blob: 123f8ddc514401df5fe150cf72978e8ae257707f [file] [log] [blame]
// Copyright 2024 The Dawn & Tint Authors
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <cstdint>
#include <limits>
#include <string>
#include <vector>
#include "dawn/common/NonMovable.h"
#include "dawn/tests/unittests/validation/ValidationTest.h"
#include "dawn/utils/ComboRenderPipelineDescriptor.h"
#include "dawn/utils/WGPUHelpers.h"
namespace dawn {
namespace {
class ImmediateDataDisableTest : public ValidationTest {};
// Check that creating a PipelineLayout with non-zero immediateSize is disallowed
// without the feature enabled.
TEST_F(ImmediateDataDisableTest, ImmediateSizeNotAllowed) {
wgpu::PipelineLayoutDescriptor desc;
desc.bindGroupLayoutCount = 0;
desc.immediateSize = 1;
ASSERT_DEVICE_ERROR(device.CreatePipelineLayout(&desc));
}
// Check that SetImmediateData doesn't work (even with size=0) without maxImmediateSize>0.
TEST_F(ImmediateDataDisableTest, SetImmediateData) {
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetImmediateData(0, nullptr, 0);
pass.End();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
{
const uint32_t data = 0;
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetImmediateData(0, &data, 4);
pass.End();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
}
class ImmediateDataTest : public ValidationTest {
protected:
void GetRequiredLimits(const dawn::utils::ComboLimits& supported,
dawn::utils::ComboLimits& required) override {
required.maxImmediateSize = kDefaultMaxImmediateDataBytes;
}
wgpu::BindGroupLayout CreateBindGroupLayout() {
wgpu::BindGroupLayoutEntry entries[1];
entries[0].binding = 0;
entries[0].visibility = wgpu::ShaderStage::Compute;
entries[0].buffer.type = wgpu::BufferBindingType::Storage;
wgpu::BindGroupLayoutDescriptor bindGroupLayoutDesc;
bindGroupLayoutDesc.entryCount = 1;
bindGroupLayoutDesc.entries = entries;
return device.CreateBindGroupLayout(&bindGroupLayoutDesc);
}
wgpu::PipelineLayout CreatePipelineLayout(uint32_t requiredImmediateSize) {
wgpu::BindGroupLayout bindGroupLayout = CreateBindGroupLayout();
wgpu::PipelineLayoutDescriptor pipelineLayoutDesc;
pipelineLayoutDesc.bindGroupLayoutCount = 1;
pipelineLayoutDesc.bindGroupLayouts = &bindGroupLayout;
pipelineLayoutDesc.immediateSize = requiredImmediateSize;
return device.CreatePipelineLayout(&pipelineLayoutDesc);
}
wgpu::ShaderModule mShaderModule;
};
// Check that non-zero immediateSize is possible with feature enabled and size must
// below max size limits.
TEST_F(ImmediateDataTest, ValidateImmediateSize) {
wgpu::PipelineLayoutDescriptor desc;
desc.bindGroupLayoutCount = 0;
// Success case with valid immediateSize.
{
desc.immediateSize = kDefaultMaxImmediateDataBytes;
device.CreatePipelineLayout(&desc);
}
// Failed case with invalid immediateSize that exceed limits.
{
desc.immediateSize = kDefaultMaxImmediateDataBytes + 1;
ASSERT_DEVICE_ERROR(device.CreatePipelineLayout(&desc));
}
}
// Check that SetImmediateData offset and length must be aligned to 4 bytes.
TEST_F(ImmediateDataTest, ValidateSetImmediateDataAlignment) {
// Success cases
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
uint32_t data = 0;
wgpu::ComputePassEncoder computePass = encoder.BeginComputePass();
computePass.SetImmediateData(0, &data, 4);
computePass.End();
encoder.Finish();
}
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder computePass = encoder.BeginComputePass();
computePass.SetImmediateData(4, nullptr, 0);
computePass.End();
encoder.Finish();
}
// Failed case with non-aligned offset bytes
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder computePass = encoder.BeginComputePass();
computePass.SetImmediateData(2, nullptr, 0);
computePass.End();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
// Failed cases with non-aligned size
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
uint8_t data = 0;
wgpu::ComputePassEncoder computePass = encoder.BeginComputePass();
computePass.SetImmediateData(0, &data, 2);
computePass.End();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
}
// Check that SetImmediateData offset + length must be in bound.
TEST_F(ImmediateDataTest, ValidateSetImmediateDataOOB) {
// Success cases
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
std::vector<uint32_t> data(kDefaultMaxImmediateDataBytes / 4, 0);
wgpu::ComputePassEncoder computePass = encoder.BeginComputePass();
computePass.SetImmediateData(0, data.data(), kDefaultMaxImmediateDataBytes);
computePass.End();
encoder.Finish();
}
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder computePass = encoder.BeginComputePass();
computePass.SetImmediateData(kDefaultMaxImmediateDataBytes, nullptr, 0);
computePass.End();
encoder.Finish();
}
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
uint32_t data = 0;
wgpu::ComputePassEncoder computePass = encoder.BeginComputePass();
computePass.SetImmediateData(kDefaultMaxImmediateDataBytes - 4, &data, 4);
computePass.End();
encoder.Finish();
}
// Failed case with offset oob
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
uint32_t offset = kDefaultMaxImmediateDataBytes + 4;
wgpu::ComputePassEncoder computePass = encoder.BeginComputePass();
computePass.SetImmediateData(offset, nullptr, 0);
computePass.End();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
// Failed cases with size oob
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
uint32_t size = kDefaultMaxImmediateDataBytes + 4;
std::vector<uint32_t> data(size / 4, 0);
wgpu::ComputePassEncoder computePass = encoder.BeginComputePass();
computePass.SetImmediateData(0, data.data(), size);
computePass.End();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
// Failed cases with offset + size oob
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
uint32_t offset = kDefaultMaxImmediateDataBytes;
uint32_t data[] = {0};
wgpu::ComputePassEncoder computePass = encoder.BeginComputePass();
computePass.SetImmediateData(offset, data, 4);
computePass.End();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
// Failed case with super large offset + size oob but looping back to zero
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
uint32_t offset = std::numeric_limits<uint32_t>::max() - 3;
uint32_t data[] = {0};
wgpu::ComputePassEncoder computePass = encoder.BeginComputePass();
computePass.SetImmediateData(offset, data, 4);
computePass.End();
ASSERT_DEVICE_ERROR(encoder.Finish());
}
}
// Check that pipelineLayout immediate data bytes compatible with shaders.
TEST_F(ImmediateDataTest, ValidatePipelineLayoutImmediateDataBytesAndShaders) {
constexpr uint32_t kShaderImmediateDataBytes = 12u;
wgpu::ShaderModule shaderModule = utils::CreateShaderModule(device, R"(
enable chromium_experimental_immediate;
var<immediate> fragmentConstants: vec3f;
var<immediate> computeConstants: vec3u;
@vertex fn vsMain(@builtin(vertex_index) VertexIndex : u32) -> @builtin(position) vec4f {
const pos = array(
vec2( 1.0, -1.0),
vec2(-1.0, -1.0),
vec2( 0.0, 1.0),
);
return vec4(pos[VertexIndex], 0.0, 1.0);
}
// to reuse the same pipeline layout
@fragment fn fsMain() -> @location(0) vec4f {
return vec4f(fragmentConstants, 1.0);
}
@group(0) @binding(0) var<storage, read_write> output : vec3u;
@compute @workgroup_size(1, 1, 1)
fn csMain() {
output = computeConstants;
})");
// Success cases
{
utils::ComboRenderPipelineDescriptor pipelineDescriptor;
pipelineDescriptor.vertex.module = shaderModule;
pipelineDescriptor.cFragment.module = shaderModule;
pipelineDescriptor.cFragment.targetCount = 1;
pipelineDescriptor.layout = CreatePipelineLayout(kShaderImmediateDataBytes);
device.CreateRenderPipeline(&pipelineDescriptor);
}
{
wgpu::ComputePipelineDescriptor csDesc;
csDesc.compute.module = shaderModule;
csDesc.layout = CreatePipelineLayout(kShaderImmediateDataBytes);
device.CreateComputePipeline(&csDesc);
}
// Default layout
{
utils::ComboRenderPipelineDescriptor pipelineDescriptor;
pipelineDescriptor.vertex.module = shaderModule;
pipelineDescriptor.cFragment.module = shaderModule;
pipelineDescriptor.cFragment.targetCount = 1;
device.CreateRenderPipeline(&pipelineDescriptor);
}
{
wgpu::ComputePipelineDescriptor csDesc;
csDesc.compute.module = shaderModule;
device.CreateComputePipeline(&csDesc);
}
// Failed case with fragment shader requires more immediate data.
{
utils::ComboRenderPipelineDescriptor pipelineDescriptor;
pipelineDescriptor.vertex.module = shaderModule;
pipelineDescriptor.cFragment.module = shaderModule;
pipelineDescriptor.cFragment.targetCount = 1;
pipelineDescriptor.layout = CreatePipelineLayout(kShaderImmediateDataBytes - 4);
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&pipelineDescriptor));
}
// Failed cases with compute shader requires more immediate data.
{
wgpu::ComputePipelineDescriptor csDesc;
csDesc.compute.module = shaderModule;
csDesc.layout = CreatePipelineLayout(kShaderImmediateDataBytes - 4);
ASSERT_DEVICE_ERROR(device.CreateComputePipeline(&csDesc));
}
}
// Check that default pipelineLayout has too many immediate data bytes .
TEST_F(ImmediateDataTest, ValidateDefaultPipelineLayout) {
wgpu::ShaderModule shaderModule = utils::CreateShaderModule(device, R"(
enable chromium_experimental_immediate;
var<immediate> fragmentConstants: vec4f;
var<immediate> computeConstants: vec4u;
@vertex fn vsMain(@builtin(vertex_index) VertexIndex : u32) -> @builtin(position) vec4f {
const pos = array(
vec2( 1.0, -1.0),
vec2(-1.0, -1.0),
vec2( 0.0, 1.0),
);
return vec4(pos[VertexIndex], 0.0, 1.0);
}
// to reuse the same pipeline layout
@fragment fn fsMain() -> @location(0) vec4f {
return fragmentConstants;
}
@group(0) @binding(0) var<storage, read_write> output : vec4u;
@compute @workgroup_size(1, 1, 1)
fn csMain() {
output = computeConstants;
})");
wgpu::ShaderModule oobShaderModule = utils::CreateShaderModule(device, R"(
enable chromium_experimental_immediate;
struct FragmentConstants {
constants: vec4f,
constantsOOB: f32,
};
struct ComputeConstants {
constants: vec4u,
constantsOOB: u32,
};
var<immediate> fragmentConstants: FragmentConstants;
var<immediate> computeConstants: ComputeConstants;
@vertex fn vsMain(@builtin(vertex_index) VertexIndex : u32) -> @builtin(position) vec4f {
const pos = array(
vec2( 1.0, -1.0),
vec2(-1.0, -1.0),
vec2( 0.0, 1.0),
);
return vec4(pos[VertexIndex], 0.0, 1.0);
}
// to reuse the same pipeline layout
@fragment fn fsMain() -> @location(0) vec4f {
return vec4f(fragmentConstants.constants.x + fragmentConstants.constantsOOB,
fragmentConstants.constants.yzw);
}
@group(0) @binding(0) var<storage, read_write> output : vec4u;
@compute @workgroup_size(1, 1, 1)
fn csMain() {
output = vec4u(computeConstants.constants.x + computeConstants.constantsOOB,
computeConstants.constants.yzw);
})");
// Success cases
{
utils::ComboRenderPipelineDescriptor pipelineDescriptor;
pipelineDescriptor.vertex.module = shaderModule;
pipelineDescriptor.cFragment.module = shaderModule;
pipelineDescriptor.cFragment.targetCount = 1;
device.CreateRenderPipeline(&pipelineDescriptor);
}
{
wgpu::ComputePipelineDescriptor csDesc;
csDesc.compute.module = shaderModule;
device.CreateComputePipeline(&csDesc);
}
// Using too many immediate data cases
{
utils::ComboRenderPipelineDescriptor pipelineDescriptor;
pipelineDescriptor.vertex.module = oobShaderModule;
pipelineDescriptor.cFragment.module = oobShaderModule;
pipelineDescriptor.cFragment.targetCount = 1;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&pipelineDescriptor));
}
{
wgpu::ComputePipelineDescriptor csDesc;
csDesc.compute.module = oobShaderModule;
ASSERT_DEVICE_ERROR(device.CreateComputePipeline(&csDesc));
}
}
} // anonymous namespace
} // namespace dawn