| // Copyright 2020 The Dawn & Tint Authors |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // 1. Redistributions of source code must retain the above copyright notice, this |
| // list of conditions and the following disclaimer. |
| // |
| // 2. Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // |
| // 3. Neither the name of the copyright holder nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
| // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include <set> |
| |
| #include "gtest/gtest.h" |
| |
| #include "dawn/common/TypedInteger.h" |
| #include "dawn/common/ityp_bitset.h" |
| #include "dawn/native/Features_autogen.h" |
| |
| namespace dawn { |
| namespace { |
| |
| class ITypBitsetTest : public testing::Test { |
| protected: |
| using Key = TypedInteger<struct KeyT, size_t>; |
| using Bitset = ityp::bitset<Key, 9>; |
| using Bitset40 = ityp::bitset<Key, 40>; |
| |
| // Test that the expected bitset methods can be constexpr |
| struct ConstexprTest { |
| static constexpr Bitset kBitset = {1 << 0 | 1 << 3 | 1 << 7 | 1 << 8}; |
| |
| static_assert(kBitset[Key(0)] == true); |
| static_assert(kBitset[Key(1)] == false); |
| static_assert(kBitset[Key(2)] == false); |
| static_assert(kBitset[Key(3)] == true); |
| static_assert(kBitset[Key(4)] == false); |
| static_assert(kBitset[Key(5)] == false); |
| static_assert(kBitset[Key(6)] == false); |
| static_assert(kBitset[Key(7)] == true); |
| static_assert(kBitset[Key(8)] == true); |
| |
| static_assert(kBitset.size() == 9); |
| }; |
| |
| void ExpectBits(const Bitset& bits, std::set<size_t> indices) { |
| size_t mask = 0; |
| |
| for (size_t i = 0; i < bits.size(); ++i) { |
| if (indices.count(i) == 0) { |
| ASSERT_FALSE(bits[Key(i)]) << i; |
| ASSERT_FALSE(bits.test(Key(i))) << i; |
| } else { |
| mask |= (size_t(1) << i); |
| ASSERT_TRUE(bits[Key(i)]) << i; |
| ASSERT_TRUE(bits.test(Key(i))) << i; |
| } |
| } |
| |
| ASSERT_EQ(bits.to_ullong(), mask); |
| ASSERT_EQ(bits.to_ulong(), mask); |
| ASSERT_EQ(bits.count(), indices.size()); |
| ASSERT_EQ(bits.all(), indices.size() == bits.size()); |
| ASSERT_EQ(bits.any(), indices.size() != 0); |
| ASSERT_EQ(bits.none(), indices.size() == 0); |
| } |
| }; |
| |
| // Test that by default no bits are set |
| TEST_F(ITypBitsetTest, DefaultZero) { |
| Bitset bits; |
| ExpectBits(bits, {}); |
| } |
| |
| // Test the bitset can be initialized with a bitmask |
| TEST_F(ITypBitsetTest, InitializeByBits) { |
| Bitset bits = {1 << 1 | 1 << 2 | 1 << 7}; |
| ExpectBits(bits, {1, 2, 7}); |
| } |
| |
| // Test that bits can be set at an index and retrieved from the same index. |
| TEST_F(ITypBitsetTest, Indexing) { |
| Bitset bits; |
| ExpectBits(bits, {}); |
| |
| bits[Key(2)] = true; |
| bits[Key(4)] = false; |
| bits.set(Key(1)); |
| bits.set(Key(7), true); |
| bits.set(Key(8), false); |
| |
| ExpectBits(bits, {1, 2, 7}); |
| |
| bits.reset(Key(2)); |
| bits.reset(Key(7)); |
| ExpectBits(bits, {1}); |
| } |
| |
| // Test that bits can be flipped |
| TEST_F(ITypBitsetTest, Flip) { |
| Bitset bits = {1 << 1 | 1 << 2 | 1 << 7}; |
| ExpectBits(bits, {1, 2, 7}); |
| |
| bits.flip(Key(4)); |
| bits.flip(Key(1)); // false |
| bits.flip(Key(6)); |
| bits.flip(Key(5)); |
| ExpectBits(bits, {2, 4, 5, 6, 7}); |
| |
| bits.flip(); |
| ExpectBits(bits, {0, 1, 3, 8}); |
| |
| ExpectBits(~bits, {2, 4, 5, 6, 7}); |
| } |
| |
| // Test that all the bits can be set/reset. |
| TEST_F(ITypBitsetTest, SetResetAll) { |
| Bitset bits; |
| |
| bits.set(); |
| |
| ASSERT_EQ(bits.count(), 9u); |
| ASSERT_TRUE(bits.all()); |
| ASSERT_TRUE(bits.any()); |
| ASSERT_FALSE(bits.none()); |
| |
| for (Key i(0); i < Key(9); ++i) { |
| ASSERT_TRUE(bits[i]); |
| } |
| |
| bits.reset(); |
| |
| ASSERT_EQ(bits.count(), 0u); |
| ASSERT_FALSE(bits.all()); |
| ASSERT_FALSE(bits.any()); |
| ASSERT_TRUE(bits.none()); |
| |
| for (Key i(0); i < Key(9); ++i) { |
| ASSERT_FALSE(bits[i]); |
| } |
| } |
| |
| // Test And operations |
| TEST_F(ITypBitsetTest, And) { |
| Bitset bits = {1 << 1 | 1 << 2 | 1 << 7}; |
| ExpectBits(bits, {1, 2, 7}); |
| |
| Bitset bits2 = bits & Bitset{1 << 0 | 1 << 3 | 1 << 7}; |
| ExpectBits(bits2, {7}); |
| ExpectBits(bits, {1, 2, 7}); |
| |
| bits &= Bitset{1 << 1 | 1 << 6}; |
| ExpectBits(bits, {1}); |
| } |
| |
| // Test Or operations |
| TEST_F(ITypBitsetTest, Or) { |
| Bitset bits = {1 << 1 | 1 << 2 | 1 << 7}; |
| ExpectBits(bits, {1, 2, 7}); |
| |
| Bitset bits2 = bits | Bitset{1 << 0 | 1 << 3 | 1 << 7}; |
| ExpectBits(bits2, {0, 1, 2, 3, 7}); |
| ExpectBits(bits, {1, 2, 7}); |
| |
| bits |= Bitset{1 << 1 | 1 << 6}; |
| ExpectBits(bits, {1, 2, 6, 7}); |
| } |
| |
| // Test xor operations |
| TEST_F(ITypBitsetTest, Xor) { |
| Bitset bits = {1 << 1 | 1 << 2 | 1 << 7}; |
| ExpectBits(bits, {1, 2, 7}); |
| |
| Bitset bits2 = bits ^ Bitset { 1 << 0 | 1 << 3 | 1 << 7 }; |
| ExpectBits(bits2, {0, 1, 2, 3}); |
| ExpectBits(bits, {1, 2, 7}); |
| |
| bits ^= Bitset{1 << 1 | 1 << 6}; |
| ExpectBits(bits, {2, 6, 7}); |
| } |
| |
| // Testing the GetHighestBitIndexPlusOne function |
| TEST_F(ITypBitsetTest, GetHighestBitIndexPlusOne) { |
| // <= 32 bit |
| EXPECT_EQ(0u, static_cast<size_t>(GetHighestBitIndexPlusOne(Bitset(0b00)))); |
| EXPECT_EQ(1u, static_cast<size_t>(GetHighestBitIndexPlusOne(Bitset(0b01)))); |
| EXPECT_EQ(2u, static_cast<size_t>(GetHighestBitIndexPlusOne(Bitset(0b10)))); |
| EXPECT_EQ(2u, static_cast<size_t>(GetHighestBitIndexPlusOne(Bitset(0b11)))); |
| |
| EXPECT_EQ(3u, static_cast<size_t>(GetHighestBitIndexPlusOne(Bitset{1 << 2}))); |
| EXPECT_EQ(9u, static_cast<size_t>(GetHighestBitIndexPlusOne(Bitset{1 << 8}))); |
| EXPECT_EQ(9u, static_cast<size_t>(GetHighestBitIndexPlusOne(Bitset{1 << 8 | 1 << 2}))); |
| |
| // > 32 bit |
| EXPECT_EQ(0u, static_cast<size_t>(GetHighestBitIndexPlusOne(Bitset40(0b00)))); |
| EXPECT_EQ(1u, static_cast<size_t>(GetHighestBitIndexPlusOne(Bitset40(0b01)))); |
| EXPECT_EQ(2u, static_cast<size_t>(GetHighestBitIndexPlusOne(Bitset40(0b10)))); |
| EXPECT_EQ(2u, static_cast<size_t>(GetHighestBitIndexPlusOne(Bitset40(0b11)))); |
| |
| EXPECT_EQ(5u, static_cast<size_t>(GetHighestBitIndexPlusOne(Bitset40(0x10)))); |
| EXPECT_EQ(5u, static_cast<size_t>(GetHighestBitIndexPlusOne(Bitset40(0x1F)))); |
| EXPECT_EQ(16u, static_cast<size_t>(GetHighestBitIndexPlusOne(Bitset40(0xF000)))); |
| EXPECT_EQ(16u, static_cast<size_t>(GetHighestBitIndexPlusOne(Bitset40(0xFFFF)))); |
| EXPECT_EQ(32u, static_cast<size_t>(GetHighestBitIndexPlusOne(Bitset40(0xF0000000)))); |
| EXPECT_EQ(32u, static_cast<size_t>(GetHighestBitIndexPlusOne(Bitset40(0xFFFFFFFF)))); |
| EXPECT_EQ(36u, static_cast<size_t>(GetHighestBitIndexPlusOne(Bitset40(0xF00000000)))); |
| EXPECT_EQ(36u, static_cast<size_t>(GetHighestBitIndexPlusOne(Bitset40(0xFFFFFFFFF)))); |
| EXPECT_EQ(40u, static_cast<size_t>(GetHighestBitIndexPlusOne(Bitset40(0xF000000000)))); |
| EXPECT_EQ(40u, static_cast<size_t>(GetHighestBitIndexPlusOne(Bitset40(0xFFFFFFFFFF)))); |
| } |
| |
| #if defined(DAWN_ENABLE_ASSERTS) |
| // Name "*DeathTest" per https://google.github.io/googletest/advanced.html#death-test-naming |
| using ITypBitsetDeathTest = ITypBitsetTest; |
| |
| TEST_F(ITypBitsetDeathTest, OutOfBounds) { |
| auto test = [&](const auto bitsIntConst) { |
| // We use std::integral_constant to pass a constexpr argument to lambda |
| constexpr uint64_t bits = decltype(bitsIntConst)::value; |
| |
| constexpr uint64_t one = uint64_t{1}; |
| ityp::bitset<Key, bits>{0}; // Valid |
| ityp::bitset<Key, bits>{(one << bits) - 1}; // All valid bits set |
| EXPECT_DEATH((ityp::bitset<Key, bits>{one << bits}), ""); // Invalid lsb |
| EXPECT_DEATH((ityp::bitset<Key, bits>{one << 63}), ""); // Invalid msb |
| EXPECT_DEATH((ityp::bitset<Key, bits>{~((one << bits) - 1)}), ""); // All invalid bits |
| }; |
| |
| test(std::integral_constant<uint64_t, 1>{}); |
| test(std::integral_constant<uint64_t, 2>{}); |
| test(std::integral_constant<uint64_t, 9>{}); |
| test(std::integral_constant<uint64_t, 31>{}); |
| test(std::integral_constant<uint64_t, 32>{}); |
| test(std::integral_constant<uint64_t, 62>{}); |
| test(std::integral_constant<uint64_t, 63>{}); |
| } |
| #endif |
| |
| class ITypBitsetIteratorTest : public testing::Test { |
| protected: |
| using IntegerT = TypedInteger<struct Foo, uint32_t>; |
| ityp::bitset<IntegerT, 40> mStateBits; |
| |
| // For testing large bitsets (over 64 elements) |
| ityp::bitset<native::Feature, native::EnumCount<native::Feature>::value> mLargeStateBits; |
| }; |
| |
| // Simple iterator test. |
| TEST_F(ITypBitsetIteratorTest, Iterator) { |
| std::set<IntegerT> originalValues; |
| originalValues.insert(IntegerT(2)); |
| originalValues.insert(IntegerT(6)); |
| originalValues.insert(IntegerT(8)); |
| originalValues.insert(IntegerT(35)); |
| |
| for (IntegerT value : originalValues) { |
| mStateBits.set(value); |
| } |
| |
| std::set<IntegerT> readValues; |
| for (IntegerT bit : mStateBits) { |
| EXPECT_EQ(1u, originalValues.count(bit)); |
| EXPECT_EQ(0u, readValues.count(bit)); |
| readValues.insert(bit); |
| } |
| |
| EXPECT_EQ(originalValues.size(), readValues.size()); |
| } |
| |
| // Test an empty iterator. |
| TEST_F(ITypBitsetIteratorTest, EmptySet) { |
| // We don't use the FAIL gtest macro here since it returns immediately, |
| // causing an unreachable code warning in MSVC |
| bool sawBit = false; |
| for ([[maybe_unused]] IntegerT bit : mStateBits) { |
| sawBit = true; |
| } |
| EXPECT_FALSE(sawBit); |
| } |
| |
| // Test iterating a result of combining two bitsets. |
| TEST_F(ITypBitsetIteratorTest, NonLValueBitset) { |
| ityp::bitset<IntegerT, 40> otherBits; |
| |
| mStateBits.set(IntegerT(1)); |
| mStateBits.set(IntegerT(2)); |
| mStateBits.set(IntegerT(3)); |
| mStateBits.set(IntegerT(4)); |
| |
| otherBits.set(IntegerT(0)); |
| otherBits.set(IntegerT(1)); |
| otherBits.set(IntegerT(3)); |
| otherBits.set(IntegerT(5)); |
| |
| std::set<IntegerT> seenBits; |
| |
| for (IntegerT bit : mStateBits& otherBits) { |
| EXPECT_EQ(0u, seenBits.count(bit)); |
| seenBits.insert(bit); |
| EXPECT_TRUE(mStateBits[bit]); |
| EXPECT_TRUE(otherBits[bit]); |
| } |
| |
| EXPECT_EQ((mStateBits & otherBits).count(), seenBits.size()); |
| } |
| |
| // Simple iterator test with a large bitset. |
| TEST_F(ITypBitsetIteratorTest, Iterator_Large) { |
| std::set<native::Feature> originalValues; |
| originalValues.insert(native::Feature::Depth32FloatStencil8); |
| originalValues.insert(native::Feature::Subgroups); |
| originalValues.insert(native::Feature::TextureFormatsTier1); |
| originalValues.insert(native::Feature::MultiDrawIndirect); |
| |
| for (native::Feature value : originalValues) { |
| mLargeStateBits.set(value); |
| } |
| |
| std::set<native::Feature> readValues; |
| for (native::Feature bit : mLargeStateBits) { |
| EXPECT_EQ(1u, originalValues.count(bit)); |
| EXPECT_EQ(0u, readValues.count(bit)); |
| readValues.insert(bit); |
| } |
| |
| EXPECT_EQ(originalValues.size(), readValues.size()); |
| } |
| |
| // Test an empty iterator with a large bitset. |
| TEST_F(ITypBitsetIteratorTest, EmptySet_Large) { |
| // We don't use the FAIL gtest macro here since it returns immediately, |
| // causing an unreachable code warning in MSVC |
| bool sawBit = false; |
| for ([[maybe_unused]] native::Feature bit : mLargeStateBits) { |
| sawBit = true; |
| } |
| EXPECT_FALSE(sawBit); |
| } |
| |
| // Test iterating a result of combining two large bitsets. |
| TEST_F(ITypBitsetIteratorTest, NonLValueBitset_Large) { |
| ityp::bitset<native::Feature, native::EnumCount<native::Feature>::value> otherBits; |
| |
| mLargeStateBits.set(native::Feature::Depth32FloatStencil8); |
| mLargeStateBits.set(native::Feature::Subgroups); |
| mLargeStateBits.set(native::Feature::TextureFormatsTier1); |
| mLargeStateBits.set(native::Feature::MultiDrawIndirect); |
| |
| otherBits.set(native::Feature::ShaderF16); |
| otherBits.set(native::Feature::FramebufferFetch); |
| otherBits.set(native::Feature::StaticSamplers); |
| otherBits.set(native::Feature::SharedFenceEGLSync); |
| |
| std::set<native::Feature> seenBits; |
| |
| for (native::Feature bit : mLargeStateBits& otherBits) { |
| EXPECT_EQ(0u, seenBits.count(bit)); |
| seenBits.insert(bit); |
| EXPECT_TRUE(mLargeStateBits[bit]); |
| EXPECT_TRUE(otherBits[bit]); |
| } |
| |
| EXPECT_EQ((mLargeStateBits & otherBits).count(), seenBits.size()); |
| } |
| |
| class EnumBitSetIteratorTest : public testing::Test { |
| protected: |
| enum class TestEnum { A, B, C, D, E, F, G, H, I, J, EnumCount }; |
| |
| static constexpr size_t kEnumCount = static_cast<size_t>(TestEnum::EnumCount); |
| ityp::bitset<TestEnum, kEnumCount> mStateBits; |
| }; |
| |
| // Simple iterator test. |
| TEST_F(EnumBitSetIteratorTest, Iterator) { |
| std::set<TestEnum> originalValues; |
| originalValues.insert(TestEnum::B); |
| originalValues.insert(TestEnum::F); |
| originalValues.insert(TestEnum::C); |
| originalValues.insert(TestEnum::I); |
| |
| for (TestEnum value : originalValues) { |
| mStateBits.set(value); |
| } |
| |
| std::set<TestEnum> readValues; |
| for (TestEnum bit : mStateBits) { |
| EXPECT_EQ(1u, originalValues.count(bit)); |
| EXPECT_EQ(0u, readValues.count(bit)); |
| readValues.insert(bit); |
| } |
| |
| EXPECT_EQ(originalValues.size(), readValues.size()); |
| } |
| |
| // Test an empty iterator. |
| TEST_F(EnumBitSetIteratorTest, EmptySet) { |
| // We don't use the FAIL gtest macro here since it returns immediately, |
| // causing an unreachable code warning in MSVC |
| bool sawBit = false; |
| for ([[maybe_unused]] TestEnum bit : mStateBits) { |
| sawBit = true; |
| } |
| EXPECT_FALSE(sawBit); |
| } |
| |
| // Test iterating a result of combining two bitsets. |
| TEST_F(EnumBitSetIteratorTest, NonLValueBitset) { |
| ityp::bitset<TestEnum, kEnumCount> otherBits; |
| |
| mStateBits.set(TestEnum::B); |
| mStateBits.set(TestEnum::C); |
| mStateBits.set(TestEnum::D); |
| mStateBits.set(TestEnum::E); |
| |
| otherBits.set(TestEnum::A); |
| otherBits.set(TestEnum::B); |
| otherBits.set(TestEnum::D); |
| otherBits.set(TestEnum::F); |
| |
| std::set<TestEnum> seenBits; |
| |
| for (TestEnum bit : mStateBits& otherBits) { |
| EXPECT_EQ(0u, seenBits.count(bit)); |
| seenBits.insert(bit); |
| EXPECT_TRUE(mStateBits[bit]); |
| EXPECT_TRUE(otherBits[bit]); |
| } |
| |
| EXPECT_EQ((mStateBits & otherBits).count(), seenBits.size()); |
| } |
| } // anonymous namespace |
| } // namespace dawn |