blob: b5a813500832ac028544a1321a9eb3d86b8072ac [file] [log] [blame]
// Copyright 2017 The Dawn & Tint Authors
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <algorithm>
#include <array>
#include <cmath>
#include <utility>
#include <vector>
#include "dawn/common/Assert.h"
#include "dawn/common/Constants.h"
#include "dawn/tests/DawnTest.h"
#include "dawn/utils/ComboRenderPipelineDescriptor.h"
#include "dawn/utils/WGPUHelpers.h"
namespace dawn {
namespace {
constexpr static unsigned int kRTSize = 64;
class ColorStateTest : public DawnTest {
protected:
void SetUp() override {
DawnTest::SetUp();
wgpu::BindGroupLayout bindGroupLayout = utils::MakeBindGroupLayout(
device, {{0, wgpu::ShaderStage::Fragment, wgpu::BufferBindingType::Uniform}});
pipelineLayout = utils::MakePipelineLayout(device, {bindGroupLayout});
// TODO(crbug.com/dawn/489): D3D12_Microsoft_Basic_Render_Driver_CPU
// produces invalid results for these tests.
DAWN_SUPPRESS_TEST_IF(IsD3D12() && IsWARP());
vsModule = utils::CreateShaderModule(device, R"(
@vertex
fn main(@builtin(vertex_index) VertexIndex : u32) -> @builtin(position) vec4f {
var pos = array(
vec2f(-1.0, -1.0),
vec2f(3.0, -1.0),
vec2f(-1.0, 3.0));
return vec4f(pos[VertexIndex], 0.0, 1.0);
}
)");
renderPass = utils::CreateBasicRenderPass(device, kRTSize, kRTSize);
}
struct TriangleSpec {
utils::RGBA8 color;
std::array<float, 4> blendFactor = {};
};
// Set up basePipeline and testPipeline. testPipeline has the given blend state on the first
// attachment. basePipeline has no blending
void SetupSingleSourcePipelines(wgpu::ColorTargetState colorTargetState) {
wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, R"(
struct MyBlock {
color : vec4f
}
@group(0) @binding(0) var<uniform> myUbo : MyBlock;
@fragment fn main() -> @location(0) vec4f {
return myUbo.color;
}
)");
utils::ComboRenderPipelineDescriptor baseDescriptor;
baseDescriptor.layout = pipelineLayout;
baseDescriptor.vertex.module = vsModule;
baseDescriptor.cFragment.module = fsModule;
baseDescriptor.cTargets[0].format = renderPass.colorFormat;
basePipeline = device.CreateRenderPipeline(&baseDescriptor);
utils::ComboRenderPipelineDescriptor testDescriptor;
testDescriptor.layout = pipelineLayout;
testDescriptor.vertex.module = vsModule;
testDescriptor.cFragment.module = fsModule;
testDescriptor.cTargets[0] = colorTargetState;
testDescriptor.cTargets[0].format = renderPass.colorFormat;
testPipeline = device.CreateRenderPipeline(&testDescriptor);
}
// Create a bind group to set the colors as a uniform buffer
template <size_t N>
wgpu::BindGroup MakeBindGroupForColors(std::array<utils::RGBA8, N> colors) {
std::array<float, 4 * N> data;
for (unsigned int i = 0; i < N; ++i) {
data[4 * i + 0] = static_cast<float>(colors[i].r) / 255.f;
data[4 * i + 1] = static_cast<float>(colors[i].g) / 255.f;
data[4 * i + 2] = static_cast<float>(colors[i].b) / 255.f;
data[4 * i + 3] = static_cast<float>(colors[i].a) / 255.f;
}
uint32_t bufferSize = static_cast<uint32_t>(4 * N * sizeof(float));
wgpu::Buffer buffer =
utils::CreateBufferFromData(device, &data, bufferSize, wgpu::BufferUsage::Uniform);
return utils::MakeBindGroup(device, testPipeline.GetBindGroupLayout(0),
{{0, buffer, 0, bufferSize}});
}
// Test that after drawing a triangle with the base color, and then the given triangle spec, the
// color is as expected
void DoSingleSourceTest(utils::RGBA8 base,
const TriangleSpec& triangle,
const utils::RGBA8& expected) {
wgpu::Color blendConstant{triangle.blendFactor[0], triangle.blendFactor[1],
triangle.blendFactor[2], triangle.blendFactor[3]};
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass.renderPassInfo);
// First use the base pipeline to draw a triangle with no blending
pass.SetPipeline(basePipeline);
pass.SetBindGroup(0, MakeBindGroupForColors(std::array<utils::RGBA8, 1>({{base}})));
pass.Draw(3);
// Then use the test pipeline to draw the test triangle with blending
pass.SetPipeline(testPipeline);
pass.SetBindGroup(
0, MakeBindGroupForColors(std::array<utils::RGBA8, 1>({{triangle.color}})));
pass.SetBlendConstant(&blendConstant);
pass.Draw(3);
pass.End();
}
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_PIXEL_RGBA8_EQ(expected, renderPass.color, kRTSize / 2, kRTSize / 2);
}
// Given a vector of tests where each element is <testColor, expectedColor>, check that all
// expectations are true for the given blend operation
void CheckBlendOperation(utils::RGBA8 base,
wgpu::BlendOperation operation,
std::vector<std::pair<utils::RGBA8, utils::RGBA8>> tests) {
wgpu::BlendComponent blendComponent;
blendComponent.operation = operation;
blendComponent.srcFactor = wgpu::BlendFactor::One;
blendComponent.dstFactor = wgpu::BlendFactor::One;
wgpu::BlendState blend;
blend.color = blendComponent;
blend.alpha = blendComponent;
wgpu::ColorTargetState descriptor;
descriptor.blend = &blend;
descriptor.writeMask = wgpu::ColorWriteMask::All;
SetupSingleSourcePipelines(descriptor);
for (const auto& [triangleColor, expectedColor] : tests) {
DoSingleSourceTest(base, {triangleColor}, expectedColor);
}
}
// Given a vector of tests where each element is <testSpec, expectedColor>, check that all
// expectations are true for the given blend factors
void CheckBlendFactor(utils::RGBA8 base,
wgpu::BlendFactor colorSrcFactor,
wgpu::BlendFactor colorDstFactor,
wgpu::BlendFactor alphaSrcFactor,
wgpu::BlendFactor alphaDstFactor,
std::vector<std::pair<TriangleSpec, utils::RGBA8>> tests) {
wgpu::BlendComponent colorBlend;
colorBlend.operation = wgpu::BlendOperation::Add;
colorBlend.srcFactor = colorSrcFactor;
colorBlend.dstFactor = colorDstFactor;
wgpu::BlendComponent alphaBlend;
alphaBlend.operation = wgpu::BlendOperation::Add;
alphaBlend.srcFactor = alphaSrcFactor;
alphaBlend.dstFactor = alphaDstFactor;
wgpu::BlendState blend;
blend.color = colorBlend;
blend.alpha = alphaBlend;
wgpu::ColorTargetState descriptor;
descriptor.blend = &blend;
descriptor.writeMask = wgpu::ColorWriteMask::All;
SetupSingleSourcePipelines(descriptor);
for (const auto& [triangles, expectedColor] : tests) {
DoSingleSourceTest(base, triangles, expectedColor);
}
}
void CheckSrcBlendFactor(utils::RGBA8 base,
wgpu::BlendFactor colorFactor,
wgpu::BlendFactor alphaFactor,
std::vector<std::pair<TriangleSpec, utils::RGBA8>> tests) {
CheckBlendFactor(base, colorFactor, wgpu::BlendFactor::One, alphaFactor,
wgpu::BlendFactor::One, tests);
}
void CheckDstBlendFactor(utils::RGBA8 base,
wgpu::BlendFactor colorFactor,
wgpu::BlendFactor alphaFactor,
std::vector<std::pair<TriangleSpec, utils::RGBA8>> tests) {
CheckBlendFactor(base, wgpu::BlendFactor::One, colorFactor, wgpu::BlendFactor::One,
alphaFactor, tests);
}
wgpu::PipelineLayout pipelineLayout;
utils::BasicRenderPass renderPass;
wgpu::RenderPipeline basePipeline;
wgpu::RenderPipeline testPipeline;
wgpu::ShaderModule vsModule;
};
namespace {
// Add two colors and clamp
constexpr utils::RGBA8 operator+(const utils::RGBA8& col1, const utils::RGBA8& col2) {
int r = static_cast<int>(col1.r) + static_cast<int>(col2.r);
int g = static_cast<int>(col1.g) + static_cast<int>(col2.g);
int b = static_cast<int>(col1.b) + static_cast<int>(col2.b);
int a = static_cast<int>(col1.a) + static_cast<int>(col2.a);
r = (r > 255 ? 255 : (r < 0 ? 0 : r));
g = (g > 255 ? 255 : (g < 0 ? 0 : g));
b = (b > 255 ? 255 : (b < 0 ? 0 : b));
a = (a > 255 ? 255 : (a < 0 ? 0 : a));
return utils::RGBA8(static_cast<uint8_t>(r), static_cast<uint8_t>(g), static_cast<uint8_t>(b),
static_cast<uint8_t>(a));
}
// Subtract two colors and clamp
constexpr utils::RGBA8 operator-(const utils::RGBA8& col1, const utils::RGBA8& col2) {
int r = static_cast<int>(col1.r) - static_cast<int>(col2.r);
int g = static_cast<int>(col1.g) - static_cast<int>(col2.g);
int b = static_cast<int>(col1.b) - static_cast<int>(col2.b);
int a = static_cast<int>(col1.a) - static_cast<int>(col2.a);
r = (r > 255 ? 255 : (r < 0 ? 0 : r));
g = (g > 255 ? 255 : (g < 0 ? 0 : g));
b = (b > 255 ? 255 : (b < 0 ? 0 : b));
a = (a > 255 ? 255 : (a < 0 ? 0 : a));
return utils::RGBA8(static_cast<uint8_t>(r), static_cast<uint8_t>(g), static_cast<uint8_t>(b),
static_cast<uint8_t>(a));
}
// Get the component-wise minimum of two colors
utils::RGBA8 min(const utils::RGBA8& col1, const utils::RGBA8& col2) {
return utils::RGBA8(std::min(col1.r, col2.r), std::min(col1.g, col2.g),
std::min(col1.b, col2.b), std::min(col1.a, col2.a));
}
// Get the component-wise maximum of two colors
utils::RGBA8 max(const utils::RGBA8& col1, const utils::RGBA8& col2) {
return utils::RGBA8(std::max(col1.r, col2.r), std::max(col1.g, col2.g),
std::max(col1.b, col2.b), std::max(col1.a, col2.a));
}
// Blend two RGBA8 color values parameterized by the provided factors in the range [0.f, 1.f]
utils::RGBA8 mix(const utils::RGBA8& col1, const utils::RGBA8& col2, std::array<float, 4> fac) {
float r = static_cast<float>(col1.r) * (1.f - fac[0]) + static_cast<float>(col2.r) * fac[0];
float g = static_cast<float>(col1.g) * (1.f - fac[1]) + static_cast<float>(col2.g) * fac[1];
float b = static_cast<float>(col1.b) * (1.f - fac[2]) + static_cast<float>(col2.b) * fac[2];
float a = static_cast<float>(col1.a) * (1.f - fac[3]) + static_cast<float>(col2.a) * fac[3];
return utils::RGBA8({static_cast<uint8_t>(std::round(r)), static_cast<uint8_t>(std::round(g)),
static_cast<uint8_t>(std::round(b)), static_cast<uint8_t>(std::round(a))});
}
// Blend two RGBA8 color values parameterized by the provided RGBA8 factor
utils::RGBA8 mix(const utils::RGBA8& col1, const utils::RGBA8& col2, const utils::RGBA8& fac) {
std::array<float, 4> f = {{
static_cast<float>(fac.r) / 255.f,
static_cast<float>(fac.g) / 255.f,
static_cast<float>(fac.b) / 255.f,
static_cast<float>(fac.a) / 255.f,
}};
return mix(col1, col2, f);
}
constexpr std::array<utils::RGBA8, 8> kColors = {{
// check operations over multiple channels
utils::RGBA8(64, 0, 0, 0),
utils::RGBA8(0, 64, 0, 0),
utils::RGBA8(64, 0, 32, 0),
utils::RGBA8(0, 64, 32, 0),
utils::RGBA8(128, 0, 128, 128),
utils::RGBA8(0, 128, 128, 128),
// check cases that may cause overflow
utils::RGBA8(0, 0, 0, 0),
utils::RGBA8(255, 255, 255, 255),
}};
} // namespace
// Test compilation and usage of the fixture
TEST_P(ColorStateTest, Basic) {
wgpu::BlendComponent blendComponent;
// Spot-test for defaulting of these three fields.
blendComponent.operation = wgpu::BlendOperation::Undefined; // add
blendComponent.srcFactor = wgpu::BlendFactor::Undefined; // one
blendComponent.dstFactor = wgpu::BlendFactor::Undefined; // zero
wgpu::BlendState blend;
blend.color = blendComponent;
blend.alpha = blendComponent;
wgpu::ColorTargetState descriptor;
descriptor.blend = &blend;
descriptor.writeMask = wgpu::ColorWriteMask::All;
SetupSingleSourcePipelines(descriptor);
DoSingleSourceTest(utils::RGBA8(0, 0, 0, 0), {utils::RGBA8(255, 0, 0, 0)},
utils::RGBA8(255, 0, 0, 0));
}
// The following tests check test that the blend operation works
TEST_P(ColorStateTest, BlendOperationAdd) {
utils::RGBA8 base(32, 64, 128, 192);
std::vector<std::pair<utils::RGBA8, utils::RGBA8>> tests;
std::transform(kColors.begin(), kColors.end(), std::back_inserter(tests),
[&](const utils::RGBA8& color) { return std::make_pair(color, base + color); });
CheckBlendOperation(base, wgpu::BlendOperation::Add, tests);
}
TEST_P(ColorStateTest, BlendOperationSubtract) {
utils::RGBA8 base(32, 64, 128, 192);
std::vector<std::pair<utils::RGBA8, utils::RGBA8>> tests;
std::transform(kColors.begin(), kColors.end(), std::back_inserter(tests),
[&](const utils::RGBA8& color) { return std::make_pair(color, color - base); });
CheckBlendOperation(base, wgpu::BlendOperation::Subtract, tests);
}
TEST_P(ColorStateTest, BlendOperationReverseSubtract) {
utils::RGBA8 base(32, 64, 128, 192);
std::vector<std::pair<utils::RGBA8, utils::RGBA8>> tests;
std::transform(kColors.begin(), kColors.end(), std::back_inserter(tests),
[&](const utils::RGBA8& color) { return std::make_pair(color, base - color); });
CheckBlendOperation(base, wgpu::BlendOperation::ReverseSubtract, tests);
}
TEST_P(ColorStateTest, BlendOperationMin) {
utils::RGBA8 base(32, 64, 128, 192);
std::vector<std::pair<utils::RGBA8, utils::RGBA8>> tests;
std::transform(
kColors.begin(), kColors.end(), std::back_inserter(tests),
[&](const utils::RGBA8& color) { return std::make_pair(color, min(base, color)); });
CheckBlendOperation(base, wgpu::BlendOperation::Min, tests);
}
TEST_P(ColorStateTest, BlendOperationMax) {
utils::RGBA8 base(32, 64, 128, 192);
std::vector<std::pair<utils::RGBA8, utils::RGBA8>> tests;
std::transform(
kColors.begin(), kColors.end(), std::back_inserter(tests),
[&](const utils::RGBA8& color) { return std::make_pair(color, max(base, color)); });
CheckBlendOperation(base, wgpu::BlendOperation::Max, tests);
}
// The following tests check that the Source blend factor works
TEST_P(ColorStateTest, SrcBlendFactorZero) {
utils::RGBA8 base(32, 64, 128, 192);
std::vector<std::pair<TriangleSpec, utils::RGBA8>> tests;
std::transform(
kColors.begin(), kColors.end(), std::back_inserter(tests),
[&](const utils::RGBA8& color) { return std::make_pair(TriangleSpec({{color}}), base); });
CheckSrcBlendFactor(base, wgpu::BlendFactor::Zero, wgpu::BlendFactor::Zero, tests);
}
TEST_P(ColorStateTest, SrcBlendFactorOne) {
utils::RGBA8 base(32, 64, 128, 192);
std::vector<std::pair<TriangleSpec, utils::RGBA8>> tests;
std::transform(kColors.begin(), kColors.end(), std::back_inserter(tests),
[&](const utils::RGBA8& color) {
return std::make_pair(TriangleSpec({{color}}), base + color);
});
CheckSrcBlendFactor(base, wgpu::BlendFactor::One, wgpu::BlendFactor::One, tests);
}
TEST_P(ColorStateTest, SrcBlendFactorSrc) {
utils::RGBA8 base(32, 64, 128, 192);
std::vector<std::pair<TriangleSpec, utils::RGBA8>> tests;
std::transform(kColors.begin(), kColors.end(), std::back_inserter(tests),
[&](const utils::RGBA8& color) {
utils::RGBA8 fac = color;
fac.a = 0;
utils::RGBA8 expected = base + mix(utils::RGBA8(0, 0, 0, 0), color, fac);
return std::make_pair(TriangleSpec({{color}}), expected);
});
CheckSrcBlendFactor(base, wgpu::BlendFactor::Src, wgpu::BlendFactor::Zero, tests);
}
TEST_P(ColorStateTest, SrcBlendFactorOneMinusSrc) {
utils::RGBA8 base(32, 64, 128, 192);
std::vector<std::pair<TriangleSpec, utils::RGBA8>> tests;
std::transform(kColors.begin(), kColors.end(), std::back_inserter(tests),
[&](const utils::RGBA8& color) {
utils::RGBA8 fac = utils::RGBA8(255, 255, 255, 255) - color;
fac.a = 0;
utils::RGBA8 expected = base + mix(utils::RGBA8(0, 0, 0, 0), color, fac);
return std::make_pair(TriangleSpec({{color}}), expected);
});
CheckSrcBlendFactor(base, wgpu::BlendFactor::OneMinusSrc, wgpu::BlendFactor::Zero, tests);
}
TEST_P(ColorStateTest, SrcBlendFactorSrcAlpha) {
utils::RGBA8 base(32, 64, 128, 192);
std::vector<std::pair<TriangleSpec, utils::RGBA8>> tests;
std::transform(kColors.begin(), kColors.end(), std::back_inserter(tests),
[&](const utils::RGBA8& color) {
utils::RGBA8 fac(color.a, color.a, color.a, color.a);
utils::RGBA8 expected = base + mix(utils::RGBA8(0, 0, 0, 0), color, fac);
return std::make_pair(TriangleSpec({{color}}), expected);
});
CheckSrcBlendFactor(base, wgpu::BlendFactor::SrcAlpha, wgpu::BlendFactor::SrcAlpha, tests);
}
TEST_P(ColorStateTest, SrcBlendFactorOneMinusSrcAlpha) {
utils::RGBA8 base(32, 64, 128, 192);
std::vector<std::pair<TriangleSpec, utils::RGBA8>> tests;
std::transform(
kColors.begin(), kColors.end(), std::back_inserter(tests), [&](const utils::RGBA8& color) {
utils::RGBA8 fac =
utils::RGBA8(255, 255, 255, 255) - utils::RGBA8(color.a, color.a, color.a, color.a);
utils::RGBA8 expected = base + mix(utils::RGBA8(0, 0, 0, 0), color, fac);
return std::make_pair(TriangleSpec({{color}}), expected);
});
CheckSrcBlendFactor(base, wgpu::BlendFactor::OneMinusSrcAlpha,
wgpu::BlendFactor::OneMinusSrcAlpha, tests);
}
TEST_P(ColorStateTest, SrcBlendFactorDst) {
utils::RGBA8 base(32, 64, 128, 192);
std::vector<std::pair<TriangleSpec, utils::RGBA8>> tests;
std::transform(kColors.begin(), kColors.end(), std::back_inserter(tests),
[&](const utils::RGBA8& color) {
utils::RGBA8 fac = base;
fac.a = 0;
utils::RGBA8 expected = base + mix(utils::RGBA8(0, 0, 0, 0), color, fac);
return std::make_pair(TriangleSpec({{color}}), expected);
});
CheckSrcBlendFactor(base, wgpu::BlendFactor::Dst, wgpu::BlendFactor::Zero, tests);
}
TEST_P(ColorStateTest, SrcBlendFactorOneMinusDst) {
utils::RGBA8 base(32, 64, 128, 192);
std::vector<std::pair<TriangleSpec, utils::RGBA8>> tests;
std::transform(kColors.begin(), kColors.end(), std::back_inserter(tests),
[&](const utils::RGBA8& color) {
utils::RGBA8 fac = utils::RGBA8(255, 255, 255, 255) - base;
fac.a = 0;
utils::RGBA8 expected = base + mix(utils::RGBA8(0, 0, 0, 0), color, fac);
return std::make_pair(TriangleSpec({{color}}), expected);
});
CheckSrcBlendFactor(base, wgpu::BlendFactor::OneMinusDst, wgpu::BlendFactor::Zero, tests);
}
TEST_P(ColorStateTest, SrcBlendFactorDstAlpha) {
utils::RGBA8 base(32, 64, 128, 192);
std::vector<std::pair<TriangleSpec, utils::RGBA8>> tests;
std::transform(kColors.begin(), kColors.end(), std::back_inserter(tests),
[&](const utils::RGBA8& color) {
utils::RGBA8 fac(base.a, base.a, base.a, base.a);
utils::RGBA8 expected = base + mix(utils::RGBA8(0, 0, 0, 0), color, fac);
return std::make_pair(TriangleSpec({{color}}), expected);
});
CheckSrcBlendFactor(base, wgpu::BlendFactor::DstAlpha, wgpu::BlendFactor::DstAlpha, tests);
}
TEST_P(ColorStateTest, SrcBlendFactorOneMinusDstAlpha) {
utils::RGBA8 base(32, 64, 128, 192);
std::vector<std::pair<TriangleSpec, utils::RGBA8>> tests;
std::transform(
kColors.begin(), kColors.end(), std::back_inserter(tests), [&](const utils::RGBA8& color) {
utils::RGBA8 fac =
utils::RGBA8(255, 255, 255, 255) - utils::RGBA8(base.a, base.a, base.a, base.a);
utils::RGBA8 expected = base + mix(utils::RGBA8(0, 0, 0, 0), color, fac);
return std::make_pair(TriangleSpec({{color}}), expected);
});
CheckSrcBlendFactor(base, wgpu::BlendFactor::OneMinusDstAlpha,
wgpu::BlendFactor::OneMinusDstAlpha, tests);
}
TEST_P(ColorStateTest, SrcBlendFactorSrcAlphaSaturated) {
utils::RGBA8 base(32, 64, 128, 192);
std::vector<std::pair<TriangleSpec, utils::RGBA8>> tests;
std::transform(kColors.begin(), kColors.end(), std::back_inserter(tests),
[&](const utils::RGBA8& color) {
uint8_t f = std::min(color.a, static_cast<uint8_t>(255 - base.a));
utils::RGBA8 fac(f, f, f, 255);
utils::RGBA8 expected = base + mix(utils::RGBA8(0, 0, 0, 0), color, fac);
return std::make_pair(TriangleSpec({{color}}), expected);
});
CheckSrcBlendFactor(base, wgpu::BlendFactor::SrcAlphaSaturated,
wgpu::BlendFactor::SrcAlphaSaturated, tests);
}
TEST_P(ColorStateTest, SrcBlendFactorConstant) {
utils::RGBA8 base(32, 64, 128, 192);
std::vector<std::pair<TriangleSpec, utils::RGBA8>> tests;
std::transform(kColors.begin(), kColors.end(), std::back_inserter(tests),
[&](const utils::RGBA8& color) {
auto triangleSpec = TriangleSpec({{color}, {{0.2f, 0.4f, 0.6f, 0.8f}}});
utils::RGBA8 expected =
base + mix(utils::RGBA8(0, 0, 0, 0), color, triangleSpec.blendFactor);
return std::make_pair(triangleSpec, expected);
});
CheckSrcBlendFactor(base, wgpu::BlendFactor::Constant, wgpu::BlendFactor::Constant, tests);
}
TEST_P(ColorStateTest, SrcBlendFactorOneMinusConstant) {
utils::RGBA8 base(32, 64, 128, 192);
std::vector<std::pair<TriangleSpec, utils::RGBA8>> tests;
std::transform(kColors.begin(), kColors.end(), std::back_inserter(tests),
[&](const utils::RGBA8& color) {
auto triangleSpec = TriangleSpec({{color}, {{0.2f, 0.4f, 0.6f, 0.8f}}});
std::array<float, 4> f = {{0.8f, 0.6f, 0.4f, 0.2f}};
utils::RGBA8 expected = base + mix(utils::RGBA8(0, 0, 0, 0), color, f);
return std::make_pair(triangleSpec, expected);
});
CheckSrcBlendFactor(base, wgpu::BlendFactor::OneMinusConstant,
wgpu::BlendFactor::OneMinusConstant, tests);
}
// The following tests check that the Destination blend factor works
TEST_P(ColorStateTest, DstBlendFactorZero) {
utils::RGBA8 base(32, 64, 128, 192);
std::vector<std::pair<TriangleSpec, utils::RGBA8>> tests;
std::transform(
kColors.begin(), kColors.end(), std::back_inserter(tests),
[&](const utils::RGBA8& color) { return std::make_pair(TriangleSpec({{color}}), color); });
CheckDstBlendFactor(base, wgpu::BlendFactor::Zero, wgpu::BlendFactor::Zero, tests);
}
TEST_P(ColorStateTest, DstBlendFactorOne) {
utils::RGBA8 base(32, 64, 128, 192);
std::vector<std::pair<TriangleSpec, utils::RGBA8>> tests;
std::transform(kColors.begin(), kColors.end(), std::back_inserter(tests),
[&](const utils::RGBA8& color) {
return std::make_pair(TriangleSpec({{color}}), base + color);
});
CheckDstBlendFactor(base, wgpu::BlendFactor::One, wgpu::BlendFactor::One, tests);
}
TEST_P(ColorStateTest, DstBlendFactorSrc) {
utils::RGBA8 base(32, 64, 128, 192);
std::vector<std::pair<TriangleSpec, utils::RGBA8>> tests;
std::transform(kColors.begin(), kColors.end(), std::back_inserter(tests),
[&](const utils::RGBA8& color) {
utils::RGBA8 fac = color;
fac.a = 0;
utils::RGBA8 expected = color + mix(utils::RGBA8(0, 0, 0, 0), base, fac);
return std::make_pair(TriangleSpec({{color}}), expected);
});
CheckDstBlendFactor(base, wgpu::BlendFactor::Src, wgpu::BlendFactor::Zero, tests);
}
TEST_P(ColorStateTest, DstBlendFactorOneMinusSrc) {
utils::RGBA8 base(32, 64, 128, 192);
std::vector<std::pair<TriangleSpec, utils::RGBA8>> tests;
std::transform(kColors.begin(), kColors.end(), std::back_inserter(tests),
[&](const utils::RGBA8& color) {
utils::RGBA8 fac = utils::RGBA8(255, 255, 255, 255) - color;
fac.a = 0;
utils::RGBA8 expected = color + mix(utils::RGBA8(0, 0, 0, 0), base, fac);
return std::make_pair(TriangleSpec({{color}}), expected);
});
CheckDstBlendFactor(base, wgpu::BlendFactor::OneMinusSrc, wgpu::BlendFactor::Zero, tests);
}
TEST_P(ColorStateTest, DstBlendFactorSrcAlpha) {
utils::RGBA8 base(32, 64, 128, 192);
std::vector<std::pair<TriangleSpec, utils::RGBA8>> tests;
std::transform(kColors.begin(), kColors.end(), std::back_inserter(tests),
[&](const utils::RGBA8& color) {
utils::RGBA8 fac(color.a, color.a, color.a, color.a);
utils::RGBA8 expected = color + mix(utils::RGBA8(0, 0, 0, 0), base, fac);
return std::make_pair(TriangleSpec({{color}}), expected);
});
CheckDstBlendFactor(base, wgpu::BlendFactor::SrcAlpha, wgpu::BlendFactor::SrcAlpha, tests);
}
TEST_P(ColorStateTest, DstBlendFactorOneMinusSrcAlpha) {
utils::RGBA8 base(32, 64, 128, 192);
std::vector<std::pair<TriangleSpec, utils::RGBA8>> tests;
std::transform(
kColors.begin(), kColors.end(), std::back_inserter(tests), [&](const utils::RGBA8& color) {
utils::RGBA8 fac =
utils::RGBA8(255, 255, 255, 255) - utils::RGBA8(color.a, color.a, color.a, color.a);
utils::RGBA8 expected = color + mix(utils::RGBA8(0, 0, 0, 0), base, fac);
return std::make_pair(TriangleSpec({{color}}), expected);
});
CheckDstBlendFactor(base, wgpu::BlendFactor::OneMinusSrcAlpha,
wgpu::BlendFactor::OneMinusSrcAlpha, tests);
}
TEST_P(ColorStateTest, DstBlendFactorDst) {
utils::RGBA8 base(32, 64, 128, 192);
std::vector<std::pair<TriangleSpec, utils::RGBA8>> tests;
std::transform(kColors.begin(), kColors.end(), std::back_inserter(tests),
[&](const utils::RGBA8& color) {
utils::RGBA8 fac = base;
fac.a = 0;
utils::RGBA8 expected = color + mix(utils::RGBA8(0, 0, 0, 0), base, fac);
return std::make_pair(TriangleSpec({{color}}), expected);
});
CheckDstBlendFactor(base, wgpu::BlendFactor::Dst, wgpu::BlendFactor::Zero, tests);
}
TEST_P(ColorStateTest, DstBlendFactorOneMinusDst) {
utils::RGBA8 base(32, 64, 128, 192);
std::vector<std::pair<TriangleSpec, utils::RGBA8>> tests;
std::transform(kColors.begin(), kColors.end(), std::back_inserter(tests),
[&](const utils::RGBA8& color) {
utils::RGBA8 fac = utils::RGBA8(255, 255, 255, 255) - base;
fac.a = 0;
utils::RGBA8 expected = color + mix(utils::RGBA8(0, 0, 0, 0), base, fac);
return std::make_pair(TriangleSpec({{color}}), expected);
});
CheckDstBlendFactor(base, wgpu::BlendFactor::OneMinusDst, wgpu::BlendFactor::Zero, tests);
}
TEST_P(ColorStateTest, DstBlendFactorDstAlpha) {
utils::RGBA8 base(32, 64, 128, 192);
std::vector<std::pair<TriangleSpec, utils::RGBA8>> tests;
std::transform(kColors.begin(), kColors.end(), std::back_inserter(tests),
[&](const utils::RGBA8& color) {
utils::RGBA8 fac(base.a, base.a, base.a, base.a);
utils::RGBA8 expected = color + mix(utils::RGBA8(0, 0, 0, 0), base, fac);
return std::make_pair(TriangleSpec({{color}}), expected);
});
CheckDstBlendFactor(base, wgpu::BlendFactor::DstAlpha, wgpu::BlendFactor::DstAlpha, tests);
}
TEST_P(ColorStateTest, DstBlendFactorOneMinusDstAlpha) {
utils::RGBA8 base(32, 64, 128, 192);
std::vector<std::pair<TriangleSpec, utils::RGBA8>> tests;
std::transform(
kColors.begin(), kColors.end(), std::back_inserter(tests), [&](const utils::RGBA8& color) {
utils::RGBA8 fac =
utils::RGBA8(255, 255, 255, 255) - utils::RGBA8(base.a, base.a, base.a, base.a);
utils::RGBA8 expected = color + mix(utils::RGBA8(0, 0, 0, 0), base, fac);
return std::make_pair(TriangleSpec({{color}}), expected);
});
CheckDstBlendFactor(base, wgpu::BlendFactor::OneMinusDstAlpha,
wgpu::BlendFactor::OneMinusDstAlpha, tests);
}
TEST_P(ColorStateTest, DstBlendFactorSrcAlphaSaturated) {
utils::RGBA8 base(32, 64, 128, 192);
std::vector<std::pair<TriangleSpec, utils::RGBA8>> tests;
std::transform(kColors.begin(), kColors.end(), std::back_inserter(tests),
[&](const utils::RGBA8& color) {
uint8_t f = std::min(color.a, static_cast<uint8_t>(255 - base.a));
utils::RGBA8 fac(f, f, f, 255);
utils::RGBA8 expected = color + mix(utils::RGBA8(0, 0, 0, 0), base, fac);
return std::make_pair(TriangleSpec({{color}}), expected);
});
CheckDstBlendFactor(base, wgpu::BlendFactor::SrcAlphaSaturated,
wgpu::BlendFactor::SrcAlphaSaturated, tests);
}
TEST_P(ColorStateTest, DstBlendFactorConstant) {
utils::RGBA8 base(32, 64, 128, 192);
std::vector<std::pair<TriangleSpec, utils::RGBA8>> tests;
std::transform(kColors.begin(), kColors.end(), std::back_inserter(tests),
[&](const utils::RGBA8& color) {
auto triangleSpec = TriangleSpec({{color}, {{0.2f, 0.4f, 0.6f, 0.8f}}});
utils::RGBA8 expected =
color + mix(utils::RGBA8(0, 0, 0, 0), base, triangleSpec.blendFactor);
return std::make_pair(triangleSpec, expected);
});
CheckDstBlendFactor(base, wgpu::BlendFactor::Constant, wgpu::BlendFactor::Constant, tests);
}
TEST_P(ColorStateTest, DstBlendFactorOneMinusConstant) {
utils::RGBA8 base(32, 64, 128, 192);
std::vector<std::pair<TriangleSpec, utils::RGBA8>> tests;
std::transform(kColors.begin(), kColors.end(), std::back_inserter(tests),
[&](const utils::RGBA8& color) {
auto triangleSpec = TriangleSpec({{color}, {{0.2f, 0.4f, 0.6f, 0.8f}}});
std::array<float, 4> f = {{0.8f, 0.6f, 0.4f, 0.2f}};
utils::RGBA8 expected = color + mix(utils::RGBA8(0, 0, 0, 0), base, f);
return std::make_pair(triangleSpec, expected);
});
CheckDstBlendFactor(base, wgpu::BlendFactor::OneMinusConstant,
wgpu::BlendFactor::OneMinusConstant, tests);
}
// Check that the color write mask works
TEST_P(ColorStateTest, ColorWriteMask) {
wgpu::BlendComponent blendComponent;
blendComponent.operation = wgpu::BlendOperation::Add;
blendComponent.srcFactor = wgpu::BlendFactor::One;
blendComponent.dstFactor = wgpu::BlendFactor::One;
wgpu::BlendState blend;
blend.color = blendComponent;
blend.alpha = blendComponent;
wgpu::ColorTargetState descriptor;
descriptor.blend = &blend;
{
// Test single channel color write
descriptor.writeMask = wgpu::ColorWriteMask::Red;
SetupSingleSourcePipelines(descriptor);
utils::RGBA8 base(32, 64, 128, 192);
for (auto& color : kColors) {
utils::RGBA8 expected = base + utils::RGBA8(color.r, 0, 0, 0);
DoSingleSourceTest(base, {color}, expected);
}
}
{
// Test multi channel color write
descriptor.writeMask = wgpu::ColorWriteMask::Green | wgpu::ColorWriteMask::Alpha;
SetupSingleSourcePipelines(descriptor);
utils::RGBA8 base(32, 64, 128, 192);
for (auto& color : kColors) {
utils::RGBA8 expected = base + utils::RGBA8(0, color.g, 0, color.a);
DoSingleSourceTest(base, {color}, expected);
}
}
{
// Test no channel color write
descriptor.writeMask = wgpu::ColorWriteMask::None;
SetupSingleSourcePipelines(descriptor);
utils::RGBA8 base(32, 64, 128, 192);
for (auto& color : kColors) {
DoSingleSourceTest(base, {color}, base);
}
}
}
// Check that the color write mask works when blending is disabled
TEST_P(ColorStateTest, ColorWriteMaskBlendingDisabled) {
{
wgpu::BlendComponent blendComponent;
blendComponent.operation = wgpu::BlendOperation::Add;
blendComponent.srcFactor = wgpu::BlendFactor::One;
blendComponent.dstFactor = wgpu::BlendFactor::Zero;
wgpu::BlendState blend;
blend.color = blendComponent;
blend.alpha = blendComponent;
wgpu::ColorTargetState descriptor;
descriptor.blend = &blend;
descriptor.writeMask = wgpu::ColorWriteMask::Red;
SetupSingleSourcePipelines(descriptor);
utils::RGBA8 base(32, 64, 128, 192);
utils::RGBA8 expected(32, 0, 0, 0);
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass.renderPassInfo);
pass.SetPipeline(testPipeline);
pass.SetBindGroup(0, MakeBindGroupForColors(std::array<utils::RGBA8, 1>({{base}})));
pass.Draw(3);
pass.End();
}
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_PIXEL_RGBA8_EQ(expected, renderPass.color, kRTSize / 2, kRTSize / 2);
}
}
// Test that independent color states on render targets works
TEST_P(ColorStateTest, IndependentColorState) {
// Compatibility mode doesn't support per-draw-buffer blending
DAWN_TEST_UNSUPPORTED_IF(IsCompatibilityMode());
DAWN_TEST_UNSUPPORTED_IF(HasToggleEnabled("disable_indexed_draw_buffers"));
std::array<wgpu::Texture, 4> renderTargets;
std::array<wgpu::TextureView, 4> renderTargetViews;
wgpu::TextureDescriptor descriptor;
descriptor.dimension = wgpu::TextureDimension::e2D;
descriptor.size.width = kRTSize;
descriptor.size.height = kRTSize;
descriptor.size.depthOrArrayLayers = 1;
descriptor.sampleCount = 1;
descriptor.format = wgpu::TextureFormat::RGBA8Unorm;
descriptor.mipLevelCount = 1;
descriptor.usage = wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopySrc;
for (uint32_t i = 0; i < 4; ++i) {
renderTargets[i] = device.CreateTexture(&descriptor);
renderTargetViews[i] = renderTargets[i].CreateView();
}
utils::ComboRenderPassDescriptor renderPass(
{renderTargetViews[0], renderTargetViews[1], renderTargetViews[2], renderTargetViews[3]});
wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, R"(
struct MyBlock {
color0 : vec4f,
color1 : vec4f,
color2 : vec4f,
color3 : vec4f,
}
@group(0) @binding(0) var<uniform> myUbo : MyBlock;
struct FragmentOut {
@location(0) fragColor0 : vec4f,
@location(1) fragColor1 : vec4f,
@location(2) fragColor2 : vec4f,
@location(3) fragColor3 : vec4f,
}
@fragment fn main() -> FragmentOut {
var output : FragmentOut;
output.fragColor0 = myUbo.color0;
output.fragColor1 = myUbo.color1;
output.fragColor2 = myUbo.color2;
output.fragColor3 = myUbo.color3;
return output;
}
)");
utils::ComboRenderPipelineDescriptor baseDescriptor;
baseDescriptor.layout = pipelineLayout;
baseDescriptor.vertex.module = vsModule;
baseDescriptor.cFragment.module = fsModule;
baseDescriptor.cFragment.targetCount = 4;
basePipeline = device.CreateRenderPipeline(&baseDescriptor);
utils::ComboRenderPipelineDescriptor testDescriptor;
testDescriptor.layout = pipelineLayout;
testDescriptor.vertex.module = vsModule;
testDescriptor.cFragment.module = fsModule;
testDescriptor.cFragment.targetCount = 4;
// set color states
wgpu::BlendComponent blendComponent0;
blendComponent0.operation = wgpu::BlendOperation::Add;
blendComponent0.srcFactor = wgpu::BlendFactor::One;
blendComponent0.dstFactor = wgpu::BlendFactor::One;
wgpu::BlendState blend0;
blend0.color = blendComponent0;
blend0.alpha = blendComponent0;
wgpu::BlendComponent blendComponent1;
blendComponent1.operation = wgpu::BlendOperation::Subtract;
blendComponent1.srcFactor = wgpu::BlendFactor::One;
blendComponent1.dstFactor = wgpu::BlendFactor::One;
wgpu::BlendState blend1;
blend1.color = blendComponent1;
blend1.alpha = blendComponent1;
// Blend state intentionally omitted for target 2
wgpu::BlendComponent blendComponent3;
blendComponent3.operation = wgpu::BlendOperation::Min;
blendComponent3.srcFactor = wgpu::BlendFactor::One;
blendComponent3.dstFactor = wgpu::BlendFactor::One;
wgpu::BlendState blend3;
blend3.color = blendComponent3;
blend3.alpha = blendComponent3;
testDescriptor.cTargets[0].blend = &blend0;
testDescriptor.cTargets[1].blend = &blend1;
testDescriptor.cTargets[3].blend = &blend3;
testPipeline = device.CreateRenderPipeline(&testDescriptor);
for (unsigned int c = 0; c < kColors.size(); ++c) {
utils::RGBA8 base = kColors[((c + 31) * 29) % kColors.size()];
utils::RGBA8 color0 = kColors[((c + 19) * 13) % kColors.size()];
utils::RGBA8 color1 = kColors[((c + 11) * 43) % kColors.size()];
utils::RGBA8 color2 = kColors[((c + 7) * 3) % kColors.size()];
utils::RGBA8 color3 = kColors[((c + 13) * 71) % kColors.size()];
utils::RGBA8 expected0 = color0 + base;
utils::RGBA8 expected1 = color1 - base;
utils::RGBA8 expected2 = color2;
utils::RGBA8 expected3 = min(color3, base);
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
pass.SetPipeline(basePipeline);
pass.SetBindGroup(
0, MakeBindGroupForColors(std::array<utils::RGBA8, 4>({{base, base, base, base}})));
pass.Draw(3);
pass.SetPipeline(testPipeline);
pass.SetBindGroup(0, MakeBindGroupForColors(std::array<utils::RGBA8, 4>(
{{color0, color1, color2, color3}})));
pass.Draw(3);
pass.End();
}
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_PIXEL_RGBA8_EQ(expected0, renderTargets[0], kRTSize / 2, kRTSize / 2)
<< "Attachment slot 0 should have been " << color0 << " + " << base << " = "
<< expected0;
EXPECT_PIXEL_RGBA8_EQ(expected1, renderTargets[1], kRTSize / 2, kRTSize / 2)
<< "Attachment slot 1 should have been " << color1 << " - " << base << " = "
<< expected1;
EXPECT_PIXEL_RGBA8_EQ(expected2, renderTargets[2], kRTSize / 2, kRTSize / 2)
<< "Attachment slot 2 should have been " << color2 << " = " << expected2
<< "(no blending)";
EXPECT_PIXEL_RGBA8_EQ(expected3, renderTargets[3], kRTSize / 2, kRTSize / 2)
<< "Attachment slot 3 should have been min(" << color3 << ", " << base
<< ") = " << expected3;
}
}
// Test that the default blend color is correctly set at the beginning of every subpass
TEST_P(ColorStateTest, DefaultBlendColor) {
wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, R"(
struct MyBlock {
color : vec4f
}
@group(0) @binding(0) var<uniform> myUbo : MyBlock;
@fragment fn main() -> @location(0) vec4f {
return myUbo.color;
}
)");
utils::ComboRenderPipelineDescriptor baseDescriptor;
baseDescriptor.layout = pipelineLayout;
baseDescriptor.vertex.module = vsModule;
baseDescriptor.cFragment.module = fsModule;
baseDescriptor.cTargets[0].format = renderPass.colorFormat;
basePipeline = device.CreateRenderPipeline(&baseDescriptor);
utils::ComboRenderPipelineDescriptor testDescriptor;
testDescriptor.layout = pipelineLayout;
testDescriptor.vertex.module = vsModule;
testDescriptor.cFragment.module = fsModule;
testDescriptor.cTargets[0].format = renderPass.colorFormat;
wgpu::BlendComponent blendComponent;
blendComponent.operation = wgpu::BlendOperation::Add;
blendComponent.srcFactor = wgpu::BlendFactor::Constant;
blendComponent.dstFactor = wgpu::BlendFactor::One;
wgpu::BlendState blend;
blend.color = blendComponent;
blend.alpha = blendComponent;
testDescriptor.cTargets[0].blend = &blend;
testPipeline = device.CreateRenderPipeline(&testDescriptor);
constexpr wgpu::Color kWhite{1.0f, 1.0f, 1.0f, 1.0f};
// Check that the initial blend color is (0,0,0,0)
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass.renderPassInfo);
pass.SetPipeline(basePipeline);
pass.SetBindGroup(0, MakeBindGroupForColors(
std::array<utils::RGBA8, 1>({{utils::RGBA8(0, 0, 0, 0)}})));
pass.Draw(3);
pass.SetPipeline(testPipeline);
pass.SetBindGroup(0, MakeBindGroupForColors(std::array<utils::RGBA8, 1>(
{{utils::RGBA8(255, 255, 255, 255)}})));
pass.Draw(3);
pass.End();
}
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8(0, 0, 0, 0), renderPass.color, kRTSize / 2, kRTSize / 2);
}
// Check that setting the blend color works
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass.renderPassInfo);
pass.SetPipeline(basePipeline);
pass.SetBindGroup(0, MakeBindGroupForColors(
std::array<utils::RGBA8, 1>({{utils::RGBA8(0, 0, 0, 0)}})));
pass.Draw(3);
pass.SetPipeline(testPipeline);
pass.SetBlendConstant(&kWhite);
pass.SetBindGroup(0, MakeBindGroupForColors(std::array<utils::RGBA8, 1>(
{{utils::RGBA8(255, 255, 255, 255)}})));
pass.Draw(3);
pass.End();
}
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8(255, 255, 255, 255), renderPass.color, kRTSize / 2,
kRTSize / 2);
}
// Check that the blend color is not inherited between render passes
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass.renderPassInfo);
pass.SetPipeline(basePipeline);
pass.SetBindGroup(0, MakeBindGroupForColors(
std::array<utils::RGBA8, 1>({{utils::RGBA8(0, 0, 0, 0)}})));
pass.Draw(3);
pass.SetPipeline(testPipeline);
pass.SetBlendConstant(&kWhite);
pass.SetBindGroup(0, MakeBindGroupForColors(std::array<utils::RGBA8, 1>(
{{utils::RGBA8(255, 255, 255, 255)}})));
pass.Draw(3);
pass.End();
}
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass.renderPassInfo);
pass.SetPipeline(basePipeline);
pass.SetBindGroup(0, MakeBindGroupForColors(
std::array<utils::RGBA8, 1>({{utils::RGBA8(0, 0, 0, 0)}})));
pass.Draw(3);
pass.SetPipeline(testPipeline);
pass.SetBindGroup(0, MakeBindGroupForColors(std::array<utils::RGBA8, 1>(
{{utils::RGBA8(255, 255, 255, 255)}})));
pass.Draw(3);
pass.End();
}
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8(0, 0, 0, 0), renderPass.color, kRTSize / 2, kRTSize / 2);
}
}
// This tests a problem in the OpenGL backend where a previous color write mask
// persisted and prevented a render pass loadOp from fully clearing the output
// attachment.
TEST_P(ColorStateTest, ColorWriteMaskDoesNotAffectRenderPassLoadOpClear) {
wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, R"(
struct MyBlock {
color : vec4f
}
@group(0) @binding(0) var<uniform> myUbo : MyBlock;
@fragment fn main() -> @location(0) vec4f {
return myUbo.color;
}
)");
utils::ComboRenderPipelineDescriptor baseDescriptor;
baseDescriptor.layout = pipelineLayout;
baseDescriptor.vertex.module = vsModule;
baseDescriptor.cFragment.module = fsModule;
baseDescriptor.cTargets[0].format = renderPass.colorFormat;
basePipeline = device.CreateRenderPipeline(&baseDescriptor);
utils::ComboRenderPipelineDescriptor testDescriptor;
testDescriptor.layout = pipelineLayout;
testDescriptor.vertex.module = vsModule;
testDescriptor.cFragment.module = fsModule;
testDescriptor.cTargets[0].format = renderPass.colorFormat;
testDescriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::Red;
testPipeline = device.CreateRenderPipeline(&testDescriptor);
utils::RGBA8 base(32, 64, 128, 192);
utils::RGBA8 expected(0, 0, 0, 0);
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
{
// Clear the render attachment to |base|
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass.renderPassInfo);
pass.SetPipeline(basePipeline);
pass.SetBindGroup(0, MakeBindGroupForColors(std::array<utils::RGBA8, 1>({{base}})));
pass.Draw(3);
// Set a pipeline that will dirty the color write mask
pass.SetPipeline(testPipeline);
pass.End();
}
{
// This renderpass' loadOp should clear all channels of the render attachment
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass.renderPassInfo);
pass.End();
}
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_PIXEL_RGBA8_EQ(expected, renderPass.color, kRTSize / 2, kRTSize / 2);
}
TEST_P(ColorStateTest, SparseAttachmentsDifferentColorMask) {
// Compatibility mode doesn't support per-draw-buffer color mask
DAWN_TEST_UNSUPPORTED_IF(IsCompatibilityMode());
DAWN_TEST_UNSUPPORTED_IF(HasToggleEnabled("disable_indexed_draw_buffers"));
wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, R"(
struct Outputs {
@location(1) o1 : vec4f,
@location(3) o3 : vec4f,
}
@fragment fn main() -> Outputs {
return Outputs(vec4f(1.0), vec4f(0.0, 1.0, 1.0, 1.0));
}
)");
utils::ComboRenderPipelineDescriptor pipelineDesc;
pipelineDesc.vertex.module = vsModule;
pipelineDesc.cFragment.module = fsModule;
pipelineDesc.cFragment.targetCount = 4;
pipelineDesc.cTargets[0].format = wgpu::TextureFormat::Undefined;
pipelineDesc.cTargets[0].writeMask = wgpu::ColorWriteMask::None;
pipelineDesc.cTargets[1].format = wgpu::TextureFormat::RGBA8Unorm;
pipelineDesc.cTargets[2].format = wgpu::TextureFormat::Undefined;
pipelineDesc.cTargets[2].writeMask = wgpu::ColorWriteMask::None;
pipelineDesc.cTargets[3].format = wgpu::TextureFormat::RGBA8Unorm;
pipelineDesc.cTargets[3].writeMask = wgpu::ColorWriteMask::Green | wgpu::ColorWriteMask::Alpha;
wgpu::RenderPipeline pipeline = device.CreateRenderPipeline(&pipelineDesc);
wgpu::TextureDescriptor texDesc;
texDesc.dimension = wgpu::TextureDimension::e2D;
texDesc.format = wgpu::TextureFormat::RGBA8Unorm;
texDesc.usage = wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopySrc;
texDesc.size = {1, 1};
wgpu::Texture attachment1 = device.CreateTexture(&texDesc);
wgpu::Texture attachment3 = device.CreateTexture(&texDesc);
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassColorAttachment colorAttachments[4]{};
colorAttachments[0].view = nullptr;
colorAttachments[1].view = attachment1.CreateView();
colorAttachments[1].loadOp = wgpu::LoadOp::Load;
colorAttachments[1].storeOp = wgpu::StoreOp::Store;
colorAttachments[2].view = nullptr;
colorAttachments[3].view = attachment3.CreateView();
colorAttachments[3].loadOp = wgpu::LoadOp::Load;
colorAttachments[3].storeOp = wgpu::StoreOp::Store;
wgpu::RenderPassDescriptor rpDesc;
rpDesc.colorAttachmentCount = 4;
rpDesc.colorAttachments = colorAttachments;
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&rpDesc);
pass.SetPipeline(pipeline);
pass.Draw(3);
pass.End();
}
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8::kWhite, attachment1, 0, 0);
EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8::kGreen, attachment3, 0, 0);
}
// This is a regression test against an Intel driver issue about using DstAlpha as
// SrcBlendFactor for both color and alpha blend factors.
TEST_P(ColorStateTest, SrcBlendFactorDstAlphaDstBlendFactorZero) {
utils::RGBA8 base(32, 64, 128, 192);
std::vector<std::pair<TriangleSpec, utils::RGBA8>> tests;
std::transform(kColors.begin(), kColors.end(), std::back_inserter(tests),
[&](const utils::RGBA8& color) {
utils::RGBA8 fac(base.a, base.a, base.a, base.a);
utils::RGBA8 expected = mix(utils::RGBA8(0, 0, 0, 0), color, fac);
return std::make_pair(TriangleSpec({{color}}), expected);
});
CheckBlendFactor(base, wgpu::BlendFactor::DstAlpha, wgpu::BlendFactor::Zero,
wgpu::BlendFactor::DstAlpha, wgpu::BlendFactor::Zero, tests);
}
DAWN_INSTANTIATE_TEST(ColorStateTest,
D3D11Backend(),
D3D12Backend(),
MetalBackend(),
OpenGLBackend(),
OpenGLESBackend(),
VulkanBackend());
} // anonymous namespace
} // namespace dawn