blob: c0f88a596eff8421a91c3831028564e383e5b4f6 [file] [log] [blame]
// Copyright 2020 The Tint Authors.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// See the License for the specific language governing permissions and
// limitations under the License.
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "src/tint/reflection.h"
#include "src/tint/transform/transform.h"
namespace tint::transform {
/// Describes the format of data in a vertex buffer
enum class VertexFormat {
kUint8x2, // uint8x2
kUint8x4, // uint8x4
kSint8x2, // sint8x2
kSint8x4, // sint8x4
kUnorm8x2, // unorm8x2
kUnorm8x4, // unorm8x4
kSnorm8x2, // snorm8x2
kSnorm8x4, // snorm8x4
kUint16x2, // uint16x2
kUint16x4, // uint16x4
kSint16x2, // sint16x2
kSint16x4, // sint16x4
kUnorm16x2, // unorm16x2
kUnorm16x4, // unorm16x4
kSnorm16x2, // snorm16x2
kSnorm16x4, // snorm16x4
kFloat16x2, // float16x2
kFloat16x4, // float16x4
kFloat32, // float32
kFloat32x2, // float32x2
kFloat32x3, // float32x3
kFloat32x4, // float32x4
kUint32, // uint32
kUint32x2, // uint32x2
kUint32x3, // uint32x3
kUint32x4, // uint32x4
kSint32, // sint32
kSint32x2, // sint32x2
kSint32x3, // sint32x3
kSint32x4, // sint32x4
kLastEntry = kSint32x4,
/// Describes if a vertex attributes increments with vertex index or instance
/// index
enum class VertexStepMode { kVertex, kInstance, kLastEntry = kInstance };
/// Describes a vertex attribute within a buffer
struct VertexAttributeDescriptor {
/// The format of the attribute
VertexFormat format;
/// The byte offset of the attribute in the buffer
uint32_t offset;
/// The shader location used for the attribute
uint32_t shader_location;
/// Reflect the fields of this class so that it can be used by tint::ForeachField()
TINT_REFLECT(format, offset, shader_location);
/// Describes a buffer containing multiple vertex attributes
struct VertexBufferLayoutDescriptor {
/// Constructor
/// Constructor
/// @param in_array_stride the array stride of the in buffer
/// @param in_step_mode the step mode of the in buffer
/// @param in_attributes the in attributes
VertexBufferLayoutDescriptor(uint32_t in_array_stride,
VertexStepMode in_step_mode,
std::vector<VertexAttributeDescriptor> in_attributes);
/// Copy constructor
/// @param other the struct to copy
VertexBufferLayoutDescriptor(const VertexBufferLayoutDescriptor& other);
/// Assignment operator
/// @param other the struct to copy
/// @returns this struct
VertexBufferLayoutDescriptor& operator=(const VertexBufferLayoutDescriptor& other);
/// The array stride used in the in buffer
uint32_t array_stride = 0u;
/// The input step mode used
VertexStepMode step_mode = VertexStepMode::kVertex;
/// The vertex attributes
std::vector<VertexAttributeDescriptor> attributes;
/// Reflect the fields of this class so that it can be used by tint::ForeachField()
TINT_REFLECT(array_stride, step_mode, attributes);
/// Describes vertex state, which consists of many buffers containing vertex
/// attributes
using VertexStateDescriptor = std::vector<VertexBufferLayoutDescriptor>;
/// Converts a program to use vertex pulling
/// Variables which accept vertex input are var<in> with a location attribute.
/// This transform will convert those to be assigned from storage buffers
/// instead. The intention is to allow vertex input to rely on a storage buffer
/// clamping pass for out of bounds reads. We bind the storage buffers as arrays
/// of u32, so any read to byte position `p` will actually need to read position
/// `p / 4`, since `sizeof(u32) == 4`.
/// `VertexFormat` represents the input type of the attribute. This isn't
/// related to the type of the variable in the shader. For example,
/// `VertexFormat::kVec2F16` tells us that the buffer will contain `f16`
/// elements, to be read as vec2. In the shader, a user would make a `vec2<f32>`
/// to be able to use them. The conversion between `f16` and `f32` will need to
/// be handled by us (using unpack functions).
/// To be clear, there won't be types such as `f16` or `u8` anywhere in WGSL
/// code, but these are types that the data may arrive as. We need to convert
/// these smaller types into the base types such as `f32` and `u32` for the
/// shader to use.
/// The SingleEntryPoint transform must have run before VertexPulling.
class VertexPulling final : public Castable<VertexPulling, Transform> {
/// Configuration options for the transform
struct Config final : public Castable<Config, Data> {
/// Constructor
/// Copy constructor
Config(const Config&);
/// Destructor
~Config() override;
/// Assignment operator
/// @returns this Config
Config& operator=(const Config&);
/// The vertex state descriptor, containing info about attributes
VertexStateDescriptor vertex_state;
/// The "group" we will put all our vertex buffers into (as storage buffers)
/// Default to 4 as it is past the limits of user-accessible groups
uint32_t pulling_group = 4u;
/// Reflect the fields of this class so that it can be used by tint::ForeachField()
TINT_REFLECT(vertex_state, pulling_group);
/// Constructor
/// Destructor
~VertexPulling() override;
/// @copydoc Transform::Apply
ApplyResult Apply(const Program* program,
const DataMap& inputs,
DataMap& outputs) const override;
struct State;
Config cfg_;
} // namespace tint::transform