blob: df7a3151351331a31e0387168dd6fc0e28962641 [file] [log] [blame]
// Copyright 2023 The Dawn & Tint Authors
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "dawn/native/ExecutionQueue.h"
#include <atomic>
#include <utility>
#include <vector>
#include "dawn/common/Atomic.h"
#include "dawn/native/Device.h"
#include "dawn/native/Error.h"
namespace dawn::native {
namespace {
void PopWaitingTasksInto(ExecutionSerial serial,
SerialMap<ExecutionSerial, ExecutionQueueBase::Task>& waitingTasks,
std::vector<ExecutionQueueBase::Task>& tasks) {
for (auto task : waitingTasks.IterateUpTo(serial)) {
tasks.push_back(std::move(task));
}
waitingTasks.ClearUpTo(serial);
}
} // namespace
ExecutionQueueBase::~ExecutionQueueBase() {
DAWN_ASSERT(mWaitingTasks.Empty());
}
ExecutionSerial ExecutionQueueBase::GetPendingCommandSerial() const {
return ExecutionSerial(mLastSubmittedSerial.load(std::memory_order_acquire) + 1);
}
ExecutionSerial ExecutionQueueBase::GetLastSubmittedCommandSerial() const {
return ExecutionSerial(mLastSubmittedSerial.load(std::memory_order_acquire));
}
ExecutionSerial ExecutionQueueBase::GetCompletedCommandSerial() const {
return ExecutionSerial(mCompletedSerial.load(std::memory_order_acquire));
}
MaybeError ExecutionQueueBase::WaitForQueueSerial(ExecutionSerial waitSerial, Nanoseconds timeout) {
// We currently have two differing implementations for this function depending on whether the
// backend supports thread safe waits. Note that while currently only the Metal backend
// explicitly enables thread safe wait, the main blocking backend is D3D11 which is using the
// value of |mCompletedSerial| within it's implementation of |CheckAndUpdateCompletedSerials|.
if (GetDevice()->IsToggleEnabled(Toggle::WaitIsThreadSafe)) {
if (waitSerial > GetLastSubmittedCommandSerial()) {
auto deviceGuard = GetDevice()->GetGuard();
// Check submitted command serial again since it could have been incremented already.
if (waitSerial > GetLastSubmittedCommandSerial()) {
// Serial has not been submitted yet. Submit it now.
DAWN_TRY(EnsureCommandsFlushed(waitSerial));
}
}
// Serial is already complete.
if (waitSerial <= GetCompletedCommandSerial()) {
return {};
}
if (timeout > Nanoseconds(0)) {
// Wait on the serial if it hasn't passed yet.
ExecutionSerial completedSerial = kWaitSerialTimeout;
DAWN_TRY_ASSIGN(completedSerial, WaitForQueueSerialImpl(waitSerial, timeout));
UpdateCompletedSerialTo(completedSerial);
return {};
}
return UpdateCompletedSerial();
} else {
// Otherwise, we need to acquire the device lock first.
auto deviceGuard = GetDevice()->GetGuard();
if (waitSerial > GetLastSubmittedCommandSerial()) {
// Serial has not been submitted yet. Submit it now.
DAWN_TRY(EnsureCommandsFlushed(waitSerial));
}
// Serial is already complete.
if (waitSerial <= GetCompletedCommandSerial()) {
return UpdateCompletedSerial();
}
if (timeout > Nanoseconds(0)) {
// Wait on the serial if it hasn't passed yet.
ExecutionSerial completedSerial = kWaitSerialTimeout;
DAWN_TRY_ASSIGN(completedSerial, WaitForQueueSerialImpl(waitSerial, timeout));
// It's critical to update the completed serial right away. If fences are processed
// by another thread before CheckAndUpdateCompletedSerials() runs on the current
// thread, the fence list will be empty, preventing the current thread from
// determining the true latest serial. Preemptively updating mCompletedSerial
// ensures CheckAndUpdateCompletedSerials() returns an accurate value, preventing
// stale data.
FetchMax(mCompletedSerial, uint64_t(completedSerial));
}
return UpdateCompletedSerial();
}
}
MaybeError ExecutionQueueBase::WaitForIdleForDestruction() {
// Currently waiting for idle for destruction requires the device lock to be held.
DAWN_ASSERT(GetDevice()->IsLockedByCurrentThreadIfNeeded());
{
std::lock_guard<std::mutex> lock(mMutex);
DAWN_ASSERT(!mWaitingForIdle);
mWaitingForIdle = true;
}
IgnoreErrors(WaitForIdleForDestructionImpl());
// Prepare to call any remaining outstanding callbacks now.
std::vector<Task> tasks;
{
std::unique_lock<std::mutex> lock(mMutex);
if (mCallingCallbacks) {
mCv.wait(lock, [&] { return !mCallingCallbacks; });
}
// We finish tasks all the way up to the pending command serial because otherwise, pending
// tasks that may be for cleanup won't every be completed. Also, for |buffer.MapAsync|, a
// lot of backends queue up a clear to initialize the data on those buffers and that clear
// is pushed into the front of the next pending command, and the buffer's last usage serial
// is set to the pending command serial to reflect that. If the device is lost before that
// pending command is ever submitted, the map async task will be left dangling if we only
// clear up to the completed serial.
auto serial = GetPendingCommandSerial();
PopWaitingTasksInto(serial, mWaitingTasks, tasks);
if (tasks.size() > 0) {
mCallingCallbacks = true;
}
}
for (auto task : tasks) {
task();
}
if (tasks.size() > 0) {
std::lock_guard<std::mutex> lock(mMutex);
mCallingCallbacks = false;
}
mCv.notify_all();
return {};
}
MaybeError ExecutionQueueBase::CheckPassedSerials() {
ExecutionSerial completedSerial;
DAWN_TRY_ASSIGN(completedSerial, CheckAndUpdateCompletedSerials());
DAWN_ASSERT(completedSerial <=
ExecutionSerial(mLastSubmittedSerial.load(std::memory_order_acquire)));
// Atomically set mCompletedSerial to completedSerial if completedSerial is larger.
FetchMax(mCompletedSerial, uint64_t(completedSerial));
return {};
}
MaybeError ExecutionQueueBase::UpdateCompletedSerial() {
ExecutionSerial completedSerial;
DAWN_TRY_ASSIGN(completedSerial, CheckAndUpdateCompletedSerials());
DAWN_ASSERT(completedSerial <=
ExecutionSerial(mLastSubmittedSerial.load(std::memory_order_acquire)));
UpdateCompletedSerialTo(completedSerial);
return {};
}
// Tasks may execute synchronously if the given serial has already passed or during device
// destruction. As a result, callers should ensure that the calling thread releases any locks that
// will be taken by the task prior to calling TrackSerialTask.
void ExecutionQueueBase::TrackSerialTask(ExecutionSerial serial, Task&& task) {
{
std::lock_guard<std::mutex> lock(mMutex);
if (!mAssumeCompleted && serial > GetCompletedCommandSerial()) {
mWaitingTasks.Enqueue(std::move(task), serial);
return;
}
}
task();
}
void ExecutionQueueBase::UpdateCompletedSerialTo(ExecutionSerial completedSerial) {
UpdateCompletedSerialToInternal(completedSerial);
}
void ExecutionQueueBase::UpdateCompletedSerialToInternal(ExecutionSerial completedSerial,
bool forceTasks) {
std::vector<Task> tasks;
{
std::unique_lock<std::mutex> lock(mMutex);
// We update the completed serial as soon as possible before waiting for callback rights so
// that we almost always process as many callbacks as possible.
FetchMax(mCompletedSerial, uint64_t(completedSerial));
if (mWaitingForIdle && !forceTasks) {
// If we are waiting for idle, then the callbacks will be fired there. It is currently
// necessary to avoid calling the callbacks in this function and doing it in the
// |WaitForIdleForDestruction| call because |WaitForIdleForDestruction| is called while
// holding the device lock and any re-entrant callbacks may also try to acquire the
// device lock. As a result, if the main thread is waiting for idle, and another thread
// is trying to update the completed serial and call callbacks, it could deadlock. Once
// we update |WaitForIdleForDestruction| to release the device lock on the wait, we may
// be able to simplify the code here.
return;
}
if (mCallingCallbacks) {
mCv.wait(lock, [&] { return !mCallingCallbacks; });
}
auto serial = GetCompletedCommandSerial();
PopWaitingTasksInto(serial, mWaitingTasks, tasks);
if (tasks.size() > 0) {
mCallingCallbacks = true;
}
}
// Call the callbacks without holding the lock on the ExecutionQueue to avoid lock-inversion
// issues when dealing with potential re-entrant callbacks.
for (auto task : tasks) {
task();
}
if (tasks.size() > 0) {
std::lock_guard<std::mutex> lock(mMutex);
mCallingCallbacks = false;
}
mCv.notify_all();
}
MaybeError ExecutionQueueBase::EnsureCommandsFlushed(ExecutionSerial serial) {
DAWN_ASSERT(serial <= GetPendingCommandSerial());
if (serial > GetLastSubmittedCommandSerial()) {
ForceEventualFlushOfCommands();
DAWN_TRY(SubmitPendingCommands());
DAWN_ASSERT(serial <= GetLastSubmittedCommandSerial());
}
return {};
}
MaybeError ExecutionQueueBase::SubmitPendingCommands() {
return SubmitPendingCommandsImpl();
}
void ExecutionQueueBase::AssumeCommandsComplete() {
{
std::unique_lock<std::mutex> lock(mMutex);
// Any tasks that get scheduled after this call are executed immediately.
mAssumeCompleted = true;
}
// Bump serials so any pending callbacks can be fired.
// TODO(crbug.com/dawn/831): This is called during device destroy, which is not
// thread-safe yet. Two threads calling destroy would race setting these serials.
ExecutionSerial completed =
ExecutionSerial(mLastSubmittedSerial.fetch_add(1u, std::memory_order_release) + 1);
// Force any waiting tasks to execute. This will ensure that any tasks that were scheduled
// after WaitForIdleForDestruction being called are completed.
UpdateCompletedSerialToInternal(completed, true);
}
void ExecutionQueueBase::IncrementLastSubmittedCommandSerial() {
mLastSubmittedSerial.fetch_add(1u, std::memory_order_release);
}
bool ExecutionQueueBase::HasScheduledCommands() const {
return mLastSubmittedSerial.load(std::memory_order_acquire) >
mCompletedSerial.load(std::memory_order_acquire) ||
HasPendingCommands();
}
// All prevously submitted works at the moment will supposedly complete at this serial.
// Internally the serial is computed according to whether frontend and backend have pending
// commands. There are 4 cases of combination:
// 1) Frontend(No), Backend(No)
// 2) Frontend(No), Backend(Yes)
// 3) Frontend(Yes), Backend(No)
// 4) Frontend(Yes), Backend(Yes)
// For case 1, we don't need the serial to track the task as we can ack it right now.
// For case 2 and 4, there will be at least an eventual submission, so we can use
// 'GetPendingCommandSerial' as the serial.
// For case 3, we can't use 'GetPendingCommandSerial' as it won't be submitted surely. Instead we
// use 'GetLastSubmittedCommandSerial', which must be fired eventually.
ExecutionSerial ExecutionQueueBase::GetScheduledWorkDoneSerial() const {
return HasPendingCommands() ? GetPendingCommandSerial() : GetLastSubmittedCommandSerial();
}
} // namespace dawn::native