| // Copyright 2021 The Dawn & Tint Authors |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // 1. Redistributions of source code must retain the above copyright notice, this |
| // list of conditions and the following disclaimer. |
| // |
| // 2. Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // |
| // 3. Neither the name of the copyright holder nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
| // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "dawn/native/ExternalTexture.h" |
| |
| #include <algorithm> |
| #include <utility> |
| |
| #include "dawn/native/Buffer.h" |
| #include "dawn/native/Device.h" |
| #include "dawn/native/ObjectType_autogen.h" |
| #include "dawn/native/Queue.h" |
| #include "dawn/native/Texture.h" |
| #include "dawn/native/utils/WGPUHelpers.h" |
| |
| #include "dawn/native/dawn_platform.h" |
| |
| namespace dawn::native { |
| |
| MaybeError ValidateExternalTexturePlane(const TextureViewBase* textureView) { |
| DAWN_INVALID_IF( |
| (textureView->GetUsage() & wgpu::TextureUsage::TextureBinding) == 0, |
| "The external texture plane (%s) usage (%s) doesn't include the required usage (%s)", |
| textureView, textureView->GetUsage(), wgpu::TextureUsage::TextureBinding); |
| |
| DAWN_INVALID_IF(textureView->GetDimension() != wgpu::TextureViewDimension::e2D, |
| "The external texture plane (%s) dimension (%s) is not 2D.", textureView, |
| textureView->GetDimension()); |
| |
| DAWN_INVALID_IF(textureView->GetLevelCount() > 1, |
| "The external texture plane (%s) mip level count (%u) is not 1.", textureView, |
| textureView->GetLevelCount()); |
| |
| DAWN_INVALID_IF(textureView->GetTexture()->GetSampleCount() != 1, |
| "The external texture plane (%s) sample count (%u) is not one.", textureView, |
| textureView->GetTexture()->GetSampleCount()); |
| |
| return {}; |
| } |
| |
| MaybeError ValidateExternalTextureDescriptor(const DeviceBase* device, |
| const ExternalTextureDescriptor* descriptor) { |
| DAWN_ASSERT(descriptor); |
| DAWN_ASSERT(descriptor->plane0); |
| |
| DAWN_TRY(device->ValidateObject(descriptor->plane0)); |
| |
| DAWN_INVALID_IF(!descriptor->gamutConversionMatrix, |
| "The gamut conversion matrix must be non-null."); |
| |
| DAWN_INVALID_IF(!descriptor->srcTransferFunctionParameters, |
| "The source transfer function parameters must be non-null."); |
| |
| DAWN_INVALID_IF(!descriptor->dstTransferFunctionParameters, |
| "The destination transfer function parameters must be non-null."); |
| |
| DAWN_TRY(ValidateExternalTexturePlane(descriptor->plane0)); |
| |
| auto CheckPlaneFormat = [](const DeviceBase* device, const Format& format, |
| uint32_t requiredComponentCount) -> MaybeError { |
| DAWN_INVALID_IF(format.aspects != Aspect::Color, "The format (%s) is not a color format.", |
| format.format); |
| DAWN_INVALID_IF(!IsSubset(SampleTypeBit::Float, |
| format.GetAspectInfo(Aspect::Color).supportedSampleTypes), |
| "The format (%s) is not filterable float.", format.format); |
| DAWN_INVALID_IF(format.componentCount != requiredComponentCount, |
| "The format (%s) component count (%u) is not %u.", format.format, |
| requiredComponentCount, format.componentCount); |
| return {}; |
| }; |
| |
| if (descriptor->plane1) { |
| DAWN_INVALID_IF( |
| !descriptor->yuvToRgbConversionMatrix, |
| "When more than one plane is set, the YUV-to-RGB conversion matrix must be non-null."); |
| |
| DAWN_TRY(device->ValidateObject(descriptor->plane1)); |
| DAWN_TRY(ValidateExternalTexturePlane(descriptor->plane1)); |
| |
| // Y + UV case. |
| DAWN_TRY_CONTEXT(CheckPlaneFormat(device, descriptor->plane0->GetFormat(), 1), |
| "validating the format of plane 0 (%s)", descriptor->plane0); |
| DAWN_TRY_CONTEXT(CheckPlaneFormat(device, descriptor->plane1->GetFormat(), 2), |
| "validating the format of plane 1 (%s)", descriptor->plane1); |
| } else { |
| // RGBA case. |
| DAWN_TRY_CONTEXT(CheckPlaneFormat(device, descriptor->plane0->GetFormat(), 4), |
| "validating the format of plane 0 (%s)", descriptor->plane0); |
| } |
| |
| DAWN_INVALID_IF(descriptor->cropSize.width == 0 || descriptor->cropSize.height == 0, |
| "cropSize %s has 0 on width or height.", &descriptor->cropSize); |
| |
| const Extent3D textureSize = descriptor->plane0->GetSingleSubresourceVirtualSize(); |
| DAWN_INVALID_IF(descriptor->cropSize.width > textureSize.width || |
| descriptor->cropSize.height > textureSize.height, |
| "cropSize %s exceeds the texture size, defined by Plane0 size (%u, %u).", |
| &descriptor->cropSize, textureSize.width, textureSize.height); |
| DAWN_INVALID_IF(descriptor->cropOrigin.x > textureSize.width - descriptor->cropSize.width || |
| descriptor->cropOrigin.y > textureSize.height - descriptor->cropSize.height, |
| "cropRect[Origin: %s, Size: %s] exceeds plane0's size (%u, %u).", |
| &descriptor->cropOrigin, &descriptor->cropSize, textureSize.width, |
| textureSize.height); |
| |
| DAWN_INVALID_IF(descriptor->apparentSize.width == 0 || descriptor->apparentSize.height == 0, |
| "apparentSize (%u, %u) is empty.", descriptor->apparentSize.width, |
| descriptor->apparentSize.height); |
| DAWN_INVALID_IF(descriptor->apparentSize.width > device->GetLimits().v1.maxTextureDimension2D, |
| "apparentSize.width (%u) is larger than maxTextureDimension2D (%u)", |
| descriptor->apparentSize.width, device->GetLimits().v1.maxTextureDimension2D); |
| DAWN_INVALID_IF(descriptor->apparentSize.height > device->GetLimits().v1.maxTextureDimension2D, |
| "apparentSize.height (%u) is larger than maxTextureDimension2D (%u)", |
| descriptor->apparentSize.height, device->GetLimits().v1.maxTextureDimension2D); |
| |
| return {}; |
| } |
| |
| namespace { |
| ExternalTextureParams ComputeExternalTextureParams(const ExternalTextureDescriptor* descriptor) { |
| ExternalTextureParams params; |
| params.numPlanes = descriptor->plane1 == nullptr ? 1 : 2; |
| |
| params.doYuvToRgbConversionOnly = descriptor->doYuvToRgbConversionOnly ? 1 : 0; |
| |
| // YUV-to-RGB conversion is performed by multiplying the source YUV values with a 4x3 matrix |
| // passed from Chromium. The matrix was originally sourced from /skia/src/core/SkYUVMath.cpp. |
| // This matrix is only used in multiplanar scenarios. |
| if (params.numPlanes == 2) { |
| DAWN_ASSERT(descriptor->yuvToRgbConversionMatrix); |
| const float* yMat = descriptor->yuvToRgbConversionMatrix; |
| std::copy(yMat, yMat + 12, params.yuvToRgbConversionMatrix.begin()); |
| } |
| |
| // Gamut correction is performed by multiplying a 3x3 matrix passed from Chromium. The |
| // matrix was computed by multiplying the appropriate source and destination gamut |
| // matrices sourced from ui/gfx/color_space.cc. |
| const float* gMat = descriptor->gamutConversionMatrix; |
| params.gamutConversionMatrix = {gMat[0], gMat[1], gMat[2], 0.0f, // |
| gMat[3], gMat[4], gMat[5], 0.0f, // |
| gMat[6], gMat[7], gMat[8], 0.0f}; |
| |
| // Gamma decode/encode is performed by the logic: |
| // if (abs(v) < params.D) { |
| // return sign(v) * (params.C * abs(v) + params.F); |
| // } |
| // return pow(A * x + B, G) + E |
| // |
| // Constants are passed from Chromium and originally sourced from ui/gfx/color_space.cc |
| const float* srcFn = descriptor->srcTransferFunctionParameters; |
| std::copy(srcFn, srcFn + 7, params.gammaDecodingParams.begin()); |
| |
| const float* dstFn = descriptor->dstTransferFunctionParameters; |
| std::copy(dstFn, dstFn + 7, params.gammaEncodingParams.begin()); |
| |
| // Unlike WGSL, which stores matrices in column vectors, the following arithmetic uses row |
| // vectors, so elements are stored in the following order: |
| // |
| // ┌ ┐ |
| // │ 0, 1, 2 │ |
| // │ 3, 4, 5 │ |
| // └ ┘ |
| // |
| // The matrix is transposed at the end. |
| // |
| // Note that we are working in homogeneous coordinates so there is an implied third row |
| // containing [0, 0, 1]. |
| using mat2x3 = std::array<float, 6>; |
| // Likewise the vectors have an implicit last element that's 1. |
| using vec2 = std::array<float, 2>; |
| |
| // Multiplies the two mat2x3 matrices, by treating the RHS matrix as a mat3x3 where the last row |
| // is [0, 0, 1]. |
| auto Mul = [](const mat2x3& lhs, const mat2x3& rhs) -> mat2x3 { |
| auto& a = lhs[0]; |
| auto& b = lhs[1]; |
| auto& c = lhs[2]; |
| auto& d = lhs[3]; |
| auto& e = lhs[4]; |
| auto& f = lhs[5]; |
| auto& g = rhs[0]; |
| auto& h = rhs[1]; |
| auto& i = rhs[2]; |
| auto& j = rhs[3]; |
| auto& k = rhs[4]; |
| auto& l = rhs[5]; |
| // ┌ ┐ ┌ ┐ |
| // │ a, b, c │ │ g, h, i │ |
| // │ d, e, f │ x │ j, k, l │ |
| // └ ┘ │ 0, 0, 1 │ |
| // └ ┘ |
| return mat2x3{ |
| a * g + b * j, // |
| a * h + b * k, // |
| a * i + b * l + c, // |
| d * g + e * j, // |
| d * h + e * k, // |
| d * i + e * l + f, // |
| }; |
| }; |
| auto Scale = [](float x, float y) -> mat2x3 { return {x, 0, 0, 0, y, 0}; }; |
| auto ScaleVec = [&](vec2 v) -> mat2x3 { return Scale(v[0], v[1]); }; |
| auto Translate = [](float x, float y) -> mat2x3 { return mat2x3{1, 0, x, 0, 1, y}; }; |
| auto TranslateVec = [&](vec2 v) -> mat2x3 { return Translate(v[0], v[1]); }; |
| auto TransposeForWGSL = [](const mat2x3& m) -> std::array<float, 6> { |
| return {m[0], m[3], m[1], m[4], m[2], m[5]}; |
| }; |
| |
| // Vector operations |
| auto Add = [](const vec2& a, const vec2& b) -> vec2 { return {a[0] + b[0], a[1] + b[1]}; }; |
| auto Sub = [](const vec2& a, const vec2& b) -> vec2 { return {a[0] - b[0], a[1] - b[1]}; }; |
| auto Div = [](const vec2& a, const vec2& b) -> vec2 { return {a[0] / b[0], a[1] / b[1]}; }; |
| |
| // Extract all the relevant sizes as float to avoid extra casts in later computations. |
| Extent3D plane0Extent = descriptor->plane0->GetSingleSubresourceVirtualSize(); |
| Extent3D plane1Extent = {1, 1, 1}; |
| if (params.numPlanes == 2) { |
| plane1Extent = descriptor->plane1->GetSingleSubresourceVirtualSize(); |
| } |
| vec2 plane0Size = {static_cast<float>(plane0Extent.width), |
| static_cast<float>(plane0Extent.height)}; |
| vec2 plane1Size = {static_cast<float>(plane1Extent.width), |
| static_cast<float>(plane1Extent.height)}; |
| vec2 cropOrigin = {static_cast<float>(descriptor->cropOrigin.x), |
| static_cast<float>(descriptor->cropOrigin.y)}; |
| vec2 cropSize = {static_cast<float>(descriptor->cropSize.width), |
| static_cast<float>(descriptor->cropSize.height)}; |
| |
| // Offset the coordinates so the center texel is at the origin, so we can apply rotations and |
| // y-flips. After translation, coordinates range from [-0.5 .. +0.5] in both U and V. |
| mat2x3 sampleTransform = Translate(-0.5, -0.5); |
| |
| // The video frame metadata both rotation and mirroring information. The rotation happens before |
| // the mirroring when processing the video frame, so do the inverse order when converting UV |
| // coordinates. |
| if (descriptor->mirrored) { |
| sampleTransform = Mul(Scale(-1, 1), sampleTransform); |
| } |
| |
| // Apply rotations as needed for the sampling coordinate. This may also rotate the |
| // shader-apparent size of the texture. |
| std::array<uint32_t, 2> loadBounds = {descriptor->apparentSize.width - 1, |
| descriptor->apparentSize.height - 1}; |
| switch (descriptor->rotation) { |
| case wgpu::ExternalTextureRotation::Rotate0Degrees: |
| break; |
| case wgpu::ExternalTextureRotation::Rotate90Degrees: |
| std::swap(loadBounds[0], loadBounds[1]); |
| sampleTransform = Mul(mat2x3{0, +1, 0, // x' = y |
| -1, 0, 0}, // y' = -x |
| sampleTransform); |
| break; |
| case wgpu::ExternalTextureRotation::Rotate180Degrees: |
| sampleTransform = Mul(mat2x3{-1, 0, 0, // x' = -x |
| 0, -1, 0}, // y' = -y |
| sampleTransform); |
| break; |
| case wgpu::ExternalTextureRotation::Rotate270Degrees: |
| std::swap(loadBounds[0], loadBounds[1]); |
| sampleTransform = Mul(mat2x3{0, -1, 0, // x' = -y |
| +1, 0, 0}, // y' = x |
| sampleTransform); |
| break; |
| } |
| |
| // Offset the coordinates so the bottom-left texel is at origin. |
| // After translation, coordinates range from [0 .. 1] in both U and V. |
| sampleTransform = Mul(Translate(0.5, 0.5), sampleTransform); |
| |
| // Finally, scale and translate based on the crop rect. |
| vec2 rectScale = Div(cropSize, plane0Size); |
| vec2 rectOffset = Div(cropOrigin, plane0Size); |
| sampleTransform = Mul(TranslateVec(rectOffset), Mul(ScaleVec(rectScale), sampleTransform)); |
| |
| params.sampleTransform = TransposeForWGSL(sampleTransform); |
| |
| // Compute the load transformation matrix by using toTexels * sampleTransform * toNormalized |
| // Note that coords starts from 0 so the max value is size - 1. |
| { |
| mat2x3 toTexels = ScaleVec(Sub(plane0Size, {1.0f, 1.0f})); |
| mat2x3 toNormalized = Scale(1.0f / loadBounds[0], 1.0f / loadBounds[1]); |
| mat2x3 loadTransform = Mul(toTexels, Mul(sampleTransform, toNormalized)); |
| |
| params.loadTransform = TransposeForWGSL(loadTransform); |
| } |
| |
| // Compute the clamping for each plane individually: to avoid bleeding of OOB texels due to |
| // interpolation we need to offset by a half texel in, which depends on the size of the plane. |
| { |
| vec2 plane0HalfTexel = Div({0.5f, 0.5f}, plane0Size); |
| vec2 plane1HalfTexel = Div({0.5f, 0.5f}, plane1Size); |
| |
| params.samplePlane0RectMin = Add(rectOffset, plane0HalfTexel); |
| params.samplePlane1RectMin = Add(rectOffset, plane1HalfTexel); |
| params.samplePlane0RectMax = Sub(Add(rectOffset, rectScale), plane0HalfTexel); |
| params.samplePlane1RectMax = Sub(Add(rectOffset, rectScale), plane1HalfTexel); |
| } |
| |
| params.plane1CoordFactor = Div(plane1Size, plane0Size); |
| params.apparentSize = loadBounds; |
| |
| return params; |
| } |
| } // anonymous namespace |
| |
| ResultOrError<Ref<BufferBase>> MakeParamsBufferForSimpleView(DeviceBase* device, |
| Ref<TextureViewBase> textureView) { |
| const Extent3D textureSize = textureView->GetSingleSubresourceVirtualSize(); |
| std::array<float, 12> placeholderConstantArray; |
| |
| // Make a fake ExternalTextureDescriptor for the view that reuses the code computing uniform |
| // parameters passed to the shader. |
| ExternalTextureDescriptor desc = {}; |
| desc.plane0 = textureView.Get(); |
| desc.cropOrigin = {0, 0}; |
| desc.cropSize = {textureSize.width, textureSize.height}; |
| desc.apparentSize = {textureSize.width, textureSize.height}; |
| desc.doYuvToRgbConversionOnly = true; |
| desc.srcTransferFunctionParameters = placeholderConstantArray.data(); |
| desc.dstTransferFunctionParameters = placeholderConstantArray.data(); |
| desc.gamutConversionMatrix = placeholderConstantArray.data(); |
| |
| ExternalTextureParams params = ComputeExternalTextureParams(&desc); |
| return utils::CreateBufferFromData(device, "Dawn_Simple_Texture_View_Params_Buffer", |
| wgpu::BufferUsage::Uniform | wgpu::BufferUsage::CopyDst, |
| {params}); |
| } |
| |
| // static |
| ResultOrError<Ref<ExternalTextureBase>> ExternalTextureBase::Create( |
| DeviceBase* device, |
| const ExternalTextureDescriptor* descriptor) { |
| Ref<ExternalTextureBase> externalTexture = |
| AcquireRef(new ExternalTextureBase(device, descriptor)); |
| DAWN_TRY(externalTexture->Initialize(device, descriptor)); |
| return std::move(externalTexture); |
| } |
| |
| ExternalTextureBase::ExternalTextureBase(DeviceBase* device, |
| const ExternalTextureDescriptor* descriptor) |
| : ApiObjectBase(device, descriptor->label), mState(ExternalTextureState::Active) { |
| GetObjectTrackingList()->Track(this); |
| } |
| |
| // Error external texture cannot be used in bind group. |
| ExternalTextureBase::ExternalTextureBase(DeviceBase* device, |
| ObjectBase::ErrorTag tag, |
| StringView label) |
| : ApiObjectBase(device, tag, label), mState(ExternalTextureState::Destroyed) {} |
| |
| ExternalTextureBase::~ExternalTextureBase() = default; |
| |
| MaybeError ExternalTextureBase::Initialize(DeviceBase* device, |
| const ExternalTextureDescriptor* descriptor) { |
| // Store any passed in TextureViews associated with individual planes. |
| mTextureViews[0] = descriptor->plane0; |
| |
| if (descriptor->plane1) { |
| mTextureViews[1] = descriptor->plane1; |
| } else { |
| DAWN_TRY_ASSIGN(mTextureViews[1], |
| device->GetOrCreatePlaceholderTextureViewForExternalTexture()); |
| } |
| |
| // We must create a buffer to store parameters needed by a shader that operates on this |
| // external texture. |
| ExternalTextureParams params = ComputeExternalTextureParams(descriptor); |
| DAWN_TRY_ASSIGN(mParamsBuffer, |
| utils::CreateBufferFromData( |
| device, "Dawn_External_Texture_Params_Buffer", |
| wgpu::BufferUsage::Uniform | wgpu::BufferUsage::CopyDst, {params})); |
| |
| return {}; |
| } |
| |
| const std::array<Ref<TextureViewBase>, kMaxPlanesPerFormat>& ExternalTextureBase::GetTextureViews() |
| const { |
| return mTextureViews; |
| } |
| |
| MaybeError ExternalTextureBase::ValidateCanUseInSubmitNow() const { |
| DAWN_ASSERT(!IsError()); |
| DAWN_INVALID_IF(mState != ExternalTextureState::Active, |
| "External texture %s used in a submit is not active.", this); |
| |
| for (uint32_t i = 0; i < kMaxPlanesPerFormat; ++i) { |
| if (mTextureViews[i] != nullptr) { |
| DAWN_TRY_CONTEXT(mTextureViews[i]->GetTexture()->ValidateCanUseInSubmitNow(), |
| "Validate plane %u of %s can be used in a submit.", i, this); |
| } |
| } |
| return {}; |
| } |
| |
| MaybeError ExternalTextureBase::ValidateRefresh() { |
| DAWN_TRY(GetDevice()->ValidateObject(this)); |
| DAWN_INVALID_IF(mState == ExternalTextureState::Destroyed, "%s is destroyed.", this); |
| return {}; |
| } |
| |
| MaybeError ExternalTextureBase::ValidateExpire() { |
| DAWN_TRY(GetDevice()->ValidateObject(this)); |
| DAWN_INVALID_IF(mState != ExternalTextureState::Active, "%s is not active.", this); |
| return {}; |
| } |
| |
| void ExternalTextureBase::APIRefresh() { |
| if (GetDevice()->ConsumedError(ValidateRefresh(), "calling %s.Refresh()", this)) { |
| return; |
| } |
| mState = ExternalTextureState::Active; |
| } |
| |
| void ExternalTextureBase::APIExpire() { |
| if (GetDevice()->ConsumedError(ValidateExpire(), "calling %s.Expire()", this)) { |
| return; |
| } |
| mState = ExternalTextureState::Expired; |
| } |
| |
| void ExternalTextureBase::APIDestroy() { |
| Destroy(); |
| } |
| |
| void ExternalTextureBase::DestroyImpl() { |
| // TODO(crbug.com/dawn/831): DestroyImpl is called from two places. |
| // - It may be called if the texture is explicitly destroyed with APIDestroy. |
| // This case is NOT thread-safe and needs proper synchronization with other |
| // simultaneous uses of the texture. |
| // - It may be called when the last ref to the texture is dropped and the texture |
| // is implicitly destroyed. This case is thread-safe because there are no |
| // other threads using the texture since there are no other live refs. |
| mState = ExternalTextureState::Destroyed; |
| } |
| |
| // static |
| Ref<ExternalTextureBase> ExternalTextureBase::MakeError(DeviceBase* device, StringView label) { |
| return AcquireRef(new ExternalTextureBase(device, ObjectBase::kError, label)); |
| } |
| |
| BufferBase* ExternalTextureBase::GetParamsBuffer() const { |
| return mParamsBuffer.Get(); |
| } |
| |
| ObjectType ExternalTextureBase::GetType() const { |
| return ObjectType::ExternalTexture; |
| } |
| |
| } // namespace dawn::native |