberAccessorExpression>(Expr(std::forward<OBJ>(obj)),
Expr(std::forward<IDX>(idx)));
}
/// Creates a ast::StructMemberOffsetAttribute
/// @param val the offset expression
/// @returns the offset attribute pointer
template <typename EXPR>
const ast::StructMemberOffsetAttribute* MemberOffset(EXPR&& val) {
return create<ast::StructMemberOffsetAttribute>(source_, Expr(std::forward<EXPR>(val)));
}
/// Creates a ast::StructMemberOffsetAttribute
/// @param source the source information
/// @param val the offset expression
/// @returns the offset attribute pointer
template <typename EXPR>
const ast::StructMemberOffsetAttribute* MemberOffset(const Source& source, EXPR&& val) {
return create<ast::StructMemberOffsetAttribute>(source, Expr(std::forward<EXPR>(val)));
}
/// Creates a ast::StructMemberSizeAttribute
/// @param source the source information
/// @param val the size value
/// @returns the size attribute pointer
template <typename EXPR>
const ast::StructMemberSizeAttribute* MemberSize(const Source& source, EXPR&& val) {
return create<ast::StructMemberSizeAttribute>(source, Expr(std::forward<EXPR>(val)));
}
/// Creates a ast::StructMemberSizeAttribute
/// @param val the size value
/// @returns the size attribute pointer
template <typename EXPR>
const ast::StructMemberSizeAttribute* MemberSize(EXPR&& val) {
return create<ast::StructMemberSizeAttribute>(source_, Expr(std::forward<EXPR>(val)));
}
/// Creates a ast::StructMemberAlignAttribute
/// @param source the source information
/// @param val the align value expression
/// @returns the align attribute pointer
template <typename EXPR>
const ast::StructMemberAlignAttribute* MemberAlign(const Source& source, EXPR&& val) {
return create<ast::StructMemberAlignAttribute>(source, Expr(std::forward<EXPR>(val)));
}
/// Creates a ast::StructMemberAlignAttribute
/// @param val the align value expression
/// @returns the align attribute pointer
template <typename EXPR>
const ast::StructMemberAlignAttribute* MemberAlign(EXPR&& val) {
return create<ast::StructMemberAlignAttribute>(source_, Expr(std::forward<EXPR>(val)));
}
/// Creates the ast::GroupAttribute
/// @param value group attribute index expresion
/// @returns the group attribute pointer
template <typename EXPR>
const ast::GroupAttribute* Group(EXPR&& value) {
return create<ast::GroupAttribute>(Expr(std::forward<EXPR>(value)));
}
/// Creates the ast::GroupAttribute
/// @param source the source
/// @param value group attribute index expression
/// @returns the group attribute pointer
template <typename EXPR>
const ast::GroupAttribute* Group(const Source& source, EXPR&& value) {
return create<ast::GroupAttribute>(source, Expr(std::forward<EXPR>(value)));
}
/// Creates the ast::BindingAttribute
/// @param value the binding index expression
/// @returns the binding deocration pointer
template <typename EXPR>
const ast::BindingAttribute* Binding(EXPR&& value) {
return create<ast::BindingAttribute>(Expr(std::forward<EXPR>(value)));
}
/// Creates the ast::BindingAttribute
/// @param source the source
/// @param value the binding index expression
/// @returns the binding deocration pointer
template <typename EXPR>
const ast::BindingAttribute* Binding(const Source& source, EXPR&& value) {
return create<ast::BindingAttribute>(source, Expr(std::forward<EXPR>(value)));
}
/// Creates an ast::Function and registers it with the ast::Module.
/// @param source the source information
/// @param name the function name
/// @param params the function parameters
/// @param type the function return type
/// @param body the function body
/// @param attributes the optional function attributes
/// @param return_type_attributes the optional function return type
/// attributes
/// @returns the function pointer
template <typename NAME>
const ast::Function* Func(
const Source& source,
NAME&& name,
utils::VectorRef<const ast::Parameter*> params,
const ast::Type* type,
utils::VectorRef<const ast::Statement*> body,
utils::VectorRef<const ast::Attribute*> attributes = utils::Empty,
utils::VectorRef<const ast::Attribute*> return_type_attributes = utils::Empty) {
auto* func =
create<ast::Function>(source, Sym(std::forward<NAME>(name)), std::move(params), type,
create<ast::BlockStatement>(std::move(body)),
std::move(attributes), std::move(return_type_attributes));
AST().AddFunction(func);
return func;
}
/// Creates an ast::Function and registers it with the ast::Module.
/// @param name the function name
/// @param params the function parameters
/// @param type the function return type
/// @param body the function body
/// @param attributes the optional function attributes
/// @param return_type_attributes the optional function return type
/// attributes
/// @returns the function pointer
template <typename NAME>
const ast::Function* Func(
NAME&& name,
utils::VectorRef<const ast::Parameter*> params,
const ast::Type* type,
utils::VectorRef<const ast::Statement*> body,
utils::VectorRef<const ast::Attribute*> attributes = utils::Empty,
utils::VectorRef<const ast::Attribute*> return_type_attributes = utils::Empty) {
auto* func =
create<ast::Function>(Sym(std::forward<NAME>(name)), std::move(params), type,
create<ast::BlockStatement>(std::move(body)),
std::move(attributes), std::move(return_type_attributes));
AST().AddFunction(func);
return func;
}
/// Creates an ast::BreakStatement
/// @param source the source information
/// @returns the break statement pointer
const ast::BreakStatement* Break(const Source& source) {
return create<ast::BreakStatement>(source);
}
/// Creates an ast::BreakStatement
/// @returns the break statement pointer
const ast::BreakStatement* Break() { return create<ast::BreakStatement>(); }
/// Creates a ast::BreakIfStatement with input condition
/// @param source the source information for the if statement
/// @param condition the if statement condition expression
/// @returns the break-if statement pointer
template <typename CONDITION>
const ast::BreakIfStatement* BreakIf(const Source& source, CONDITION&& condition) {
return create<ast::BreakIfStatement>(source, Expr(std::forward<CONDITION>(condition)));
}
/// Creates a ast::BreakIfStatement with input condition
/// @param condition the if statement condition expression
/// @returns the break-if statement pointer
template <typename CONDITION>
const ast::BreakIfStatement* BreakIf(CONDITION&& condition) {
return create<ast::BreakIfStatement>(Expr(std::forward<CONDITION>(condition)));
}
/// Creates an ast::ContinueStatement
/// @param source the source information
/// @returns the continue statement pointer
const ast::ContinueStatement* Continue(const Source& source) {
return create<ast::ContinueStatement>(source);
}
/// Creates an ast::ContinueStatement
/// @returns the continue statement pointer
const ast::ContinueStatement* Continue() { return create<ast::ContinueStatement>(); }
/// Creates an ast::ReturnStatement with no return value
/// @param source the source information
/// @returns the return statement pointer
const ast::ReturnStatement* Return(const Source& source) {
return create<ast::ReturnStatement>(source);
}
/// Creates an ast::ReturnStatement with no return value
/// @returns the return statement pointer
const ast::ReturnStatement* Return() { return create<ast::ReturnStatement>(); }
/// Creates an ast::ReturnStatement with the given return value
/// @param source the source information
/// @param val the return value
/// @returns the return statement pointer
template <typename EXPR>
const ast::ReturnStatement* Return(const Source& source, EXPR&& val) {
return create<ast::ReturnStatement>(source, Expr(std::forward<EXPR>(val)));
}
/// Creates an ast::ReturnStatement with the given return value
/// @param val the return value
/// @returns the return statement pointer
template <typename EXPR, typename = DisableIfSource<EXPR>>
const ast::ReturnStatement* Return(EXPR&& val) {
return create<ast::ReturnStatement>(Expr(std::forward<EXPR>(val)));
}
/// Creates an ast::DiscardStatement
/// @param source the source information
/// @returns the discard statement pointer
const ast::DiscardStatement* Discard(const Source& source) {
return create<ast::DiscardStatement>(source);
}
/// Creates an ast::DiscardStatement
/// @returns the discard statement pointer
const ast::DiscardStatement* Discard() { return create<ast::DiscardStatement>(); }
/// Creates a ast::Alias registering it with the AST().TypeDecls().
/// @param source the source information
/// @param name the alias name
/// @param type the alias target type
/// @returns the alias type
template <typename NAME>
const ast::Alias* Alias(const Source& source, NAME&& name, const ast::Type* type) {
auto* out = ty.alias(source, std::forward<NAME>(name), type);
AST().AddTypeDecl(out);
return out;
}
/// Creates a ast::Alias registering it with the AST().TypeDecls().
/// @param name the alias name
/// @param type the alias target type
/// @returns the alias type
template <typename NAME>
const ast::Alias* Alias(NAME&& name, const ast::Type* type) {
auto* out = ty.alias(std::forward<NAME>(name), type);
AST().AddTypeDecl(out);
return out;
}
/// Creates a ast::Struct registering it with the AST().TypeDecls().
/// @param source the source information
/// @param name the struct name
/// @param members the struct members
/// @returns the struct type
template <typename NAME>
const ast::Struct* Structure(const Source& source,
NAME&& name,
utils::VectorRef<const ast::StructMember*> members) {
auto sym = Sym(std::forward<NAME>(name));
auto* type = create<ast::Struct>(source, sym, std::move(members), utils::Empty);
AST().AddTypeDecl(type);
return type;
}
/// Creates a ast::Struct registering it with the AST().TypeDecls().
/// @param name the struct name
/// @param members the struct members
/// @returns the struct type
template <typename NAME>
const ast::Struct* Structure(NAME&& name, utils::VectorRef<const ast::StructMember*> members) {
auto sym = Sym(std::forward<NAME>(name));
auto* type = create<ast::Struct>(sym, std::move(members), utils::Empty);
AST().AddTypeDecl(type);
return type;
}
/// Creates a ast::StructMember
/// @param source the source information
/// @param name the struct member name
/// @param type the struct member type
/// @param attributes the optional struct member attributes
/// @returns the struct member pointer
template <typename NAME>
const ast::StructMember* Member(
const Source& source,
NAME&& name,
const ast::Type* type,
utils::VectorRef<const ast::Attribute*> attributes = utils::Empty) {
return create<ast::StructMember>(source, Sym(std::forward<NAME>(name)), type,
std::move(attributes));
}
/// Creates a ast::StructMember
/// @param name the struct member name
/// @param type the struct member type
/// @param attributes the optional struct member attributes
/// @returns the struct member pointer
template <typename NAME>
const ast::StructMember* Member(
NAME&& name,
const ast::Type* type,
utils::VectorRef<const ast::Attribute*> attributes = utils::Empty) {
return create<ast::StructMember>(source_, Sym(std::forward<NAME>(name)), type,
std::move(attributes));
}
/// Creates a ast::StructMember with the given byte offset
/// @param offset the offset to use in the StructMemberOffsetAttribute
/// @param name the struct member name
/// @param type the struct member type
/// @returns the struct member pointer
template <typename NAME>
const ast::StructMember* Member(uint32_t offset, NAME&& name, const ast::Type* type) {
return create<ast::StructMember>(source_, Sym(std::forward<NAME>(name)), type,
utils::Vector<const ast::Attribute*, 1>{
MemberOffset(AInt(offset)),
});
}
/// Creates a ast::BlockStatement with input statements
/// @param source the source information for the block
/// @param statements statements of block
/// @returns the block statement pointer
template <typename... Statements>
const ast::BlockStatement* Block(const Source& source, Statements&&... statements) {
return create<ast::BlockStatement>(
source, utils::Vector<const ast::Statement*, sizeof...(statements)>{
std::forward<Statements>(statements)...,
});
}
/// Creates a ast::BlockStatement with input statements
/// @param statements statements of block
/// @returns the block statement pointer
template <typename... STATEMENTS, typename = DisableIfSource<STATEMENTS...>>
const ast::BlockStatement* Block(STATEMENTS&&... statements) {
return create<ast::BlockStatement>(
utils::Vector<const ast::Statement*, sizeof...(statements)>{
std::forward<STATEMENTS>(statements)...,
});
}
/// A wrapper type for the Else statement used to create If statements.
struct ElseStmt {
/// Default constructor - no else statement.
ElseStmt() : stmt(nullptr) {}
/// Constructor
/// @param s The else statement
explicit ElseStmt(const ast::Statement* s) : stmt(s) {}
/// The else statement, or nullptr.
const ast::Statement* stmt;
};
/// Creates a ast::IfStatement with input condition, body, and optional
/// else statement
/// @param source the source information for the if statement
/// @param condition the if statement condition expression
/// @param body the if statement body
/// @param else_stmt optional else statement
/// @returns the if statement pointer
template <typename CONDITION>
const ast::IfStatement* If(const Source& source,
CONDITION&& condition,
const ast::BlockStatement* body,
const ElseStmt else_stmt = ElseStmt()) {
return create<ast::IfStatement>(source, Expr(std::forward<CONDITION>(condition)), body,
else_stmt.stmt);
}
/// Creates a ast::IfStatement with input condition, body, and optional
/// else statement
/// @param condition the if statement condition expression
/// @param body the if statement body
/// @param else_stmt optional else statement
/// @returns the if statement pointer
template <typename CONDITION>
const ast::IfStatement* If(CONDITION&& condition,
const ast::BlockStatement* body,
const ElseStmt else_stmt = ElseStmt()) {
return create<ast::IfStatement>(Expr(std::forward<CONDITION>(condition)), body,
else_stmt.stmt);
}
/// Creates an Else object.
/// @param stmt else statement
/// @returns the Else object
ElseStmt Else(const ast::Statement* stmt) { return ElseStmt(stmt); }
/// Creates a ast::AssignmentStatement with input lhs and rhs expressions
/// @param source the source information
/// @param lhs the left hand side expression initializer
/// @param rhs the right hand side expression initializer
/// @returns the assignment statement pointer
template <typename LhsExpressionInit, typename RhsExpressionInit>
const ast::AssignmentStatement* Assign(const Source& source,
LhsExpressionInit&& lhs,