| // Copyright 2017 The Dawn & Tint Authors |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // 1. Redistributions of source code must retain the above copyright notice, this |
| // list of conditions and the following disclaimer. |
| // |
| // 2. Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // |
| // 3. Neither the name of the copyright holder nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
| // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #ifndef SRC_DAWN_COMMON_MATH_H_ |
| #define SRC_DAWN_COMMON_MATH_H_ |
| |
| #include <climits> |
| #include <cstddef> |
| #include <cstdint> |
| #include <cstring> |
| |
| #include <limits> |
| #include <optional> |
| #include <type_traits> |
| |
| #include "dawn/common/Assert.h" |
| #include "dawn/common/Platform.h" |
| #include "partition_alloc/pointers/raw_ptr.h" |
| |
| #if DAWN_COMPILER_IS(MSVC) |
| #include <intrin.h> |
| #endif |
| |
| namespace dawn { |
| |
| // The following are not valid for 0 |
| uint32_t Log2(uint32_t value); |
| uint32_t Log2(uint64_t value); |
| bool IsPowerOfTwo(uint64_t n); |
| uint64_t RoundUp(uint64_t n, uint64_t m); |
| |
| constexpr uint32_t ConstexprLog2(uint64_t v) { |
| return v <= 1 ? 0 : 1 + ConstexprLog2(v / 2); |
| } |
| |
| constexpr uint32_t ConstexprLog2Ceil(uint64_t v) { |
| return v <= 1 ? 0 : ConstexprLog2(v - 1) + 1; |
| } |
| |
| inline uint32_t Log2Ceil(uint32_t v) { |
| return v <= 1 ? 0 : Log2(v - 1) + 1; |
| } |
| |
| inline uint32_t Log2Ceil(uint64_t v) { |
| return v <= 1 ? 0 : Log2(v - 1) + 1; |
| } |
| |
| uint64_t NextPowerOfTwo(uint64_t n); |
| bool IsPtrAligned(const void* ptr, size_t alignment); |
| bool IsAligned(uint32_t value, size_t alignment); |
| |
| template <typename T> |
| T Align(T value, size_t alignment) { |
| DAWN_ASSERT(value <= std::numeric_limits<T>::max() - (alignment - 1)); |
| DAWN_ASSERT(IsPowerOfTwo(alignment)); |
| DAWN_ASSERT(alignment != 0); |
| T alignmentT = static_cast<T>(alignment); |
| return (value + (alignmentT - 1)) & ~(alignmentT - 1); |
| } |
| |
| template <typename T> |
| T AlignDown(T value, size_t alignment) { |
| DAWN_ASSERT(IsPowerOfTwo(alignment)); |
| DAWN_ASSERT(alignment != 0); |
| T alignmentT = static_cast<T>(alignment); |
| return value & ~(alignmentT - 1); |
| } |
| |
| template <typename T, size_t Alignment> |
| constexpr size_t AlignSizeof() { |
| static_assert(Alignment != 0 && (Alignment & (Alignment - 1)) == 0, |
| "Alignment must be a valid power of 2."); |
| static_assert(sizeof(T) <= std::numeric_limits<size_t>::max() - (Alignment - 1)); |
| return (sizeof(T) + (Alignment - 1)) & ~(Alignment - 1); |
| } |
| |
| // Returns an aligned size for an n-sized array of T elements. If the size would overflow, returns |
| // nullopt instead. |
| template <typename T, size_t Alignment> |
| std::optional<size_t> AlignSizeofN(uint64_t n) { |
| constexpr uint64_t kMaxCountWithoutOverflows = |
| (std::numeric_limits<size_t>::max() - Alignment + 1) / sizeof(T); |
| if (n > kMaxCountWithoutOverflows) { |
| return std::nullopt; |
| } |
| return Align(sizeof(T) * n, Alignment); |
| } |
| |
| template <typename T> |
| DAWN_FORCE_INLINE T* AlignPtr(T* ptr, size_t alignment) { |
| DAWN_ASSERT(IsPowerOfTwo(alignment)); |
| DAWN_ASSERT(alignment != 0); |
| return reinterpret_cast<T*>((reinterpret_cast<size_t>(ptr) + (alignment - 1)) & |
| ~(alignment - 1)); |
| } |
| |
| template <typename T, partition_alloc::internal::RawPtrTraits Traits> |
| DAWN_FORCE_INLINE T* AlignPtr(raw_ptr<T, Traits> ptr, size_t alignment) { |
| return AlignPtr(ptr.get(), alignment); |
| } |
| |
| template <typename T> |
| DAWN_FORCE_INLINE const T* AlignPtr(const T* ptr, size_t alignment) { |
| DAWN_ASSERT(IsPowerOfTwo(alignment)); |
| DAWN_ASSERT(alignment != 0); |
| return reinterpret_cast<const T*>((reinterpret_cast<size_t>(ptr) + (alignment - 1)) & |
| ~(alignment - 1)); |
| } |
| |
| template <typename destType, typename sourceType> |
| destType BitCast(const sourceType& source) { |
| static_assert(sizeof(destType) == sizeof(sourceType), "BitCast: cannot lose precision."); |
| destType output; |
| std::memcpy(&output, &source, sizeof(destType)); |
| return output; |
| } |
| |
| uint16_t Float32ToFloat16(float fp32); |
| float Float16ToFloat32(uint16_t fp16); |
| bool IsFloat16NaN(uint16_t fp16); |
| |
| template <typename T> |
| T FloatToUnorm(float value) { |
| return static_cast<T>(value * static_cast<float>(std::numeric_limits<T>::max())); |
| } |
| |
| float SRGBToLinear(float srgb); |
| |
| template <typename T1, |
| typename T2, |
| typename Enable = typename std::enable_if<sizeof(T1) == sizeof(T2)>::type> |
| constexpr bool IsSubset(T1 subset, T2 set) { |
| T2 bitsAlsoInSet = subset & set; |
| return bitsAlsoInSet == subset; |
| } |
| |
| template <typename T> |
| constexpr T Max(T a, T b) { |
| return (a > b) ? a : b; |
| } |
| |
| template <typename T, typename... Args> |
| constexpr T Max(T first, Args... rest) { |
| return Max(first, Max(rest...)); |
| } |
| |
| // The following functions are defined in the header so they may be inlined. |
| |
| // Count the 1 bits. |
| #if DAWN_COMPILER_IS(MSVC) && !DAWN_COMPILER_IS(CLANG) |
| #if defined(_M_IX86) || defined(_M_X64) |
| namespace priv { |
| // Check POPCNT instruction support and cache the result. |
| // https://docs.microsoft.com/en-us/cpp/intrinsics/popcnt16-popcnt-popcnt64#remarks |
| static const bool kHasPopcnt = [] { |
| int info[4]; |
| __cpuid(&info[0], 1); |
| return static_cast<bool>(info[2] & 0x800000); |
| }(); |
| } // namespace priv |
| |
| // Polyfills for x86/x64 CPUs without POPCNT. |
| // https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel |
| inline uint32_t BitCountPolyfill(uint32_t bits) { |
| bits = bits - ((bits >> 1) & 0x55555555); |
| bits = (bits & 0x33333333) + ((bits >> 2) & 0x33333333); |
| bits = ((bits + (bits >> 4) & 0x0F0F0F0F) * 0x01010101) >> 24; |
| return bits; |
| } |
| |
| inline uint32_t BitCountPolyfill(uint64_t bits) { |
| bits = bits - ((bits >> 1) & 0x5555555555555555ull); |
| bits = (bits & 0x3333333333333333ull) + ((bits >> 2) & 0x3333333333333333ull); |
| bits = ((bits + (bits >> 4) & 0x0F0F0F0F0F0F0F0Full) * 0x0101010101010101ull) >> 56; |
| return static_cast<uint32_t>(bits); |
| } |
| |
| inline uint32_t BitCount(uint32_t bits) { |
| if (priv::kHasPopcnt) { |
| return __popcnt(bits); |
| } |
| return BitCountPolyfill(bits); |
| } |
| |
| inline uint32_t BitCount(uint64_t bits) { |
| if (priv::kHasPopcnt) { |
| #if defined(_M_X64) |
| return static_cast<uint32_t>(__popcnt64(bits)); |
| #else // x86 |
| return __popcnt(static_cast<uint32_t>(bits >> 32)) + |
| __popcnt(static_cast<uint32_t>(bits))); |
| #endif // defined(_M_X64) |
| } |
| return BitCountPolyfill(bits); |
| } |
| |
| #elif defined(_M_ARM) || defined(_M_ARM64) |
| |
| // MSVC's _CountOneBits* intrinsics are not defined for ARM64, moreover they do not use dedicated |
| // NEON instructions. |
| |
| inline uint32_t BitCount(uint32_t bits) { |
| // cast bits to 8x8 datatype and use VCNT on it |
| const uint8x8_t vsum = vcnt_u8(vcreate_u8(static_cast<uint64_t>(bits))); |
| |
| // pairwise sums: 8x8 -> 16x4 -> 32x2 |
| return vget_lane_u32(vpaddl_u16(vpaddl_u8(vsum)), 0); |
| } |
| |
| inline uint32_t BitCount(uint64_t bits) { |
| // cast bits to 8x8 datatype and use VCNT on it |
| const uint8x8_t vsum = vcnt_u8(vcreate_u8(bits)); |
| |
| // pairwise sums: 8x8 -> 16x4 -> 32x2 -> 64x1 |
| return vget_lane_u64(vpaddl_u32(vpaddl_u16(vpaddl_u8(vsum))), 0); |
| } |
| #endif // defined(_M_IX86) || defined(_M_X64) |
| #endif // DAWN_COMPILER_IS(MSVC) && !DAWN_COMPILER_IS(CLANG) |
| |
| #if DAWN_PLATFORM_IS(POSIX) || DAWN_COMPILER_IS(CLANG) || DAWN_COMPILER_IS(GCC) |
| inline uint32_t BitCount(uint32_t bits) { |
| return __builtin_popcount(bits); |
| } |
| |
| inline uint32_t BitCount(uint64_t bits) { |
| return __builtin_popcountll(bits); |
| } |
| #endif // DAWN_PLATFORM_IS(POSIX) || DAWN_COMPILER_IS(CLANG) || DAWN_COMPILER_IS(GCC) |
| |
| inline uint32_t BitCount(uint8_t bits) { |
| return BitCount(static_cast<uint32_t>(bits)); |
| } |
| |
| inline uint32_t BitCount(uint16_t bits) { |
| return BitCount(static_cast<uint32_t>(bits)); |
| } |
| |
| #if DAWN_COMPILER_IS(MSVC) |
| // Return the index of the least significant bit set. Indexing is such that bit 0 is the least |
| // significant bit. Implemented for different bit widths on different platforms. |
| inline uint32_t ScanForward(uint32_t bits) { |
| DAWN_ASSERT(bits != 0u); |
| // NOLINTNEXTLINE(runtime/int) |
| unsigned long firstBitIndex = 0ul; |
| uint8_t ret = _BitScanForward(&firstBitIndex, bits); |
| DAWN_ASSERT(ret != 0u); |
| return static_cast<uint32_t>(firstBitIndex); |
| } |
| |
| inline uint32_t ScanForward(uint64_t bits) { |
| DAWN_ASSERT(bits != 0u); |
| // NOLINTNEXTLINE(runtime/int) |
| unsigned long firstBitIndex = 0ul; |
| #if DAWN_PLATFORM_IS(64_BIT) |
| uint8_t ret = _BitScanForward64(&firstBitIndex, bits); |
| #else |
| uint8_t ret; |
| if (static_cast<uint32_t>(bits) == 0) { |
| ret = _BitScanForward(&firstBitIndex, static_cast<uint32_t>(bits >> 32)); |
| firstBitIndex += 32ul; |
| } else { |
| ret = _BitScanForward(&firstBitIndex, static_cast<uint32_t>(bits)); |
| } |
| #endif // DAWN_PLATFORM_IS(64_BIT) |
| DAWN_ASSERT(ret != 0u); |
| return firstBitIndex; |
| } |
| |
| // Return the index of the most significant bit set. Indexing is such that bit 0 is the least |
| // significant bit. |
| inline uint32_t ScanReverse(uint32_t bits) { |
| DAWN_ASSERT(bits != 0u); |
| // NOLINTNEXTLINE(runtime/int) |
| unsigned long lastBitIndex = 0ul; |
| uint8_t ret = _BitScanReverse(&lastBitIndex, bits); |
| DAWN_ASSERT(ret != 0u); |
| return lastBitIndex; |
| } |
| |
| inline uint32_t ScanReverse(uint64_t bits) { |
| DAWN_ASSERT(bits != 0u); |
| // NOLINTNEXTLINE(runtime/int) |
| unsigned long lastBitIndex = 0ul; |
| #if DAWN_PLATFORM_IS(64_BIT) |
| uint8_t ret = _BitScanReverse64(&lastBitIndex, bits); |
| #else |
| uint8_t ret; |
| if (static_cast<uint32_t>(bits >> 32) == 0) { |
| ret = _BitScanReverse(&lastBitIndex, static_cast<uint32_t>(bits)); |
| } else { |
| ret = _BitScanReverse(&lastBitIndex, static_cast<uint32_t>(bits >> 32)); |
| lastBitIndex += 32ul; |
| } |
| #endif // DAWN_PLATFORM_IS(64_BIT) |
| DAWN_ASSERT(ret != 0u); |
| return lastBitIndex; |
| } |
| #else // DAWN_COMPILER_IS(MSVC) |
| |
| inline uint32_t ScanForward(uint32_t bits) { |
| DAWN_ASSERT(bits != 0u); |
| return static_cast<uint32_t>(__builtin_ctz(bits)); |
| } |
| |
| inline uint32_t ScanForward(uint64_t bits) { |
| DAWN_ASSERT(bits != 0u); |
| #if DAWN_PLATFORM_IS(64_BIT) |
| return static_cast<uint32_t>(__builtin_ctzll(bits)); |
| #else |
| return static_cast<uint32_t>(static_cast<uint32_t>(bits) == 0 |
| ? __builtin_ctz(static_cast<uint32_t>(bits >> 32)) + 32 |
| : __builtin_ctz(static_cast<uint32_t>(bits))); |
| #endif // DAWN_PLATFORM_IS(64_BIT) |
| } |
| |
| inline uint32_t ScanReverse(uint32_t bits) { |
| DAWN_ASSERT(bits != 0u); |
| return static_cast<uint32_t>((sizeof(uint32_t) * CHAR_BIT) - 1 - __builtin_clz(bits)); |
| } |
| |
| inline uint32_t ScanReverse(uint64_t bits) { |
| DAWN_ASSERT(bits != 0u); |
| #if DAWN_PLATFORM_IS(64_BIT) |
| return static_cast<uint32_t>((sizeof(uint64_t) * CHAR_BIT) - 1 - __builtin_clzll(bits)); |
| #else |
| if (static_cast<uint32_t>(bits >> 32) == 0) { |
| return (sizeof(uint32_t) * CHAR_BIT) - 1 - __builtin_clz(static_cast<uint32_t>(bits)); |
| } else { |
| return (sizeof(uint32_t) * CHAR_BIT) - 1 - |
| __builtin_clz(static_cast<uint32_t>(bits >> 32)) + 32; |
| } |
| #endif // DAWN_PLATFORM_IS(64_BIT) |
| } |
| |
| #endif // !DAWN_COMPILER_IS(MSVC) |
| |
| inline uint32_t ScanForward(uint8_t bits) { |
| return ScanForward(static_cast<uint32_t>(bits)); |
| } |
| |
| inline uint32_t ScanForward(uint16_t bits) { |
| return ScanForward(static_cast<uint32_t>(bits)); |
| } |
| |
| inline uint32_t ScanReverse(uint8_t bits) { |
| return ScanReverse(static_cast<uint32_t>(bits)); |
| } |
| |
| inline uint32_t ScanReverse(uint16_t bits) { |
| return ScanReverse(static_cast<uint32_t>(bits)); |
| } |
| |
| } // namespace dawn |
| |
| #endif // SRC_DAWN_COMMON_MATH_H_ |