tint->dawn: Shuffle source tree in preperation of merging repos

docs/    -> docs/tint/
fuzzers/ -> src/tint/fuzzers/
samples/ -> src/tint/cmd/
src/     -> src/tint/
test/    -> test/tint/

BUG=tint:1418,tint:1433

Change-Id: Id2aa79f989aef3245b80ef4aa37a27ff16cd700b
Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/80482
Kokoro: Kokoro <noreply+kokoro@google.com>
Reviewed-by: Ben Clayton <bclayton@google.com>
Commit-Queue: Ryan Harrison <rharrison@chromium.org>
diff --git a/src/tint/resolver/resolver.cc b/src/tint/resolver/resolver.cc
new file mode 100644
index 0000000..42f8cb1
--- /dev/null
+++ b/src/tint/resolver/resolver.cc
@@ -0,0 +1,2917 @@
+// Copyright 2020 The Tint Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//     http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "src/tint/resolver/resolver.h"
+
+#include <algorithm>
+#include <cmath>
+#include <iomanip>
+#include <limits>
+#include <utility>
+
+#include "src/tint/ast/alias.h"
+#include "src/tint/ast/array.h"
+#include "src/tint/ast/assignment_statement.h"
+#include "src/tint/ast/bitcast_expression.h"
+#include "src/tint/ast/break_statement.h"
+#include "src/tint/ast/call_statement.h"
+#include "src/tint/ast/continue_statement.h"
+#include "src/tint/ast/depth_texture.h"
+#include "src/tint/ast/disable_validation_attribute.h"
+#include "src/tint/ast/discard_statement.h"
+#include "src/tint/ast/fallthrough_statement.h"
+#include "src/tint/ast/for_loop_statement.h"
+#include "src/tint/ast/id_attribute.h"
+#include "src/tint/ast/if_statement.h"
+#include "src/tint/ast/internal_attribute.h"
+#include "src/tint/ast/interpolate_attribute.h"
+#include "src/tint/ast/loop_statement.h"
+#include "src/tint/ast/matrix.h"
+#include "src/tint/ast/pointer.h"
+#include "src/tint/ast/return_statement.h"
+#include "src/tint/ast/sampled_texture.h"
+#include "src/tint/ast/sampler.h"
+#include "src/tint/ast/storage_texture.h"
+#include "src/tint/ast/switch_statement.h"
+#include "src/tint/ast/traverse_expressions.h"
+#include "src/tint/ast/type_name.h"
+#include "src/tint/ast/unary_op_expression.h"
+#include "src/tint/ast/variable_decl_statement.h"
+#include "src/tint/ast/vector.h"
+#include "src/tint/ast/workgroup_attribute.h"
+#include "src/tint/sem/array.h"
+#include "src/tint/sem/atomic_type.h"
+#include "src/tint/sem/call.h"
+#include "src/tint/sem/depth_multisampled_texture_type.h"
+#include "src/tint/sem/depth_texture_type.h"
+#include "src/tint/sem/for_loop_statement.h"
+#include "src/tint/sem/function.h"
+#include "src/tint/sem/if_statement.h"
+#include "src/tint/sem/loop_statement.h"
+#include "src/tint/sem/member_accessor_expression.h"
+#include "src/tint/sem/module.h"
+#include "src/tint/sem/multisampled_texture_type.h"
+#include "src/tint/sem/pointer_type.h"
+#include "src/tint/sem/reference_type.h"
+#include "src/tint/sem/sampled_texture_type.h"
+#include "src/tint/sem/sampler_type.h"
+#include "src/tint/sem/statement.h"
+#include "src/tint/sem/storage_texture_type.h"
+#include "src/tint/sem/struct.h"
+#include "src/tint/sem/switch_statement.h"
+#include "src/tint/sem/type_constructor.h"
+#include "src/tint/sem/type_conversion.h"
+#include "src/tint/sem/variable.h"
+#include "src/tint/utils/defer.h"
+#include "src/tint/utils/math.h"
+#include "src/tint/utils/reverse.h"
+#include "src/tint/utils/scoped_assignment.h"
+#include "src/tint/utils/transform.h"
+
+namespace tint {
+namespace resolver {
+
+Resolver::Resolver(ProgramBuilder* builder)
+    : builder_(builder),
+      diagnostics_(builder->Diagnostics()),
+      builtin_table_(BuiltinTable::Create(*builder)) {}
+
+Resolver::~Resolver() = default;
+
+bool Resolver::Resolve() {
+  if (builder_->Diagnostics().contains_errors()) {
+    return false;
+  }
+
+  if (!DependencyGraph::Build(builder_->AST(), builder_->Symbols(),
+                              builder_->Diagnostics(), dependencies_)) {
+    return false;
+  }
+
+  // Create the semantic module
+  builder_->Sem().SetModule(
+      builder_->create<sem::Module>(dependencies_.ordered_globals));
+
+  bool result = ResolveInternal();
+
+  if (!result && !diagnostics_.contains_errors()) {
+    TINT_ICE(Resolver, diagnostics_)
+        << "resolving failed, but no error was raised";
+    return false;
+  }
+
+  return result;
+}
+
+bool Resolver::ResolveInternal() {
+  Mark(&builder_->AST());
+
+  // Process all module-scope declarations in dependency order.
+  for (auto* decl : dependencies_.ordered_globals) {
+    Mark(decl);
+    if (!Switch(
+            decl,                           //
+            [&](const ast::TypeDecl* td) {  //
+              return TypeDecl(td) != nullptr;
+            },
+            [&](const ast::Function* func) {
+              return Function(func) != nullptr;
+            },
+            [&](const ast::Variable* var) {
+              return GlobalVariable(var) != nullptr;
+            },
+            [&](Default) {
+              TINT_UNREACHABLE(Resolver, diagnostics_)
+                  << "unhandled global declaration: " << decl->TypeInfo().name;
+              return false;
+            })) {
+      return false;
+    }
+  }
+
+  AllocateOverridableConstantIds();
+
+  SetShadows();
+
+  if (!ValidatePipelineStages()) {
+    return false;
+  }
+
+  bool result = true;
+  for (auto* node : builder_->ASTNodes().Objects()) {
+    if (marked_.count(node) == 0) {
+      TINT_ICE(Resolver, diagnostics_) << "AST node '" << node->TypeInfo().name
+                                       << "' was not reached by the resolver\n"
+                                       << "At: " << node->source << "\n"
+                                       << "Pointer: " << node;
+      result = false;
+    }
+  }
+
+  return result;
+}
+
+sem::Type* Resolver::Type(const ast::Type* ty) {
+  Mark(ty);
+  auto* s = Switch(
+      ty,
+      [&](const ast::Void*) -> sem::Type* {
+        return builder_->create<sem::Void>();
+      },
+      [&](const ast::Bool*) -> sem::Type* {
+        return builder_->create<sem::Bool>();
+      },
+      [&](const ast::I32*) -> sem::Type* {
+        return builder_->create<sem::I32>();
+      },
+      [&](const ast::U32*) -> sem::Type* {
+        return builder_->create<sem::U32>();
+      },
+      [&](const ast::F32*) -> sem::Type* {
+        return builder_->create<sem::F32>();
+      },
+      [&](const ast::Vector* t) -> sem::Type* {
+        if (!t->type) {
+          AddError("missing vector element type", t->source.End());
+          return nullptr;
+        }
+        if (auto* el = Type(t->type)) {
+          if (auto* vector = builder_->create<sem::Vector>(el, t->width)) {
+            if (ValidateVector(vector, t->source)) {
+              return vector;
+            }
+          }
+        }
+        return nullptr;
+      },
+      [&](const ast::Matrix* t) -> sem::Type* {
+        if (!t->type) {
+          AddError("missing matrix element type", t->source.End());
+          return nullptr;
+        }
+        if (auto* el = Type(t->type)) {
+          if (auto* column_type = builder_->create<sem::Vector>(el, t->rows)) {
+            if (auto* matrix =
+                    builder_->create<sem::Matrix>(column_type, t->columns)) {
+              if (ValidateMatrix(matrix, t->source)) {
+                return matrix;
+              }
+            }
+          }
+        }
+        return nullptr;
+      },
+      [&](const ast::Array* t) -> sem::Type* { return Array(t); },
+      [&](const ast::Atomic* t) -> sem::Type* {
+        if (auto* el = Type(t->type)) {
+          auto* a = builder_->create<sem::Atomic>(el);
+          if (!ValidateAtomic(t, a)) {
+            return nullptr;
+          }
+          return a;
+        }
+        return nullptr;
+      },
+      [&](const ast::Pointer* t) -> sem::Type* {
+        if (auto* el = Type(t->type)) {
+          auto access = t->access;
+          if (access == ast::kUndefined) {
+            access = DefaultAccessForStorageClass(t->storage_class);
+          }
+          return builder_->create<sem::Pointer>(el, t->storage_class, access);
+        }
+        return nullptr;
+      },
+      [&](const ast::Sampler* t) -> sem::Type* {
+        return builder_->create<sem::Sampler>(t->kind);
+      },
+      [&](const ast::SampledTexture* t) -> sem::Type* {
+        if (auto* el = Type(t->type)) {
+          return builder_->create<sem::SampledTexture>(t->dim, el);
+        }
+        return nullptr;
+      },
+      [&](const ast::MultisampledTexture* t) -> sem::Type* {
+        if (auto* el = Type(t->type)) {
+          return builder_->create<sem::MultisampledTexture>(t->dim, el);
+        }
+        return nullptr;
+      },
+      [&](const ast::DepthTexture* t) -> sem::Type* {
+        return builder_->create<sem::DepthTexture>(t->dim);
+      },
+      [&](const ast::DepthMultisampledTexture* t) -> sem::Type* {
+        return builder_->create<sem::DepthMultisampledTexture>(t->dim);
+      },
+      [&](const ast::StorageTexture* t) -> sem::Type* {
+        if (auto* el = Type(t->type)) {
+          if (!ValidateStorageTexture(t)) {
+            return nullptr;
+          }
+          return builder_->create<sem::StorageTexture>(t->dim, t->format,
+                                                       t->access, el);
+        }
+        return nullptr;
+      },
+      [&](const ast::ExternalTexture*) -> sem::Type* {
+        return builder_->create<sem::ExternalTexture>();
+      },
+      [&](Default) -> sem::Type* {
+        auto* resolved = ResolvedSymbol(ty);
+        return Switch(
+            resolved,  //
+            [&](sem::Type* type) { return type; },
+            [&](sem::Variable* var) {
+              auto name =
+                  builder_->Symbols().NameFor(var->Declaration()->symbol);
+              AddError("cannot use variable '" + name + "' as type",
+                       ty->source);
+              AddNote("'" + name + "' declared here",
+                      var->Declaration()->source);
+              return nullptr;
+            },
+            [&](sem::Function* func) {
+              auto name =
+                  builder_->Symbols().NameFor(func->Declaration()->symbol);
+              AddError("cannot use function '" + name + "' as type",
+                       ty->source);
+              AddNote("'" + name + "' declared here",
+                      func->Declaration()->source);
+              return nullptr;
+            },
+            [&](Default) {
+              TINT_UNREACHABLE(Resolver, diagnostics_)
+                  << "Unhandled resolved type '"
+                  << (resolved ? resolved->TypeInfo().name : "<null>")
+                  << "' resolved from ast::Type '" << ty->TypeInfo().name
+                  << "'";
+              return nullptr;
+            });
+      });
+
+  if (s) {
+    builder_->Sem().Add(ty, s);
+  }
+  return s;
+}
+
+sem::Variable* Resolver::Variable(const ast::Variable* var,
+                                  VariableKind kind,
+                                  uint32_t index /* = 0 */) {
+  const sem::Type* storage_ty = nullptr;
+
+  // If the variable has a declared type, resolve it.
+  if (auto* ty = var->type) {
+    storage_ty = Type(ty);
+    if (!storage_ty) {
+      return nullptr;
+    }
+  }
+
+  const sem::Expression* rhs = nullptr;
+
+  // Does the variable have a constructor?
+  if (var->constructor) {
+    rhs = Expression(var->constructor);
+    if (!rhs) {
+      return nullptr;
+    }
+
+    // If the variable has no declared type, infer it from the RHS
+    if (!storage_ty) {
+      if (!var->is_const && kind == VariableKind::kGlobal) {
+        AddError("global var declaration must specify a type", var->source);
+        return nullptr;
+      }
+
+      storage_ty = rhs->Type()->UnwrapRef();  // Implicit load of RHS
+    }
+  } else if (var->is_const && !var->is_overridable &&
+             kind != VariableKind::kParameter) {
+    AddError("let declaration must have an initializer", var->source);
+    return nullptr;
+  } else if (!var->type) {
+    AddError(
+        (kind == VariableKind::kGlobal)
+            ? "module scope var declaration requires a type and initializer"
+            : "function scope var declaration requires a type or initializer",
+        var->source);
+    return nullptr;
+  }
+
+  if (!storage_ty) {
+    TINT_ICE(Resolver, diagnostics_)
+        << "failed to determine storage type for variable '" +
+               builder_->Symbols().NameFor(var->symbol) + "'\n"
+        << "Source: " << var->source;
+    return nullptr;
+  }
+
+  auto storage_class = var->declared_storage_class;
+  if (storage_class == ast::StorageClass::kNone && !var->is_const) {
+    // No declared storage class. Infer from usage / type.
+    if (kind == VariableKind::kLocal) {
+      storage_class = ast::StorageClass::kFunction;
+    } else if (storage_ty->UnwrapRef()->is_handle()) {
+      // https://gpuweb.github.io/gpuweb/wgsl/#module-scope-variables
+      // If the store type is a texture type or a sampler type, then the
+      // variable declaration must not have a storage class attribute. The
+      // storage class will always be handle.
+      storage_class = ast::StorageClass::kUniformConstant;
+    }
+  }
+
+  if (kind == VariableKind::kLocal && !var->is_const &&
+      storage_class != ast::StorageClass::kFunction &&
+      IsValidationEnabled(var->attributes,
+                          ast::DisabledValidation::kIgnoreStorageClass)) {
+    AddError("function variable has a non-function storage class", var->source);
+    return nullptr;
+  }
+
+  auto access = var->declared_access;
+  if (access == ast::Access::kUndefined) {
+    access = DefaultAccessForStorageClass(storage_class);
+  }
+
+  auto* var_ty = storage_ty;
+  if (!var->is_const) {
+    // Variable declaration. Unlike `let`, `var` has storage.
+    // Variables are always of a reference type to the declared storage type.
+    var_ty =
+        builder_->create<sem::Reference>(storage_ty, storage_class, access);
+  }
+
+  if (rhs && !ValidateVariableConstructorOrCast(var, storage_class, storage_ty,
+                                                rhs->Type())) {
+    return nullptr;
+  }
+
+  if (!ApplyStorageClassUsageToType(
+          storage_class, const_cast<sem::Type*>(var_ty), var->source)) {
+    AddNote(
+        std::string("while instantiating ") +
+            ((kind == VariableKind::kParameter) ? "parameter " : "variable ") +
+            builder_->Symbols().NameFor(var->symbol),
+        var->source);
+    return nullptr;
+  }
+
+  if (kind == VariableKind::kParameter) {
+    if (auto* ptr = var_ty->As<sem::Pointer>()) {
+      // For MSL, we push module-scope variables into the entry point as pointer
+      // parameters, so we also need to handle their store type.
+      if (!ApplyStorageClassUsageToType(
+              ptr->StorageClass(), const_cast<sem::Type*>(ptr->StoreType()),
+              var->source)) {
+        AddNote("while instantiating parameter " +
+                    builder_->Symbols().NameFor(var->symbol),
+                var->source);
+        return nullptr;
+      }
+    }
+  }
+
+  switch (kind) {
+    case VariableKind::kGlobal: {
+      sem::BindingPoint binding_point;
+      if (auto bp = var->BindingPoint()) {
+        binding_point = {bp.group->value, bp.binding->value};
+      }
+
+      bool has_const_val = rhs && var->is_const && !var->is_overridable;
+      auto* global = builder_->create<sem::GlobalVariable>(
+          var, var_ty, storage_class, access,
+          has_const_val ? rhs->ConstantValue() : sem::Constant{},
+          binding_point);
+
+      if (var->is_overridable) {
+        global->SetIsOverridable();
+        if (auto* id = ast::GetAttribute<ast::IdAttribute>(var->attributes)) {
+          global->SetConstantId(static_cast<uint16_t>(id->value));
+        }
+      }
+
+      global->SetConstructor(rhs);
+
+      builder_->Sem().Add(var, global);
+      return global;
+    }
+    case VariableKind::kLocal: {
+      auto* local = builder_->create<sem::LocalVariable>(
+          var, var_ty, storage_class, access, current_statement_,
+          (rhs && var->is_const) ? rhs->ConstantValue() : sem::Constant{});
+      builder_->Sem().Add(var, local);
+      local->SetConstructor(rhs);
+      return local;
+    }
+    case VariableKind::kParameter: {
+      auto* param = builder_->create<sem::Parameter>(var, index, var_ty,
+                                                     storage_class, access);
+      builder_->Sem().Add(var, param);
+      return param;
+    }
+  }
+
+  TINT_UNREACHABLE(Resolver, diagnostics_)
+      << "unhandled VariableKind " << static_cast<int>(kind);
+  return nullptr;
+}
+
+ast::Access Resolver::DefaultAccessForStorageClass(
+    ast::StorageClass storage_class) {
+  // https://gpuweb.github.io/gpuweb/wgsl/#storage-class
+  switch (storage_class) {
+    case ast::StorageClass::kStorage:
+    case ast::StorageClass::kUniform:
+    case ast::StorageClass::kUniformConstant:
+      return ast::Access::kRead;
+    default:
+      break;
+  }
+  return ast::Access::kReadWrite;
+}
+
+void Resolver::AllocateOverridableConstantIds() {
+  // The next pipeline constant ID to try to allocate.
+  uint16_t next_constant_id = 0;
+
+  // Allocate constant IDs in global declaration order, so that they are
+  // deterministic.
+  // TODO(crbug.com/tint/1192): If a transform changes the order or removes an
+  // unused constant, the allocation may change on the next Resolver pass.
+  for (auto* decl : builder_->AST().GlobalDeclarations()) {
+    auto* var = decl->As<ast::Variable>();
+    if (!var || !var->is_overridable) {
+      continue;
+    }
+
+    uint16_t constant_id;
+    if (auto* id_attr = ast::GetAttribute<ast::IdAttribute>(var->attributes)) {
+      constant_id = static_cast<uint16_t>(id_attr->value);
+    } else {
+      // No ID was specified, so allocate the next available ID.
+      constant_id = next_constant_id;
+      while (constant_ids_.count(constant_id)) {
+        if (constant_id == UINT16_MAX) {
+          TINT_ICE(Resolver, builder_->Diagnostics())
+              << "no more pipeline constant IDs available";
+          return;
+        }
+        constant_id++;
+      }
+      next_constant_id = constant_id + 1;
+    }
+
+    auto* sem = Sem<sem::GlobalVariable>(var);
+    const_cast<sem::GlobalVariable*>(sem)->SetConstantId(constant_id);
+  }
+}
+
+void Resolver::SetShadows() {
+  for (auto it : dependencies_.shadows) {
+    Switch(
+        Sem(it.first),  //
+        [&](sem::LocalVariable* local) { local->SetShadows(Sem(it.second)); },
+        [&](sem::Parameter* param) { param->SetShadows(Sem(it.second)); });
+  }
+}  // namespace resolver
+
+sem::GlobalVariable* Resolver::GlobalVariable(const ast::Variable* var) {
+  auto* sem = Variable(var, VariableKind::kGlobal);
+  if (!sem) {
+    return nullptr;
+  }
+
+  auto storage_class = sem->StorageClass();
+  if (!var->is_const && storage_class == ast::StorageClass::kNone) {
+    AddError("global variables must have a storage class", var->source);
+    return nullptr;
+  }
+  if (var->is_const && storage_class != ast::StorageClass::kNone) {
+    AddError("global constants shouldn't have a storage class", var->source);
+    return nullptr;
+  }
+
+  for (auto* attr : var->attributes) {
+    Mark(attr);
+
+    if (auto* id_attr = attr->As<ast::IdAttribute>()) {
+      // Track the constant IDs that are specified in the shader.
+      constant_ids_.emplace(id_attr->value, sem);
+    }
+  }
+
+  if (!ValidateNoDuplicateAttributes(var->attributes)) {
+    return nullptr;
+  }
+
+  if (!ValidateGlobalVariable(sem)) {
+    return nullptr;
+  }
+
+  // TODO(bclayton): Call this at the end of resolve on all uniform and storage
+  // referenced structs
+  if (!ValidateStorageClassLayout(sem)) {
+    return nullptr;
+  }
+
+  return sem->As<sem::GlobalVariable>();
+}
+
+sem::Function* Resolver::Function(const ast::Function* decl) {
+  uint32_t parameter_index = 0;
+  std::unordered_map<Symbol, Source> parameter_names;
+  std::vector<sem::Parameter*> parameters;
+
+  // Resolve all the parameters
+  for (auto* param : decl->params) {
+    Mark(param);
+
+    {  // Check the parameter name is unique for the function
+      auto emplaced = parameter_names.emplace(param->symbol, param->source);
+      if (!emplaced.second) {
+        auto name = builder_->Symbols().NameFor(param->symbol);
+        AddError("redefinition of parameter '" + name + "'", param->source);
+        AddNote("previous definition is here", emplaced.first->second);
+        return nullptr;
+      }
+    }
+
+    auto* var = As<sem::Parameter>(
+        Variable(param, VariableKind::kParameter, parameter_index++));
+    if (!var) {
+      return nullptr;
+    }
+
+    for (auto* attr : param->attributes) {
+      Mark(attr);
+    }
+    if (!ValidateNoDuplicateAttributes(param->attributes)) {
+      return nullptr;
+    }
+
+    parameters.emplace_back(var);
+
+    auto* var_ty = const_cast<sem::Type*>(var->Type());
+    if (auto* str = var_ty->As<sem::Struct>()) {
+      switch (decl->PipelineStage()) {
+        case ast::PipelineStage::kVertex:
+          str->AddUsage(sem::PipelineStageUsage::kVertexInput);
+          break;
+        case ast::PipelineStage::kFragment:
+          str->AddUsage(sem::PipelineStageUsage::kFragmentInput);
+          break;
+        case ast::PipelineStage::kCompute:
+          str->AddUsage(sem::PipelineStageUsage::kComputeInput);
+          break;
+        case ast::PipelineStage::kNone:
+          break;
+      }
+    }
+  }
+
+  // Resolve the return type
+  sem::Type* return_type = nullptr;
+  if (auto* ty = decl->return_type) {
+    return_type = Type(ty);
+    if (!return_type) {
+      return nullptr;
+    }
+  } else {
+    return_type = builder_->create<sem::Void>();
+  }
+
+  if (auto* str = return_type->As<sem::Struct>()) {
+    if (!ApplyStorageClassUsageToType(ast::StorageClass::kNone, str,
+                                      decl->source)) {
+      AddNote("while instantiating return type for " +
+                  builder_->Symbols().NameFor(decl->symbol),
+              decl->source);
+      return nullptr;
+    }
+
+    switch (decl->PipelineStage()) {
+      case ast::PipelineStage::kVertex:
+        str->AddUsage(sem::PipelineStageUsage::kVertexOutput);
+        break;
+      case ast::PipelineStage::kFragment:
+        str->AddUsage(sem::PipelineStageUsage::kFragmentOutput);
+        break;
+      case ast::PipelineStage::kCompute:
+        str->AddUsage(sem::PipelineStageUsage::kComputeOutput);
+        break;
+      case ast::PipelineStage::kNone:
+        break;
+    }
+  }
+
+  auto* func = builder_->create<sem::Function>(decl, return_type, parameters);
+  builder_->Sem().Add(decl, func);
+
+  TINT_SCOPED_ASSIGNMENT(current_function_, func);
+
+  if (!WorkgroupSize(decl)) {
+    return nullptr;
+  }
+
+  if (decl->IsEntryPoint()) {
+    entry_points_.emplace_back(func);
+  }
+
+  if (decl->body) {
+    Mark(decl->body);
+    if (current_compound_statement_) {
+      TINT_ICE(Resolver, diagnostics_)
+          << "Resolver::Function() called with a current compound statement";
+      return nullptr;
+    }
+    auto* body = StatementScope(
+        decl->body, builder_->create<sem::FunctionBlockStatement>(func),
+        [&] { return Statements(decl->body->statements); });
+    if (!body) {
+      return nullptr;
+    }
+    func->Behaviors() = body->Behaviors();
+    if (func->Behaviors().Contains(sem::Behavior::kReturn)) {
+      // https://www.w3.org/TR/WGSL/#behaviors-rules
+      // We assign a behavior to each function: it is its body’s behavior
+      // (treating the body as a regular statement), with any "Return" replaced
+      // by "Next".
+      func->Behaviors().Remove(sem::Behavior::kReturn);
+      func->Behaviors().Add(sem::Behavior::kNext);
+    }
+  }
+
+  for (auto* attr : decl->attributes) {
+    Mark(attr);
+  }
+  if (!ValidateNoDuplicateAttributes(decl->attributes)) {
+    return nullptr;
+  }
+
+  for (auto* attr : decl->return_type_attributes) {
+    Mark(attr);
+  }
+  if (!ValidateNoDuplicateAttributes(decl->return_type_attributes)) {
+    return nullptr;
+  }
+
+  if (!ValidateFunction(func)) {
+    return nullptr;
+  }
+
+  // If this is an entry point, mark all transitively called functions as being
+  // used by this entry point.
+  if (decl->IsEntryPoint()) {
+    for (auto* f : func->TransitivelyCalledFunctions()) {
+      const_cast<sem::Function*>(f)->AddAncestorEntryPoint(func);
+    }
+  }
+
+  return func;
+}
+
+bool Resolver::WorkgroupSize(const ast::Function* func) {
+  // Set work-group size defaults.
+  sem::WorkgroupSize ws;
+  for (int i = 0; i < 3; i++) {
+    ws[i].value = 1;
+    ws[i].overridable_const = nullptr;
+  }
+
+  auto* attr = ast::GetAttribute<ast::WorkgroupAttribute>(func->attributes);
+  if (!attr) {
+    return true;
+  }
+
+  auto values = attr->Values();
+  auto any_i32 = false;
+  auto any_u32 = false;
+  for (int i = 0; i < 3; i++) {
+    // Each argument to this attribute can either be a literal, an
+    // identifier for a module-scope constants, or nullptr if not specified.
+
+    auto* expr = values[i];
+    if (!expr) {
+      // Not specified, just use the default.
+      continue;
+    }
+
+    auto* expr_sem = Expression(expr);
+    if (!expr_sem) {
+      return false;
+    }
+
+    constexpr const char* kErrBadType =
+        "workgroup_size argument must be either literal or module-scope "
+        "constant of type i32 or u32";
+    constexpr const char* kErrInconsistentType =
+        "workgroup_size arguments must be of the same type, either i32 "
+        "or u32";
+
+    auto* ty = TypeOf(expr);
+    bool is_i32 = ty->UnwrapRef()->Is<sem::I32>();
+    bool is_u32 = ty->UnwrapRef()->Is<sem::U32>();
+    if (!is_i32 && !is_u32) {
+      AddError(kErrBadType, expr->source);
+      return false;
+    }
+
+    any_i32 = any_i32 || is_i32;
+    any_u32 = any_u32 || is_u32;
+    if (any_i32 && any_u32) {
+      AddError(kErrInconsistentType, expr->source);
+      return false;
+    }
+
+    sem::Constant value;
+
+    if (auto* user = Sem(expr)->As<sem::VariableUser>()) {
+      // We have an variable of a module-scope constant.
+      auto* decl = user->Variable()->Declaration();
+      if (!decl->is_const) {
+        AddError(kErrBadType, expr->source);
+        return false;
+      }
+      // Capture the constant if it is pipeline-overridable.
+      if (decl->is_overridable) {
+        ws[i].overridable_const = decl;
+      }
+
+      if (decl->constructor) {
+        value = Sem(decl->constructor)->ConstantValue();
+      } else {
+        // No constructor means this value must be overriden by the user.
+        ws[i].value = 0;
+        continue;
+      }
+    } else if (expr->Is<ast::LiteralExpression>()) {
+      value = Sem(expr)->ConstantValue();
+    } else {
+      AddError(
+          "workgroup_size argument must be either a literal or a "
+          "module-scope constant",
+          values[i]->source);
+      return false;
+    }
+
+    if (!value) {
+      TINT_ICE(Resolver, diagnostics_)
+          << "could not resolve constant workgroup_size constant value";
+      continue;
+    }
+    // Validate and set the default value for this dimension.
+    if (is_i32 ? value.Elements()[0].i32 < 1 : value.Elements()[0].u32 < 1) {
+      AddError("workgroup_size argument must be at least 1", values[i]->source);
+      return false;
+    }
+
+    ws[i].value = is_i32 ? static_cast<uint32_t>(value.Elements()[0].i32)
+                         : value.Elements()[0].u32;
+  }
+
+  current_function_->SetWorkgroupSize(std::move(ws));
+  return true;
+}
+
+bool Resolver::Statements(const ast::StatementList& stmts) {
+  sem::Behaviors behaviors{sem::Behavior::kNext};
+
+  bool reachable = true;
+  for (auto* stmt : stmts) {
+    Mark(stmt);
+    auto* sem = Statement(stmt);
+    if (!sem) {
+      return false;
+    }
+    // s1 s2:(B1∖{Next}) ∪ B2
+    sem->SetIsReachable(reachable);
+    if (reachable) {
+      behaviors = (behaviors - sem::Behavior::kNext) + sem->Behaviors();
+    }
+    reachable = reachable && sem->Behaviors().Contains(sem::Behavior::kNext);
+  }
+
+  current_statement_->Behaviors() = behaviors;
+
+  if (!ValidateStatements(stmts)) {
+    return false;
+  }
+
+  return true;
+}
+
+sem::Statement* Resolver::Statement(const ast::Statement* stmt) {
+  return Switch(
+      stmt,
+      // Compound statements. These create their own sem::CompoundStatement
+      // bindings.
+      [&](const ast::BlockStatement* b) -> sem::Statement* {
+        return BlockStatement(b);
+      },
+      [&](const ast::ForLoopStatement* l) -> sem::Statement* {
+        return ForLoopStatement(l);
+      },
+      [&](const ast::LoopStatement* l) -> sem::Statement* {
+        return LoopStatement(l);
+      },
+      [&](const ast::IfStatement* i) -> sem::Statement* {
+        return IfStatement(i);
+      },
+      [&](const ast::SwitchStatement* s) -> sem::Statement* {
+        return SwitchStatement(s);
+      },
+
+      // Non-Compound statements
+      [&](const ast::AssignmentStatement* a) -> sem::Statement* {
+        return AssignmentStatement(a);
+      },
+      [&](const ast::BreakStatement* b) -> sem::Statement* {
+        return BreakStatement(b);
+      },
+      [&](const ast::CallStatement* c) -> sem::Statement* {
+        return CallStatement(c);
+      },
+      [&](const ast::ContinueStatement* c) -> sem::Statement* {
+        return ContinueStatement(c);
+      },
+      [&](const ast::DiscardStatement* d) -> sem::Statement* {
+        return DiscardStatement(d);
+      },
+      [&](const ast::FallthroughStatement* f) -> sem::Statement* {
+        return FallthroughStatement(f);
+      },
+      [&](const ast::ReturnStatement* r) -> sem::Statement* {
+        return ReturnStatement(r);
+      },
+      [&](const ast::VariableDeclStatement* v) -> sem::Statement* {
+        return VariableDeclStatement(v);
+      },
+
+      // Error cases
+      [&](const ast::CaseStatement*) -> sem::Statement* {
+        AddError("case statement can only be used inside a switch statement",
+                 stmt->source);
+        return nullptr;
+      },
+      [&](const ast::ElseStatement*) -> sem::Statement* {
+        TINT_ICE(Resolver, diagnostics_)
+            << "Resolver::Statement() encountered an Else statement. Else "
+               "statements are embedded in If statements, so should never be "
+               "encountered as top-level statements";
+        return nullptr;
+      },
+      [&](Default) -> sem::Statement* {
+        AddError(
+            "unknown statement type: " + std::string(stmt->TypeInfo().name),
+            stmt->source);
+        return nullptr;
+      });
+}
+
+sem::CaseStatement* Resolver::CaseStatement(const ast::CaseStatement* stmt) {
+  auto* sem = builder_->create<sem::CaseStatement>(
+      stmt, current_compound_statement_, current_function_);
+  return StatementScope(stmt, sem, [&] {
+    for (auto* sel : stmt->selectors) {
+      Mark(sel);
+    }
+    Mark(stmt->body);
+    auto* body = BlockStatement(stmt->body);
+    if (!body) {
+      return false;
+    }
+    sem->SetBlock(body);
+    sem->Behaviors() = body->Behaviors();
+    return true;
+  });
+}
+
+sem::IfStatement* Resolver::IfStatement(const ast::IfStatement* stmt) {
+  auto* sem = builder_->create<sem::IfStatement>(
+      stmt, current_compound_statement_, current_function_);
+  return StatementScope(stmt, sem, [&] {
+    auto* cond = Expression(stmt->condition);
+    if (!cond) {
+      return false;
+    }
+    sem->SetCondition(cond);
+    sem->Behaviors() = cond->Behaviors();
+    sem->Behaviors().Remove(sem::Behavior::kNext);
+
+    Mark(stmt->body);
+    auto* body = builder_->create<sem::BlockStatement>(
+        stmt->body, current_compound_statement_, current_function_);
+    if (!StatementScope(stmt->body, body,
+                        [&] { return Statements(stmt->body->statements); })) {
+      return false;
+    }
+    sem->Behaviors().Add(body->Behaviors());
+
+    for (auto* else_stmt : stmt->else_statements) {
+      Mark(else_stmt);
+      auto* else_sem = ElseStatement(else_stmt);
+      if (!else_sem) {
+        return false;
+      }
+      sem->Behaviors().Add(else_sem->Behaviors());
+    }
+
+    if (stmt->else_statements.empty() ||
+        stmt->else_statements.back()->condition != nullptr) {
+      // https://www.w3.org/TR/WGSL/#behaviors-rules
+      // if statements without an else branch are treated as if they had an
+      // empty else branch (which adds Next to their behavior)
+      sem->Behaviors().Add(sem::Behavior::kNext);
+    }
+
+    return ValidateIfStatement(sem);
+  });
+}
+
+sem::ElseStatement* Resolver::ElseStatement(const ast::ElseStatement* stmt) {
+  auto* sem = builder_->create<sem::ElseStatement>(
+      stmt, current_compound_statement_->As<sem::IfStatement>(),
+      current_function_);
+  return StatementScope(stmt, sem, [&] {
+    if (auto* cond_expr = stmt->condition) {
+      auto* cond = Expression(cond_expr);
+      if (!cond) {
+        return false;
+      }
+      sem->SetCondition(cond);
+      // https://www.w3.org/TR/WGSL/#behaviors-rules
+      // if statements with else if branches are treated as if they were nested
+      // simple if/else statements
+      sem->Behaviors() = cond->Behaviors();
+    }
+    sem->Behaviors().Remove(sem::Behavior::kNext);
+
+    Mark(stmt->body);
+    auto* body = builder_->create<sem::BlockStatement>(
+        stmt->body, current_compound_statement_, current_function_);
+    if (!StatementScope(stmt->body, body,
+                        [&] { return Statements(stmt->body->statements); })) {
+      return false;
+    }
+    sem->Behaviors().Add(body->Behaviors());
+
+    return ValidateElseStatement(sem);
+  });
+}
+
+sem::BlockStatement* Resolver::BlockStatement(const ast::BlockStatement* stmt) {
+  auto* sem = builder_->create<sem::BlockStatement>(
+      stmt->As<ast::BlockStatement>(), current_compound_statement_,
+      current_function_);
+  return StatementScope(stmt, sem,
+                        [&] { return Statements(stmt->statements); });
+}
+
+sem::LoopStatement* Resolver::LoopStatement(const ast::LoopStatement* stmt) {
+  auto* sem = builder_->create<sem::LoopStatement>(
+      stmt, current_compound_statement_, current_function_);
+  return StatementScope(stmt, sem, [&] {
+    Mark(stmt->body);
+
+    auto* body = builder_->create<sem::LoopBlockStatement>(
+        stmt->body, current_compound_statement_, current_function_);
+    return StatementScope(stmt->body, body, [&] {
+      if (!Statements(stmt->body->statements)) {
+        return false;
+      }
+      auto& behaviors = sem->Behaviors();
+      behaviors = body->Behaviors();
+
+      if (stmt->continuing) {
+        Mark(stmt->continuing);
+        if (!stmt->continuing->Empty()) {
+          auto* continuing = StatementScope(
+              stmt->continuing,
+              builder_->create<sem::LoopContinuingBlockStatement>(
+                  stmt->continuing, current_compound_statement_,
+                  current_function_),
+              [&] { return Statements(stmt->continuing->statements); });
+          if (!continuing) {
+            return false;
+          }
+          behaviors.Add(continuing->Behaviors());
+        }
+      }
+
+      if (behaviors.Contains(sem::Behavior::kBreak)) {  // Does the loop exit?
+        behaviors.Add(sem::Behavior::kNext);
+      } else {
+        behaviors.Remove(sem::Behavior::kNext);
+      }
+      behaviors.Remove(sem::Behavior::kBreak, sem::Behavior::kContinue);
+
+      return ValidateLoopStatement(sem);
+    });
+  });
+}
+
+sem::ForLoopStatement* Resolver::ForLoopStatement(
+    const ast::ForLoopStatement* stmt) {
+  auto* sem = builder_->create<sem::ForLoopStatement>(
+      stmt, current_compound_statement_, current_function_);
+  return StatementScope(stmt, sem, [&] {
+    auto& behaviors = sem->Behaviors();
+    if (auto* initializer = stmt->initializer) {
+      Mark(initializer);
+      auto* init = Statement(initializer);
+      if (!init) {
+        return false;
+      }
+      behaviors.Add(init->Behaviors());
+    }
+
+    if (auto* cond_expr = stmt->condition) {
+      auto* cond = Expression(cond_expr);
+      if (!cond) {
+        return false;
+      }
+      sem->SetCondition(cond);
+      behaviors.Add(cond->Behaviors());
+    }
+
+    if (auto* continuing = stmt->continuing) {
+      Mark(continuing);
+      auto* cont = Statement(continuing);
+      if (!cont) {
+        return false;
+      }
+      behaviors.Add(cont->Behaviors());
+    }
+
+    Mark(stmt->body);
+
+    auto* body = builder_->create<sem::LoopBlockStatement>(
+        stmt->body, current_compound_statement_, current_function_);
+    if (!StatementScope(stmt->body, body,
+                        [&] { return Statements(stmt->body->statements); })) {
+      return false;
+    }
+
+    behaviors.Add(body->Behaviors());
+    if (stmt->condition ||
+        behaviors.Contains(sem::Behavior::kBreak)) {  // Does the loop exit?
+      behaviors.Add(sem::Behavior::kNext);
+    } else {
+      behaviors.Remove(sem::Behavior::kNext);
+    }
+    behaviors.Remove(sem::Behavior::kBreak, sem::Behavior::kContinue);
+
+    return ValidateForLoopStatement(sem);
+  });
+}
+
+sem::Expression* Resolver::Expression(const ast::Expression* root) {
+  std::vector<const ast::Expression*> sorted;
+  bool mark_failed = false;
+  if (!ast::TraverseExpressions<ast::TraverseOrder::RightToLeft>(
+          root, diagnostics_, [&](const ast::Expression* expr) {
+            if (!Mark(expr)) {
+              mark_failed = true;
+              return ast::TraverseAction::Stop;
+            }
+            sorted.emplace_back(expr);
+            return ast::TraverseAction::Descend;
+          })) {
+    return nullptr;
+  }
+
+  if (mark_failed) {
+    return nullptr;
+  }
+
+  for (auto* expr : utils::Reverse(sorted)) {
+    auto* sem_expr = Switch(
+        expr,
+        [&](const ast::IndexAccessorExpression* array) -> sem::Expression* {
+          return IndexAccessor(array);
+        },
+        [&](const ast::BinaryExpression* bin_op) -> sem::Expression* {
+          return Binary(bin_op);
+        },
+        [&](const ast::BitcastExpression* bitcast) -> sem::Expression* {
+          return Bitcast(bitcast);
+        },
+        [&](const ast::CallExpression* call) -> sem::Expression* {
+          return Call(call);
+        },
+        [&](const ast::IdentifierExpression* ident) -> sem::Expression* {
+          return Identifier(ident);
+        },
+        [&](const ast::LiteralExpression* literal) -> sem::Expression* {
+          return Literal(literal);
+        },
+        [&](const ast::MemberAccessorExpression* member) -> sem::Expression* {
+          return MemberAccessor(member);
+        },
+        [&](const ast::UnaryOpExpression* unary) -> sem::Expression* {
+          return UnaryOp(unary);
+        },
+        [&](const ast::PhonyExpression*) -> sem::Expression* {
+          return builder_->create<sem::Expression>(
+              expr, builder_->create<sem::Void>(), current_statement_,
+              sem::Constant{}, /* has_side_effects */ false);
+        },
+        [&](Default) {
+          TINT_ICE(Resolver, diagnostics_)
+              << "unhandled expression type: " << expr->TypeInfo().name;
+          return nullptr;
+        });
+    if (!sem_expr) {
+      return nullptr;
+    }
+
+    builder_->Sem().Add(expr, sem_expr);
+    if (expr == root) {
+      return sem_expr;
+    }
+  }
+
+  TINT_ICE(Resolver, diagnostics_) << "Expression() did not find root node";
+  return nullptr;
+}
+
+sem::Expression* Resolver::IndexAccessor(
+    const ast::IndexAccessorExpression* expr) {
+  auto* idx = Sem(expr->index);
+  auto* obj = Sem(expr->object);
+  auto* obj_raw_ty = obj->Type();
+  auto* obj_ty = obj_raw_ty->UnwrapRef();
+  auto* ty = Switch(
+      obj_ty,  //
+      [&](const sem::Array* arr) -> const sem::Type* {
+        return arr->ElemType();
+      },
+      [&](const sem::Vector* vec) -> const sem::Type* {  //
+        return vec->type();
+      },
+      [&](const sem::Matrix* mat) -> const sem::Type* {
+        return builder_->create<sem::Vector>(mat->type(), mat->rows());
+      },
+      [&](Default) -> const sem::Type* {
+        AddError("cannot index type '" + TypeNameOf(obj_ty) + "'",
+                 expr->source);
+        return nullptr;
+      });
+  if (ty == nullptr) {
+    return nullptr;
+  }
+
+  auto* idx_ty = idx->Type()->UnwrapRef();
+  if (!idx_ty->IsAnyOf<sem::I32, sem::U32>()) {
+    AddError("index must be of type 'i32' or 'u32', found: '" +
+                 TypeNameOf(idx_ty) + "'",
+             idx->Declaration()->source);
+    return nullptr;
+  }
+
+  // If we're extracting from a reference, we return a reference.
+  if (auto* ref = obj_raw_ty->As<sem::Reference>()) {
+    ty = builder_->create<sem::Reference>(ty, ref->StorageClass(),
+                                          ref->Access());
+  }
+
+  auto val = EvaluateConstantValue(expr, ty);
+  bool has_side_effects = idx->HasSideEffects() || obj->HasSideEffects();
+  auto* sem = builder_->create<sem::Expression>(expr, ty, current_statement_,
+                                                val, has_side_effects);
+  sem->Behaviors() = idx->Behaviors() + obj->Behaviors();
+  return sem;
+}
+
+sem::Expression* Resolver::Bitcast(const ast::BitcastExpression* expr) {
+  auto* inner = Sem(expr->expr);
+  auto* ty = Type(expr->type);
+  if (!ty) {
+    return nullptr;
+  }
+
+  auto val = EvaluateConstantValue(expr, ty);
+  auto* sem = builder_->create<sem::Expression>(expr, ty, current_statement_,
+                                                val, inner->HasSideEffects());
+
+  sem->Behaviors() = inner->Behaviors();
+
+  if (!ValidateBitcast(expr, ty)) {
+    return nullptr;
+  }
+
+  return sem;
+}
+
+sem::Call* Resolver::Call(const ast::CallExpression* expr) {
+  std::vector<const sem::Expression*> args(expr->args.size());
+  std::vector<const sem::Type*> arg_tys(args.size());
+  sem::Behaviors arg_behaviors;
+
+  // The element type of all the arguments. Nullptr if argument types are
+  // different.
+  const sem::Type* arg_el_ty = nullptr;
+
+  for (size_t i = 0; i < expr->args.size(); i++) {
+    auto* arg = Sem(expr->args[i]);
+    if (!arg) {
+      return nullptr;
+    }
+    args[i] = arg;
+    arg_tys[i] = args[i]->Type();
+    arg_behaviors.Add(arg->Behaviors());
+
+    // Determine the common argument element type
+    auto* el_ty = arg_tys[i]->UnwrapRef();
+    if (auto* vec = el_ty->As<sem::Vector>()) {
+      el_ty = vec->type();
+    } else if (auto* mat = el_ty->As<sem::Matrix>()) {
+      el_ty = mat->type();
+    }
+    if (i == 0) {
+      arg_el_ty = el_ty;
+    } else if (arg_el_ty != el_ty) {
+      arg_el_ty = nullptr;
+    }
+  }
+
+  arg_behaviors.Remove(sem::Behavior::kNext);
+
+  auto type_ctor_or_conv = [&](const sem::Type* ty) -> sem::Call* {
+    // The call has resolved to a type constructor or cast.
+    if (args.size() == 1) {
+      auto* target = ty;
+      auto* source = args[0]->Type()->UnwrapRef();
+      if ((source != target) &&  //
+          ((source->is_scalar() && target->is_scalar()) ||
+           (source->Is<sem::Vector>() && target->Is<sem::Vector>()) ||
+           (source->Is<sem::Matrix>() && target->Is<sem::Matrix>()))) {
+        // Note: Matrix types currently cannot be converted (the element type
+        // must only be f32). We implement this for the day we support other
+        // matrix element types.
+        return TypeConversion(expr, ty, args[0], arg_tys[0]);
+      }
+    }
+    return TypeConstructor(expr, ty, std::move(args), std::move(arg_tys));
+  };
+
+  // Resolve the target of the CallExpression to determine whether this is a
+  // function call, cast or type constructor expression.
+  if (expr->target.type) {
+    const sem::Type* ty = nullptr;
+
+    auto err_cannot_infer_el_ty = [&](std::string name) {
+      AddError(
+          "cannot infer " + name +
+              " element type, as constructor arguments have different types",
+          expr->source);
+      for (size_t i = 0; i < args.size(); i++) {
+        auto* arg = args[i];
+        AddNote("argument " + std::to_string(i) + " has type " +
+                    arg->Type()->FriendlyName(builder_->Symbols()),
+                arg->Declaration()->source);
+      }
+    };
+
+    if (!expr->args.empty()) {
+      // vecN() without explicit element type?
+      // Try to infer element type from args
+      if (auto* vec = expr->target.type->As<ast::Vector>()) {
+        if (!vec->type) {
+          if (!arg_el_ty) {
+            err_cannot_infer_el_ty("vector");
+            return nullptr;
+          }
+
+          Mark(vec);
+          auto* v = builder_->create<sem::Vector>(
+              arg_el_ty, static_cast<uint32_t>(vec->width));
+          if (!ValidateVector(v, vec->source)) {
+            return nullptr;
+          }
+          builder_->Sem().Add(vec, v);
+          ty = v;
+        }
+      }
+
+      // matNxM() without explicit element type?
+      // Try to infer element type from args
+      if (auto* mat = expr->target.type->As<ast::Matrix>()) {
+        if (!mat->type) {
+          if (!arg_el_ty) {
+            err_cannot_infer_el_ty("matrix");
+            return nullptr;
+          }
+
+          Mark(mat);
+          auto* column_type =
+              builder_->create<sem::Vector>(arg_el_ty, mat->rows);
+          auto* m = builder_->create<sem::Matrix>(column_type, mat->columns);
+          if (!ValidateMatrix(m, mat->source)) {
+            return nullptr;
+          }
+          builder_->Sem().Add(mat, m);
+          ty = m;
+        }
+      }
+    }
+
+    if (ty == nullptr) {
+      ty = Type(expr->target.type);
+      if (!ty) {
+        return nullptr;
+      }
+    }
+
+    return type_ctor_or_conv(ty);
+  }
+
+  auto* ident = expr->target.name;
+  Mark(ident);
+
+  auto* resolved = ResolvedSymbol(ident);
+  return Switch(
+      resolved,  //
+      [&](sem::Type* type) { return type_ctor_or_conv(type); },
+      [&](sem::Function* func) {
+        return FunctionCall(expr, func, std::move(args), arg_behaviors);
+      },
+      [&](sem::Variable* var) {
+        auto name = builder_->Symbols().NameFor(var->Declaration()->symbol);
+        AddError("cannot call variable '" + name + "'", ident->source);
+        AddNote("'" + name + "' declared here", var->Declaration()->source);
+        return nullptr;
+      },
+      [&](Default) -> sem::Call* {
+        auto name = builder_->Symbols().NameFor(ident->symbol);
+        auto builtin_type = sem::ParseBuiltinType(name);
+        if (builtin_type != sem::BuiltinType::kNone) {
+          return BuiltinCall(expr, builtin_type, std::move(args),
+                             std::move(arg_tys));
+        }
+
+        TINT_ICE(Resolver, diagnostics_)
+            << expr->source << " unresolved CallExpression target:\n"
+            << "resolved: " << (resolved ? resolved->TypeInfo().name : "<null>")
+            << "\n"
+            << "name: " << builder_->Symbols().NameFor(ident->symbol);
+        return nullptr;
+      });
+}
+
+sem::Call* Resolver::BuiltinCall(const ast::CallExpression* expr,
+                                 sem::BuiltinType builtin_type,
+                                 const std::vector<const sem::Expression*> args,
+                                 const std::vector<const sem::Type*> arg_tys) {
+  auto* builtin =
+      builtin_table_->Lookup(builtin_type, std::move(arg_tys), expr->source);
+  if (!builtin) {
+    return nullptr;
+  }
+
+  if (builtin->IsDeprecated()) {
+    AddWarning("use of deprecated builtin", expr->source);
+  }
+
+  bool has_side_effects = builtin->HasSideEffects() ||
+                          std::any_of(args.begin(), args.end(), [](auto* e) {
+                            return e->HasSideEffects();
+                          });
+  auto* call = builder_->create<sem::Call>(expr, builtin, std::move(args),
+                                           current_statement_, sem::Constant{},
+                                           has_side_effects);
+
+  current_function_->AddDirectlyCalledBuiltin(builtin);
+
+  if (IsTextureBuiltin(builtin_type)) {
+    if (!ValidateTextureBuiltinFunction(call)) {
+      return nullptr;
+    }
+    // Collect a texture/sampler pair for this builtin.
+    const auto& signature = builtin->Signature();
+    int texture_index = signature.IndexOf(sem::ParameterUsage::kTexture);
+    if (texture_index == -1) {
+      TINT_ICE(Resolver, diagnostics_)
+          << "texture builtin without texture parameter";
+    }
+
+    auto* texture = args[texture_index]->As<sem::VariableUser>()->Variable();
+    if (!texture->Type()->UnwrapRef()->Is<sem::StorageTexture>()) {
+      int sampler_index = signature.IndexOf(sem::ParameterUsage::kSampler);
+      const sem::Variable* sampler =
+          sampler_index != -1
+              ? args[sampler_index]->As<sem::VariableUser>()->Variable()
+              : nullptr;
+      current_function_->AddTextureSamplerPair(texture, sampler);
+    }
+  }
+
+  if (!ValidateBuiltinCall(call)) {
+    return nullptr;
+  }
+
+  current_function_->AddDirectCall(call);
+
+  return call;
+}
+
+sem::Call* Resolver::FunctionCall(
+    const ast::CallExpression* expr,
+    sem::Function* target,
+    const std::vector<const sem::Expression*> args,
+    sem::Behaviors arg_behaviors) {
+  auto sym = expr->target.name->symbol;
+  auto name = builder_->Symbols().NameFor(sym);
+
+  // TODO(crbug.com/tint/1420): For now, assume all function calls have side
+  // effects.
+  bool has_side_effects = true;
+  auto* call = builder_->create<sem::Call>(expr, target, std::move(args),
+                                           current_statement_, sem::Constant{},
+                                           has_side_effects);
+
+  if (current_function_) {
+    // Note: Requires called functions to be resolved first.
+    // This is currently guaranteed as functions must be declared before
+    // use.
+    current_function_->AddTransitivelyCalledFunction(target);
+    current_function_->AddDirectCall(call);
+    for (auto* transitive_call : target->TransitivelyCalledFunctions()) {
+      current_function_->AddTransitivelyCalledFunction(transitive_call);
+    }
+
+    // We inherit any referenced variables from the callee.
+    for (auto* var : target->TransitivelyReferencedGlobals()) {
+      current_function_->AddTransitivelyReferencedGlobal(var);
+    }
+
+    // Map all texture/sampler pairs from the target function to the
+    // current function. These can only be global or parameter
+    // variables. Resolve any parameter variables to the corresponding
+    // argument passed to the current function. Leave global variables
+    // as-is. Then add the mapped pair to the current function's list of
+    // texture/sampler pairs.
+    for (sem::VariablePair pair : target->TextureSamplerPairs()) {
+      const sem::Variable* texture = pair.first;
+      const sem::Variable* sampler = pair.second;
+      if (auto* param = texture->As<sem::Parameter>()) {
+        texture = args[param->Index()]->As<sem::VariableUser>()->Variable();
+      }
+      if (sampler) {
+        if (auto* param = sampler->As<sem::Parameter>()) {
+          sampler = args[param->Index()]->As<sem::VariableUser>()->Variable();
+        }
+      }
+      current_function_->AddTextureSamplerPair(texture, sampler);
+    }
+  }
+
+  target->AddCallSite(call);
+
+  call->Behaviors() = arg_behaviors + target->Behaviors();
+
+  if (!ValidateFunctionCall(call)) {
+    return nullptr;
+  }
+
+  return call;
+}
+
+sem::Call* Resolver::TypeConversion(const ast::CallExpression* expr,
+                                    const sem::Type* target,
+                                    const sem::Expression* arg,
+                                    const sem::Type* source) {
+  // It is not valid to have a type-cast call expression inside a call
+  // statement.
+  if (IsCallStatement(expr)) {
+    AddError("type cast evaluated but not used", expr->source);
+    return nullptr;
+  }
+
+  auto* call_target = utils::GetOrCreate(
+      type_conversions_, TypeConversionSig{target, source},
+      [&]() -> sem::TypeConversion* {
+        // Now that the argument types have been determined, make sure that
+        // they obey the conversion rules laid out in
+        // https://gpuweb.github.io/gpuweb/wgsl/#conversion-expr.
+        bool ok = Switch(
+            target,
+            [&](const sem::Vector* vec_type) {
+              return ValidateVectorConstructorOrCast(expr, vec_type);
+            },
+            [&](const sem::Matrix* mat_type) {
+              // Note: Matrix types currently cannot be converted (the element
+              // type must only be f32). We implement this for the day we
+              // support other matrix element types.
+              return ValidateMatrixConstructorOrCast(expr, mat_type);
+            },
+            [&](const sem::Array* arr_type) {
+              return ValidateArrayConstructorOrCast(expr, arr_type);
+            },
+            [&](const sem::Struct* struct_type) {
+              return ValidateStructureConstructorOrCast(expr, struct_type);
+            },
+            [&](Default) {
+              if (target->is_scalar()) {
+                return ValidateScalarConstructorOrCast(expr, target);
+              }
+              AddError("type is not constructible", expr->source);
+              return false;
+            });
+        if (!ok) {
+          return nullptr;
+        }
+
+        auto* param = builder_->create<sem::Parameter>(
+            nullptr,                   // declaration
+            0,                         // index
+            source->UnwrapRef(),       // type
+            ast::StorageClass::kNone,  // storage_class
+            ast::Access::kUndefined);  // access
+        return builder_->create<sem::TypeConversion>(target, param);
+      });
+
+  if (!call_target) {
+    return nullptr;
+  }
+
+  auto val = EvaluateConstantValue(expr, target);
+  bool has_side_effects = arg->HasSideEffects();
+  return builder_->create<sem::Call>(expr, call_target,
+                                     std::vector<const sem::Expression*>{arg},
+                                     current_statement_, val, has_side_effects);
+}
+
+sem::Call* Resolver::TypeConstructor(
+    const ast::CallExpression* expr,
+    const sem::Type* ty,
+    const std::vector<const sem::Expression*> args,
+    const std::vector<const sem::Type*> arg_tys) {
+  // It is not valid to have a type-constructor call expression as a call
+  // statement.
+  if (IsCallStatement(expr)) {
+    AddError("type constructor evaluated but not used", expr->source);
+    return nullptr;
+  }
+
+  auto* call_target = utils::GetOrCreate(
+      type_ctors_, TypeConstructorSig{ty, arg_tys},
+      [&]() -> sem::TypeConstructor* {
+        // Now that the argument types have been determined, make sure that
+        // they obey the constructor type rules laid out in
+        // https://gpuweb.github.io/gpuweb/wgsl/#type-constructor-expr.
+        bool ok = Switch(
+            ty,
+            [&](const sem::Vector* vec_type) {
+              return ValidateVectorConstructorOrCast(expr, vec_type);
+            },
+            [&](const sem::Matrix* mat_type) {
+              return ValidateMatrixConstructorOrCast(expr, mat_type);
+            },
+            [&](const sem::Array* arr_type) {
+              return ValidateArrayConstructorOrCast(expr, arr_type);
+            },
+            [&](const sem::Struct* struct_type) {
+              return ValidateStructureConstructorOrCast(expr, struct_type);
+            },
+            [&](Default) {
+              if (ty->is_scalar()) {
+                return ValidateScalarConstructorOrCast(expr, ty);
+              }
+              AddError("type is not constructible", expr->source);
+              return false;
+            });
+        if (!ok) {
+          return nullptr;
+        }
+
+        return builder_->create<sem::TypeConstructor>(
+            ty, utils::Transform(
+                    arg_tys,
+                    [&](const sem::Type* t, size_t i) -> const sem::Parameter* {
+                      return builder_->create<sem::Parameter>(
+                          nullptr,                   // declaration
+                          static_cast<uint32_t>(i),  // index
+                          t->UnwrapRef(),            // type
+                          ast::StorageClass::kNone,  // storage_class
+                          ast::Access::kUndefined);  // access
+                    }));
+      });
+
+  if (!call_target) {
+    return nullptr;
+  }
+
+  auto val = EvaluateConstantValue(expr, ty);
+  bool has_side_effects = std::any_of(
+      args.begin(), args.end(), [](auto* e) { return e->HasSideEffects(); });
+  return builder_->create<sem::Call>(expr, call_target, std::move(args),
+                                     current_statement_, val, has_side_effects);
+}
+
+sem::Expression* Resolver::Literal(const ast::LiteralExpression* literal) {
+  auto* ty = TypeOf(literal);
+  if (!ty) {
+    return nullptr;
+  }
+
+  auto val = EvaluateConstantValue(literal, ty);
+  return builder_->create<sem::Expression>(literal, ty, current_statement_, val,
+                                           /* has_side_effects */ false);
+}
+
+sem::Expression* Resolver::Identifier(const ast::IdentifierExpression* expr) {
+  auto symbol = expr->symbol;
+  auto* resolved = ResolvedSymbol(expr);
+  if (auto* var = As<sem::Variable>(resolved)) {
+    auto* user =
+        builder_->create<sem::VariableUser>(expr, current_statement_, var);
+
+    if (current_statement_) {
+      // If identifier is part of a loop continuing block, make sure it
+      // doesn't refer to a variable that is bypassed by a continue statement
+      // in the loop's body block.
+      if (auto* continuing_block =
+              current_statement_
+                  ->FindFirstParent<sem::LoopContinuingBlockStatement>()) {
+        auto* loop_block =
+            continuing_block->FindFirstParent<sem::LoopBlockStatement>();
+        if (loop_block->FirstContinue()) {
+          auto& decls = loop_block->Decls();
+          // If our identifier is in loop_block->decls, make sure its index is
+          // less than first_continue
+          auto iter =
+              std::find_if(decls.begin(), decls.end(),
+                           [&symbol](auto* v) { return v->symbol == symbol; });
+          if (iter != decls.end()) {
+            auto var_decl_index =
+                static_cast<size_t>(std::distance(decls.begin(), iter));
+            if (var_decl_index >= loop_block->NumDeclsAtFirstContinue()) {
+              AddError("continue statement bypasses declaration of '" +
+                           builder_->Symbols().NameFor(symbol) + "'",
+                       loop_block->FirstContinue()->source);
+              AddNote("identifier '" + builder_->Symbols().NameFor(symbol) +
+                          "' declared here",
+                      (*iter)->source);
+              AddNote("identifier '" + builder_->Symbols().NameFor(symbol) +
+                          "' referenced in continuing block here",
+                      expr->source);
+              return nullptr;
+            }
+          }
+        }
+      }
+    }
+
+    if (current_function_) {
+      if (auto* global = var->As<sem::GlobalVariable>()) {
+        current_function_->AddDirectlyReferencedGlobal(global);
+      }
+    }
+
+    var->AddUser(user);
+    return user;
+  }
+
+  if (Is<sem::Function>(resolved)) {
+    AddError("missing '(' for function call", expr->source.End());
+    return nullptr;
+  }
+
+  if (IsBuiltin(symbol)) {
+    AddError("missing '(' for builtin call", expr->source.End());
+    return nullptr;
+  }
+
+  if (resolved->Is<sem::Type>()) {
+    AddError("missing '(' for type constructor or cast", expr->source.End());
+    return nullptr;
+  }
+
+  TINT_ICE(Resolver, diagnostics_)
+      << expr->source << " unresolved identifier:\n"
+      << "resolved: " << (resolved ? resolved->TypeInfo().name : "<null>")
+      << "\n"
+      << "name: " << builder_->Symbols().NameFor(symbol);
+  return nullptr;
+}
+
+sem::Expression* Resolver::MemberAccessor(
+    const ast::MemberAccessorExpression* expr) {
+  auto* structure = TypeOf(expr->structure);
+  auto* storage_ty = structure->UnwrapRef();
+
+  const sem::Type* ret = nullptr;
+  std::vector<uint32_t> swizzle;
+
+  if (auto* str = storage_ty->As<sem::Struct>()) {
+    Mark(expr->member);
+    auto symbol = expr->member->symbol;
+
+    const sem::StructMember* member = nullptr;
+    for (auto* m : str->Members()) {
+      if (m->Name() == symbol) {
+        ret = m->Type();
+        member = m;
+        break;
+      }
+    }
+
+    if (ret == nullptr) {
+      AddError(
+          "struct member " + builder_->Symbols().NameFor(symbol) + " not found",
+          expr->source);
+      return nullptr;
+    }
+
+    // If we're extracting from a reference, we return a reference.
+    if (auto* ref = structure->As<sem::Reference>()) {
+      ret = builder_->create<sem::Reference>(ret, ref->StorageClass(),
+                                             ref->Access());
+    }
+
+    // Structure may be a side-effecting expression (e.g. function call).
+    auto* sem_structure = Sem(expr->structure);
+    bool has_side_effects = sem_structure && sem_structure->HasSideEffects();
+
+    return builder_->create<sem::StructMemberAccess>(
+        expr, ret, current_statement_, member, has_side_effects);
+  }
+
+  if (auto* vec = storage_ty->As<sem::Vector>()) {
+    Mark(expr->member);
+    std::string s = builder_->Symbols().NameFor(expr->member->symbol);
+    auto size = s.size();
+    swizzle.reserve(s.size());
+
+    for (auto c : s) {
+      switch (c) {
+        case 'x':
+        case 'r':
+          swizzle.emplace_back(0);
+          break;
+        case 'y':
+        case 'g':
+          swizzle.emplace_back(1);
+          break;
+        case 'z':
+        case 'b':
+          swizzle.emplace_back(2);
+          break;
+        case 'w':
+        case 'a':
+          swizzle.emplace_back(3);
+          break;
+        default:
+          AddError("invalid vector swizzle character",
+                   expr->member->source.Begin() + swizzle.size());
+          return nullptr;
+      }
+
+      if (swizzle.back() >= vec->Width()) {
+        AddError("invalid vector swizzle member", expr->member->source);
+        return nullptr;
+      }
+    }
+
+    if (size < 1 || size > 4) {
+      AddError("invalid vector swizzle size", expr->member->source);
+      return nullptr;
+    }
+
+    // All characters are valid, check if they're being mixed
+    auto is_rgba = [](char c) {
+      return c == 'r' || c == 'g' || c == 'b' || c == 'a';
+    };
+    auto is_xyzw = [](char c) {
+      return c == 'x' || c == 'y' || c == 'z' || c == 'w';
+    };
+    if (!std::all_of(s.begin(), s.end(), is_rgba) &&
+        !std::all_of(s.begin(), s.end(), is_xyzw)) {
+      AddError("invalid mixing of vector swizzle characters rgba with xyzw",
+               expr->member->source);
+      return nullptr;
+    }
+
+    if (size == 1) {
+      // A single element swizzle is just the type of the vector.
+      ret = vec->type();
+      // If we're extracting from a reference, we return a reference.
+      if (auto* ref = structure->As<sem::Reference>()) {
+        ret = builder_->create<sem::Reference>(ret, ref->StorageClass(),
+                                               ref->Access());
+      }
+    } else {
+      // The vector will have a number of components equal to the length of
+      // the swizzle.
+      ret = builder_->create<sem::Vector>(vec->type(),
+                                          static_cast<uint32_t>(size));
+    }
+    return builder_->create<sem::Swizzle>(expr, ret, current_statement_,
+                                          std::move(swizzle));
+  }
+
+  AddError(
+      "invalid member accessor expression. Expected vector or struct, got '" +
+          TypeNameOf(storage_ty) + "'",
+      expr->structure->source);
+  return nullptr;
+}
+
+sem::Expression* Resolver::Binary(const ast::BinaryExpression* expr) {
+  using Bool = sem::Bool;
+  using F32 = sem::F32;
+  using I32 = sem::I32;
+  using U32 = sem::U32;
+  using Matrix = sem::Matrix;
+  using Vector = sem::Vector;
+
+  auto* lhs = Sem(expr->lhs);
+  auto* rhs = Sem(expr->rhs);
+
+  auto* lhs_ty = lhs->Type()->UnwrapRef();
+  auto* rhs_ty = rhs->Type()->UnwrapRef();
+
+  auto* lhs_vec = lhs_ty->As<Vector>();
+  auto* lhs_vec_elem_type = lhs_vec ? lhs_vec->type() : nullptr;
+  auto* rhs_vec = rhs_ty->As<Vector>();
+  auto* rhs_vec_elem_type = rhs_vec ? rhs_vec->type() : nullptr;
+
+  const bool matching_vec_elem_types =
+      lhs_vec_elem_type && rhs_vec_elem_type &&
+      (lhs_vec_elem_type == rhs_vec_elem_type) &&
+      (lhs_vec->Width() == rhs_vec->Width());
+
+  const bool matching_types = matching_vec_elem_types || (lhs_ty == rhs_ty);
+
+  auto build = [&](const sem::Type* ty) {
+    auto val = EvaluateConstantValue(expr, ty);
+    bool has_side_effects = lhs->HasSideEffects() || rhs->HasSideEffects();
+    auto* sem = builder_->create<sem::Expression>(expr, ty, current_statement_,
+                                                  val, has_side_effects);
+    sem->Behaviors() = lhs->Behaviors() + rhs->Behaviors();
+    return sem;
+  };
+
+  // Binary logical expressions
+  if (expr->IsLogicalAnd() || expr->IsLogicalOr()) {
+    if (matching_types && lhs_ty->Is<Bool>()) {
+      return build(lhs_ty);
+    }
+  }
+  if (expr->IsOr() || expr->IsAnd()) {
+    if (matching_types && lhs_ty->Is<Bool>()) {
+      return build(lhs_ty);
+    }
+    if (matching_types && lhs_vec_elem_type && lhs_vec_elem_type->Is<Bool>()) {
+      return build(lhs_ty);
+    }
+  }
+
+  // Arithmetic expressions
+  if (expr->IsArithmetic()) {
+    // Binary arithmetic expressions over scalars
+    if (matching_types && lhs_ty->is_numeric_scalar()) {
+      return build(lhs_ty);
+    }
+
+    // Binary arithmetic expressions over vectors
+    if (matching_types && lhs_vec_elem_type &&
+        lhs_vec_elem_type->is_numeric_scalar()) {
+      return build(lhs_ty);
+    }
+
+    // Binary arithmetic expressions with mixed scalar and vector operands
+    if (lhs_vec_elem_type && (lhs_vec_elem_type == rhs_ty)) {
+      if (expr->IsModulo()) {
+        if (rhs_ty->is_integer_scalar()) {
+          return build(lhs_ty);
+        }
+      } else if (rhs_ty->is_numeric_scalar()) {
+        return build(lhs_ty);
+      }
+    }
+    if (rhs_vec_elem_type && (rhs_vec_elem_type == lhs_ty)) {
+      if (expr->IsModulo()) {
+        if (lhs_ty->is_integer_scalar()) {
+          return build(rhs_ty);
+        }
+      } else if (lhs_ty->is_numeric_scalar()) {
+        return build(rhs_ty);
+      }
+    }
+  }
+
+  // Matrix arithmetic
+  auto* lhs_mat = lhs_ty->As<Matrix>();
+  auto* lhs_mat_elem_type = lhs_mat ? lhs_mat->type() : nullptr;
+  auto* rhs_mat = rhs_ty->As<Matrix>();
+  auto* rhs_mat_elem_type = rhs_mat ? rhs_mat->type() : nullptr;
+  // Addition and subtraction of float matrices
+  if ((expr->IsAdd() || expr->IsSubtract()) && lhs_mat_elem_type &&
+      lhs_mat_elem_type->Is<F32>() && rhs_mat_elem_type &&
+      rhs_mat_elem_type->Is<F32>() &&
+      (lhs_mat->columns() == rhs_mat->columns()) &&
+      (lhs_mat->rows() == rhs_mat->rows())) {
+    return build(rhs_ty);
+  }
+  if (expr->IsMultiply()) {
+    // Multiplication of a matrix and a scalar
+    if (lhs_ty->Is<F32>() && rhs_mat_elem_type &&
+        rhs_mat_elem_type->Is<F32>()) {
+      return build(rhs_ty);
+    }
+    if (lhs_mat_elem_type && lhs_mat_elem_type->Is<F32>() &&
+        rhs_ty->Is<F32>()) {
+      return build(lhs_ty);
+    }
+
+    // Vector times matrix
+    if (lhs_vec_elem_type && lhs_vec_elem_type->Is<F32>() &&
+        rhs_mat_elem_type && rhs_mat_elem_type->Is<F32>() &&
+        (lhs_vec->Width() == rhs_mat->rows())) {
+      return build(
+          builder_->create<sem::Vector>(lhs_vec->type(), rhs_mat->columns()));
+    }
+
+    // Matrix times vector
+    if (lhs_mat_elem_type && lhs_mat_elem_type->Is<F32>() &&
+        rhs_vec_elem_type && rhs_vec_elem_type->Is<F32>() &&
+        (lhs_mat->columns() == rhs_vec->Width())) {
+      return build(
+          builder_->create<sem::Vector>(rhs_vec->type(), lhs_mat->rows()));
+    }
+
+    // Matrix times matrix
+    if (lhs_mat_elem_type && lhs_mat_elem_type->Is<F32>() &&
+        rhs_mat_elem_type && rhs_mat_elem_type->Is<F32>() &&
+        (lhs_mat->columns() == rhs_mat->rows())) {
+      return build(builder_->create<sem::Matrix>(
+          builder_->create<sem::Vector>(lhs_mat_elem_type, lhs_mat->rows()),
+          rhs_mat->columns()));
+    }
+  }
+
+  // Comparison expressions
+  if (expr->IsComparison()) {
+    if (matching_types) {
+      // Special case for bools: only == and !=
+      if (lhs_ty->Is<Bool>() && (expr->IsEqual() || expr->IsNotEqual())) {
+        return build(builder_->create<sem::Bool>());
+      }
+
+      // For the rest, we can compare i32, u32, and f32
+      if (lhs_ty->IsAnyOf<I32, U32, F32>()) {
+        return build(builder_->create<sem::Bool>());
+      }
+    }
+
+    // Same for vectors
+    if (matching_vec_elem_types) {
+      if (lhs_vec_elem_type->Is<Bool>() &&
+          (expr->IsEqual() || expr->IsNotEqual())) {
+        return build(builder_->create<sem::Vector>(
+            builder_->create<sem::Bool>(), lhs_vec->Width()));
+      }
+
+      if (lhs_vec_elem_type->is_numeric_scalar()) {
+        return build(builder_->create<sem::Vector>(
+            builder_->create<sem::Bool>(), lhs_vec->Width()));
+      }
+    }
+  }
+
+  // Binary bitwise operations
+  if (expr->IsBitwise()) {
+    if (matching_types && lhs_ty->is_integer_scalar_or_vector()) {
+      return build(lhs_ty);
+    }
+  }
+
+  // Bit shift expressions
+  if (expr->IsBitshift()) {
+    // Type validation rules are the same for left or right shift, despite
+    // differences in computation rules (i.e. right shift can be arithmetic or
+    // logical depending on lhs type).
+
+    if (lhs_ty->IsAnyOf<I32, U32>() && rhs_ty->Is<U32>()) {
+      return build(lhs_ty);
+    }
+
+    if (lhs_vec_elem_type && lhs_vec_elem_type->IsAnyOf<I32, U32>() &&
+        rhs_vec_elem_type && rhs_vec_elem_type->Is<U32>()) {
+      return build(lhs_ty);
+    }
+  }
+
+  AddError("Binary expression operand types are invalid for this operation: " +
+               TypeNameOf(lhs_ty) + " " + FriendlyName(expr->op) + " " +
+               TypeNameOf(rhs_ty),
+           expr->source);
+  return nullptr;
+}
+
+sem::Expression* Resolver::UnaryOp(const ast::UnaryOpExpression* unary) {
+  auto* expr = Sem(unary->expr);
+  auto* expr_ty = expr->Type();
+  if (!expr_ty) {
+    return nullptr;
+  }
+
+  const sem::Type* ty = nullptr;
+
+  switch (unary->op) {
+    case ast::UnaryOp::kNot:
+      // Result type matches the deref'd inner type.
+      ty = expr_ty->UnwrapRef();
+      if (!ty->Is<sem::Bool>() && !ty->is_bool_vector()) {
+        AddError(
+            "cannot logical negate expression of type '" + TypeNameOf(expr_ty),
+            unary->expr->source);
+        return nullptr;
+      }
+      break;
+
+    case ast::UnaryOp::kComplement:
+      // Result type matches the deref'd inner type.
+      ty = expr_ty->UnwrapRef();
+      if (!ty->is_integer_scalar_or_vector()) {
+        AddError("cannot bitwise complement expression of type '" +
+                     TypeNameOf(expr_ty),
+                 unary->expr->source);
+        return nullptr;
+      }
+      break;
+
+    case ast::UnaryOp::kNegation:
+      // Result type matches the deref'd inner type.
+      ty = expr_ty->UnwrapRef();
+      if (!(ty->IsAnyOf<sem::F32, sem::I32>() ||
+            ty->is_signed_integer_vector() || ty->is_float_vector())) {
+        AddError("cannot negate expression of type '" + TypeNameOf(expr_ty),
+                 unary->expr->source);
+        return nullptr;
+      }
+      break;
+
+    case ast::UnaryOp::kAddressOf:
+      if (auto* ref = expr_ty->As<sem::Reference>()) {
+        if (ref->StoreType()->UnwrapRef()->is_handle()) {
+          AddError(
+              "cannot take the address of expression in handle storage class",
+              unary->expr->source);
+          return nullptr;
+        }
+
+        auto* array = unary->expr->As<ast::IndexAccessorExpression>();
+        auto* member = unary->expr->As<ast::MemberAccessorExpression>();
+        if ((array && TypeOf(array->object)->UnwrapRef()->Is<sem::Vector>()) ||
+            (member &&
+             TypeOf(member->structure)->UnwrapRef()->Is<sem::Vector>())) {
+          AddError("cannot take the address of a vector component",
+                   unary->expr->source);
+          return nullptr;
+        }
+
+        ty = builder_->create<sem::Pointer>(ref->StoreType(),
+                                            ref->StorageClass(), ref->Access());
+      } else {
+        AddError("cannot take the address of expression", unary->expr->source);
+        return nullptr;
+      }
+      break;
+
+    case ast::UnaryOp::kIndirection:
+      if (auto* ptr = expr_ty->As<sem::Pointer>()) {
+        ty = builder_->create<sem::Reference>(
+            ptr->StoreType(), ptr->StorageClass(), ptr->Access());
+      } else {
+        AddError("cannot dereference expression of type '" +
+                     TypeNameOf(expr_ty) + "'",
+                 unary->expr->source);
+        return nullptr;
+      }
+      break;
+  }
+
+  auto val = EvaluateConstantValue(unary, ty);
+  auto* sem = builder_->create<sem::Expression>(unary, ty, current_statement_,
+                                                val, expr->HasSideEffects());
+  sem->Behaviors() = expr->Behaviors();
+  return sem;
+}
+
+sem::Type* Resolver::TypeDecl(const ast::TypeDecl* named_type) {
+  sem::Type* result = nullptr;
+  if (auto* alias = named_type->As<ast::Alias>()) {
+    result = Alias(alias);
+  } else if (auto* str = named_type->As<ast::Struct>()) {
+    result = Structure(str);
+  } else {
+    TINT_UNREACHABLE(Resolver, diagnostics_) << "Unhandled TypeDecl";
+  }
+
+  if (!result) {
+    return nullptr;
+  }
+
+  builder_->Sem().Add(named_type, result);
+  return result;
+}
+
+sem::Type* Resolver::TypeOf(const ast::Expression* expr) {
+  auto* sem = Sem(expr);
+  return sem ? const_cast<sem::Type*>(sem->Type()) : nullptr;
+}
+
+std::string Resolver::TypeNameOf(const sem::Type* ty) {
+  return RawTypeNameOf(ty->UnwrapRef());
+}
+
+std::string Resolver::RawTypeNameOf(const sem::Type* ty) {
+  return ty->FriendlyName(builder_->Symbols());
+}
+
+sem::Type* Resolver::TypeOf(const ast::LiteralExpression* lit) {
+  return Switch(
+      lit,
+      [&](const ast::SintLiteralExpression*) -> sem::Type* {
+        return builder_->create<sem::I32>();
+      },
+      [&](const ast::UintLiteralExpression*) -> sem::Type* {
+        return builder_->create<sem::U32>();
+      },
+      [&](const ast::FloatLiteralExpression*) -> sem::Type* {
+        return builder_->create<sem::F32>();
+      },
+      [&](const ast::BoolLiteralExpression*) -> sem::Type* {
+        return builder_->create<sem::Bool>();
+      },
+      [&](Default) -> sem::Type* {
+        TINT_UNREACHABLE(Resolver, diagnostics_)
+            << "Unhandled literal type: " << lit->TypeInfo().name;
+        return nullptr;
+      });
+}
+
+sem::Array* Resolver::Array(const ast::Array* arr) {
+  auto source = arr->source;
+
+  auto* elem_type = Type(arr->type);
+  if (!elem_type) {
+    return nullptr;
+  }
+
+  if (!IsPlain(elem_type)) {  // Check must come before GetDefaultAlignAndSize()
+    AddError(TypeNameOf(elem_type) +
+                 " cannot be used as an element type of an array",
+             source);
+    return nullptr;
+  }
+
+  uint32_t el_align = elem_type->Align();
+  uint32_t el_size = elem_type->Size();
+
+  if (!ValidateNoDuplicateAttributes(arr->attributes)) {
+    return nullptr;
+  }
+
+  // Look for explicit stride via @stride(n) attribute
+  uint32_t explicit_stride = 0;
+  for (auto* attr : arr->attributes) {
+    Mark(attr);
+    if (auto* sd = attr->As<ast::StrideAttribute>()) {
+      explicit_stride = sd->stride;
+      if (!ValidateArrayStrideAttribute(sd, el_size, el_align, source)) {
+        return nullptr;
+      }
+      continue;
+    }
+
+    AddError("attribute is not valid for array types", attr->source);
+    return nullptr;
+  }
+
+  // Calculate implicit stride
+  uint64_t implicit_stride = utils::RoundUp<uint64_t>(el_align, el_size);
+
+  uint64_t stride = explicit_stride ? explicit_stride : implicit_stride;
+
+  // Evaluate the constant array size expression.
+  // sem::Array uses a size of 0 for a runtime-sized array.
+  uint32_t count = 0;
+  if (auto* count_expr = arr->count) {
+    auto* count_sem = Expression(count_expr);
+    if (!count_sem) {
+      return nullptr;
+    }
+
+    auto size_source = count_expr->source;
+
+    auto* ty = count_sem->Type()->UnwrapRef();
+    if (!ty->is_integer_scalar()) {
+      AddError("array size must be integer scalar", size_source);
+      return nullptr;
+    }
+
+    if (auto* ident = count_expr->As<ast::IdentifierExpression>()) {
+      // Make sure the identifier is a non-overridable module-scope constant.
+      auto* var = ResolvedSymbol<sem::GlobalVariable>(ident);
+      if (!var || !var->Declaration()->is_const) {
+        AddError("array size identifier must be a module-scope constant",
+                 size_source);
+        return nullptr;
+      }
+      if (var->IsOverridable()) {
+        AddError("array size expression must not be pipeline-overridable",
+                 size_source);
+        return nullptr;
+      }
+
+      count_expr = var->Declaration()->constructor;
+    } else if (!count_expr->Is<ast::LiteralExpression>()) {
+      AddError(
+          "array size expression must be either a literal or a module-scope "
+          "constant",
+          size_source);
+      return nullptr;
+    }
+
+    auto count_val = count_sem->ConstantValue();
+    if (!count_val) {
+      TINT_ICE(Resolver, diagnostics_)
+          << "could not resolve array size expression";
+      return nullptr;
+    }
+
+    if (ty->is_signed_integer_scalar() ? count_val.Elements()[0].i32 < 1
+                                       : count_val.Elements()[0].u32 < 1u) {
+      AddError("array size must be at least 1", size_source);
+      return nullptr;
+    }
+
+    count = count_val.Elements()[0].u32;
+  }
+
+  auto size = std::max<uint64_t>(count, 1) * stride;
+  if (size > std::numeric_limits<uint32_t>::max()) {
+    std::stringstream msg;
+    msg << "array size in bytes must not exceed 0x" << std::hex
+        << std::numeric_limits<uint32_t>::max() << ", but is 0x" << std::hex
+        << size;
+    AddError(msg.str(), arr->source);
+    return nullptr;
+  }
+  if (stride > std::numeric_limits<uint32_t>::max() ||
+      implicit_stride > std::numeric_limits<uint32_t>::max()) {
+    TINT_ICE(Resolver, diagnostics_)
+        << "calculated array stride exceeds uint32";
+    return nullptr;
+  }
+  auto* out = builder_->create<sem::Array>(
+      elem_type, count, el_align, static_cast<uint32_t>(size),
+      static_cast<uint32_t>(stride), static_cast<uint32_t>(implicit_stride));
+
+  if (!ValidateArray(out, source)) {
+    return nullptr;
+  }
+
+  if (elem_type->Is<sem::Atomic>()) {
+    atomic_composite_info_.emplace(out, arr->type->source);
+  } else {
+    auto found = atomic_composite_info_.find(elem_type);
+    if (found != atomic_composite_info_.end()) {
+      atomic_composite_info_.emplace(out, found->second);
+    }
+  }
+
+  return out;
+}
+
+sem::Type* Resolver::Alias(const ast::Alias* alias) {
+  auto* ty = Type(alias->type);
+  if (!ty) {
+    return nullptr;
+  }
+  if (!ValidateAlias(alias)) {
+    return nullptr;
+  }
+  return ty;
+}
+
+sem::Struct* Resolver::Structure(const ast::Struct* str) {
+  if (!ValidateNoDuplicateAttributes(str->attributes)) {
+    return nullptr;
+  }
+  for (auto* attr : str->attributes) {
+    Mark(attr);
+  }
+
+  sem::StructMemberList sem_members;
+  sem_members.reserve(str->members.size());
+
+  // Calculate the effective size and alignment of each field, and the overall
+  // size of the structure.
+  // For size, use the size attribute if provided, otherwise use the default
+  // size for the type.
+  // For alignment, use the alignment attribute if provided, otherwise use the
+  // default alignment for the member type.
+  // Diagnostic errors are raised if a basic rule is violated.
+  // Validation of storage-class rules requires analysing the actual variable
+  // usage of the structure, and so is performed as part of the variable
+  // validation.
+  uint64_t struct_size = 0;
+  uint64_t struct_align = 1;
+  std::unordered_map<Symbol, const ast::StructMember*> member_map;
+
+  for (auto* member : str->members) {
+    Mark(member);
+    auto result = member_map.emplace(member->symbol, member);
+    if (!result.second) {
+      AddError("redefinition of '" +
+                   builder_->Symbols().NameFor(member->symbol) + "'",
+               member->source);
+      AddNote("previous definition is here", result.first->second->source);
+      return nullptr;
+    }
+
+    // Resolve member type
+    auto* type = Type(member->type);
+    if (!type) {
+      return nullptr;
+    }
+
+    // Validate member type
+    if (!IsPlain(type)) {
+      AddError(TypeNameOf(type) +
+                   " cannot be used as the type of a structure member",
+               member->source);
+      return nullptr;
+    }
+
+    uint64_t offset = struct_size;
+    uint64_t align = type->Align();
+    uint64_t size = type->Size();
+
+    if (!ValidateNoDuplicateAttributes(member->attributes)) {
+      return nullptr;
+    }
+
+    bool has_offset_attr = false;
+    bool has_align_attr = false;
+    bool has_size_attr = false;
+    for (auto* attr : member->attributes) {
+      Mark(attr);
+      if (auto* o = attr->As<ast::StructMemberOffsetAttribute>()) {
+        // Offset attributes are not part of the WGSL spec, but are emitted
+        // by the SPIR-V reader.
+        if (o->offset < struct_size) {
+          AddError("offsets must be in ascending order", o->source);
+          return nullptr;
+        }
+        offset = o->offset;
+        align = 1;
+        has_offset_attr = true;
+      } else if (auto* a = attr->As<ast::StructMemberAlignAttribute>()) {
+        if (a->align <= 0 || !utils::IsPowerOfTwo(a->align)) {
+          AddError("align value must be a positive, power-of-two integer",
+                   a->source);
+          return nullptr;
+        }
+        align = a->align;
+        has_align_attr = true;
+      } else if (auto* s = attr->As<ast::StructMemberSizeAttribute>()) {
+        if (s->size < size) {
+          AddError("size must be at least as big as the type's size (" +
+                       std::to_string(size) + ")",
+                   s->source);
+          return nullptr;
+        }
+        size = s->size;
+        has_size_attr = true;
+      }
+    }
+
+    if (has_offset_attr && (has_align_attr || has_size_attr)) {
+      AddError("offset attributes cannot be used with align or size attributes",
+               member->source);
+      return nullptr;
+    }
+
+    offset = utils::RoundUp(align, offset);
+    if (offset > std::numeric_limits<uint32_t>::max()) {
+      std::stringstream msg;
+      msg << "struct member has byte offset 0x" << std::hex << offset
+          << ", but must not exceed 0x" << std::hex
+          << std::numeric_limits<uint32_t>::max();
+      AddError(msg.str(), member->source);
+      return nullptr;
+    }
+
+    auto* sem_member = builder_->create<sem::StructMember>(
+        member, member->symbol, type, static_cast<uint32_t>(sem_members.size()),
+        static_cast<uint32_t>(offset), static_cast<uint32_t>(align),
+        static_cast<uint32_t>(size));
+    builder_->Sem().Add(member, sem_member);
+    sem_members.emplace_back(sem_member);
+
+    struct_size = offset + size;
+    struct_align = std::max(struct_align, align);
+  }
+
+  uint64_t size_no_padding = struct_size;
+  struct_size = utils::RoundUp(struct_align, struct_size);
+
+  if (struct_size > std::numeric_limits<uint32_t>::max()) {
+    std::stringstream msg;
+    msg << "struct size in bytes must not exceed 0x" << std::hex
+        << std::numeric_limits<uint32_t>::max() << ", but is 0x" << std::hex
+        << struct_size;
+    AddError(msg.str(), str->source);
+    return nullptr;
+  }
+  if (struct_align > std::numeric_limits<uint32_t>::max()) {
+    TINT_ICE(Resolver, diagnostics_)
+        << "calculated struct stride exceeds uint32";
+    return nullptr;
+  }
+
+  auto* out = builder_->create<sem::Struct>(
+      str, str->name, sem_members, static_cast<uint32_t>(struct_align),
+      static_cast<uint32_t>(struct_size),
+      static_cast<uint32_t>(size_no_padding));
+
+  for (size_t i = 0; i < sem_members.size(); i++) {
+    auto* mem_type = sem_members[i]->Type();
+    if (mem_type->Is<sem::Atomic>()) {
+      atomic_composite_info_.emplace(out,
+                                     sem_members[i]->Declaration()->source);
+      break;
+    } else {
+      auto found = atomic_composite_info_.find(mem_type);
+      if (found != atomic_composite_info_.end()) {
+        atomic_composite_info_.emplace(out, found->second);
+        break;
+      }
+    }
+  }
+
+  if (!ValidateStructure(out)) {
+    return nullptr;
+  }
+
+  return out;
+}
+
+sem::Statement* Resolver::ReturnStatement(const ast::ReturnStatement* stmt) {
+  auto* sem = builder_->create<sem::Statement>(
+      stmt, current_compound_statement_, current_function_);
+  return StatementScope(stmt, sem, [&] {
+    auto& behaviors = current_statement_->Behaviors();
+    behaviors = sem::Behavior::kReturn;
+
+    if (auto* value = stmt->value) {
+      auto* expr = Expression(value);
+      if (!expr) {
+        return false;
+      }
+      behaviors.Add(expr->Behaviors() - sem::Behavior::kNext);
+    }
+
+    // Validate after processing the return value expression so that its type
+    // is available for validation.
+    return ValidateReturn(stmt);
+  });
+}
+
+sem::SwitchStatement* Resolver::SwitchStatement(
+    const ast::SwitchStatement* stmt) {
+  auto* sem = builder_->create<sem::SwitchStatement>(
+      stmt, current_compound_statement_, current_function_);
+  return StatementScope(stmt, sem, [&] {
+    auto& behaviors = sem->Behaviors();
+
+    auto* cond = Expression(stmt->condition);
+    if (!cond) {
+      return false;
+    }
+    behaviors = cond->Behaviors() - sem::Behavior::kNext;
+
+    for (auto* case_stmt : stmt->body) {
+      Mark(case_stmt);
+      auto* c = CaseStatement(case_stmt);
+      if (!c) {
+        return false;
+      }
+      behaviors.Add(c->Behaviors());
+    }
+
+    if (behaviors.Contains(sem::Behavior::kBreak)) {
+      behaviors.Add(sem::Behavior::kNext);
+    }
+    behaviors.Remove(sem::Behavior::kBreak, sem::Behavior::kFallthrough);
+
+    return ValidateSwitch(stmt);
+  });
+}
+
+sem::Statement* Resolver::VariableDeclStatement(
+    const ast::VariableDeclStatement* stmt) {
+  auto* sem = builder_->create<sem::Statement>(
+      stmt, current_compound_statement_, current_function_);
+  return StatementScope(stmt, sem, [&] {
+    Mark(stmt->variable);
+
+    auto* var = Variable(stmt->variable, VariableKind::kLocal);
+    if (!var) {
+      return false;
+    }
+
+    for (auto* attr : stmt->variable->attributes) {
+      Mark(attr);
+      if (!attr->Is<ast::InternalAttribute>()) {
+        AddError("attributes are not valid on local variables", attr->source);
+        return false;
+      }
+    }
+
+    if (current_block_) {  // Not all statements are inside a block
+      current_block_->AddDecl(stmt->variable);
+    }
+
+    if (auto* ctor = var->Constructor()) {
+      sem->Behaviors() = ctor->Behaviors();
+    }
+
+    return ValidateVariable(var);
+  });
+}
+
+sem::Statement* Resolver::AssignmentStatement(
+    const ast::AssignmentStatement* stmt) {
+  auto* sem = builder_->create<sem::Statement>(
+      stmt, current_compound_statement_, current_function_);
+  return StatementScope(stmt, sem, [&] {
+    auto* lhs = Expression(stmt->lhs);
+    if (!lhs) {
+      return false;
+    }
+
+    auto* rhs = Expression(stmt->rhs);
+    if (!rhs) {
+      return false;
+    }
+
+    auto& behaviors = sem->Behaviors();
+    behaviors = rhs->Behaviors();
+    if (!stmt->lhs->Is<ast::PhonyExpression>()) {
+      behaviors.Add(lhs->Behaviors());
+    }
+
+    return ValidateAssignment(stmt);
+  });
+}
+
+sem::Statement* Resolver::BreakStatement(const ast::BreakStatement* stmt) {
+  auto* sem = builder_->create<sem::Statement>(
+      stmt, current_compound_statement_, current_function_);
+  return StatementScope(stmt, sem, [&] {
+    sem->Behaviors() = sem::Behavior::kBreak;
+
+    return ValidateBreakStatement(sem);
+  });
+}
+
+sem::Statement* Resolver::CallStatement(const ast::CallStatement* stmt) {
+  auto* sem = builder_->create<sem::Statement>(
+      stmt, current_compound_statement_, current_function_);
+  return StatementScope(stmt, sem, [&] {
+    if (auto* expr = Expression(stmt->expr)) {
+      sem->Behaviors() = expr->Behaviors();
+      return true;
+    }
+    return false;
+  });
+}
+
+sem::Statement* Resolver::ContinueStatement(
+    const ast::ContinueStatement* stmt) {
+  auto* sem = builder_->create<sem::Statement>(
+      stmt, current_compound_statement_, current_function_);
+  return StatementScope(stmt, sem, [&] {
+    sem->Behaviors() = sem::Behavior::kContinue;
+
+    // Set if we've hit the first continue statement in our parent loop
+    if (auto* block = sem->FindFirstParent<sem::LoopBlockStatement>()) {
+      if (!block->FirstContinue()) {
+        const_cast<sem::LoopBlockStatement*>(block)->SetFirstContinue(
+            stmt, block->Decls().size());
+      }
+    }
+
+    return ValidateContinueStatement(sem);
+  });
+}
+
+sem::Statement* Resolver::DiscardStatement(const ast::DiscardStatement* stmt) {
+  auto* sem = builder_->create<sem::Statement>(
+      stmt, current_compound_statement_, current_function_);
+  return StatementScope(stmt, sem, [&] {
+    sem->Behaviors() = sem::Behavior::kDiscard;
+    current_function_->SetHasDiscard();
+
+    return ValidateDiscardStatement(sem);
+  });
+}
+
+sem::Statement* Resolver::FallthroughStatement(
+    const ast::FallthroughStatement* stmt) {
+  auto* sem = builder_->create<sem::Statement>(
+      stmt, current_compound_statement_, current_function_);
+  return StatementScope(stmt, sem, [&] {
+    sem->Behaviors() = sem::Behavior::kFallthrough;
+
+    return ValidateFallthroughStatement(sem);
+  });
+}
+
+bool Resolver::ApplyStorageClassUsageToType(ast::StorageClass sc,
+                                            sem::Type* ty,
+                                            const Source& usage) {
+  ty = const_cast<sem::Type*>(ty->UnwrapRef());
+
+  if (auto* str = ty->As<sem::Struct>()) {
+    if (str->StorageClassUsage().count(sc)) {
+      return true;  // Already applied
+    }
+
+    str->AddUsage(sc);
+
+    for (auto* member : str->Members()) {
+      if (!ApplyStorageClassUsageToType(sc, member->Type(), usage)) {
+        std::stringstream err;
+        err << "while analysing structure member " << TypeNameOf(str) << "."
+            << builder_->Symbols().NameFor(member->Declaration()->symbol);
+        AddNote(err.str(), member->Declaration()->source);
+        return false;
+      }
+    }
+    return true;
+  }
+
+  if (auto* arr = ty->As<sem::Array>()) {
+    if (arr->IsRuntimeSized() && sc != ast::StorageClass::kStorage) {
+      AddError(
+          "runtime-sized arrays can only be used in the <storage> storage "
+          "class",
+          usage);
+      return false;
+    }
+
+    return ApplyStorageClassUsageToType(
+        sc, const_cast<sem::Type*>(arr->ElemType()), usage);
+  }
+
+  if (ast::IsHostShareable(sc) && !IsHostShareable(ty)) {
+    std::stringstream err;
+    err << "Type '" << TypeNameOf(ty) << "' cannot be used in storage class '"
+        << sc << "' as it is non-host-shareable";
+    AddError(err.str(), usage);
+    return false;
+  }
+
+  return true;
+}
+
+template <typename SEM, typename F>
+SEM* Resolver::StatementScope(const ast::Statement* ast,
+                              SEM* sem,
+                              F&& callback) {
+  builder_->Sem().Add(ast, sem);
+
+  auto* as_compound =
+      As<sem::CompoundStatement, CastFlags::kDontErrorOnImpossibleCast>(sem);
+  auto* as_block =
+      As<sem::BlockStatement, CastFlags::kDontErrorOnImpossibleCast>(sem);
+
+  TINT_SCOPED_ASSIGNMENT(current_statement_, sem);
+  TINT_SCOPED_ASSIGNMENT(
+      current_compound_statement_,
+      as_compound ? as_compound : current_compound_statement_);
+  TINT_SCOPED_ASSIGNMENT(current_block_, as_block ? as_block : current_block_);
+
+  if (!callback()) {
+    return nullptr;
+  }
+
+  return sem;
+}
+
+std::string Resolver::VectorPretty(uint32_t size,
+                                   const sem::Type* element_type) {
+  sem::Vector vec_type(element_type, size);
+  return vec_type.FriendlyName(builder_->Symbols());
+}
+
+bool Resolver::Mark(const ast::Node* node) {
+  if (node == nullptr) {
+    TINT_ICE(Resolver, diagnostics_) << "Resolver::Mark() called with nullptr";
+    return false;
+  }
+  if (marked_.emplace(node).second) {
+    return true;
+  }
+  TINT_ICE(Resolver, diagnostics_)
+      << "AST node '" << node->TypeInfo().name
+      << "' was encountered twice in the same AST of a Program\n"
+      << "At: " << node->source << "\n"
+      << "Pointer: " << node;
+  return false;
+}
+
+void Resolver::AddError(const std::string& msg, const Source& source) const {
+  diagnostics_.add_error(diag::System::Resolver, msg, source);
+}
+
+void Resolver::AddWarning(const std::string& msg, const Source& source) const {
+  diagnostics_.add_warning(diag::System::Resolver, msg, source);
+}
+
+void Resolver::AddNote(const std::string& msg, const Source& source) const {
+  diagnostics_.add_note(diag::System::Resolver, msg, source);
+}
+
+// https://gpuweb.github.io/gpuweb/wgsl/#plain-types-section
+bool Resolver::IsPlain(const sem::Type* type) const {
+  return type->is_scalar() ||
+         type->IsAnyOf<sem::Atomic, sem::Vector, sem::Matrix, sem::Array,
+                       sem::Struct>();
+}
+
+// https://gpuweb.github.io/gpuweb/wgsl/#fixed-footprint-types
+bool Resolver::IsFixedFootprint(const sem::Type* type) const {
+  return Switch(
+      type,                                      //
+      [&](const sem::Vector*) { return true; },  //
+      [&](const sem::Matrix*) { return true; },  //
+      [&](const sem::Atomic*) { return true; },
+      [&](const sem::Array* arr) {
+        return !arr->IsRuntimeSized() && IsFixedFootprint(arr->ElemType());
+      },
+      [&](const sem::Struct* str) {
+        for (auto* member : str->Members()) {
+          if (!IsFixedFootprint(member->Type())) {
+            return false;
+          }
+        }
+        return true;
+      },
+      [&](Default) { return type->is_scalar(); });
+}
+
+// https://gpuweb.github.io/gpuweb/wgsl.html#storable-types
+bool Resolver::IsStorable(const sem::Type* type) const {
+  return IsPlain(type) || type->IsAnyOf<sem::Texture, sem::Sampler>();
+}
+
+// https://gpuweb.github.io/gpuweb/wgsl.html#host-shareable-types
+bool Resolver::IsHostShareable(const sem::Type* type) const {
+  if (type->IsAnyOf<sem::I32, sem::U32, sem::F32>()) {
+    return true;
+  }
+  return Switch(
+      type,  //
+      [&](const sem::Vector* vec) { return IsHostShareable(vec->type()); },
+      [&](const sem::Matrix* mat) { return IsHostShareable(mat->type()); },
+      [&](const sem::Array* arr) { return IsHostShareable(arr->ElemType()); },
+      [&](const sem::Struct* str) {
+        for (auto* member : str->Members()) {
+          if (!IsHostShareable(member->Type())) {
+            return false;
+          }
+        }
+        return true;
+      },
+      [&](const sem::Atomic* atomic) {
+        return IsHostShareable(atomic->Type());
+      });
+}
+
+bool Resolver::IsBuiltin(Symbol symbol) const {
+  std::string name = builder_->Symbols().NameFor(symbol);
+  return sem::ParseBuiltinType(name) != sem::BuiltinType::kNone;
+}
+
+bool Resolver::IsCallStatement(const ast::Expression* expr) const {
+  return current_statement_ &&
+         Is<ast::CallStatement>(current_statement_->Declaration(),
+                                [&](auto* stmt) { return stmt->expr == expr; });
+}
+
+const ast::Statement* Resolver::ClosestContinuing(bool stop_at_loop) const {
+  for (const auto* s = current_statement_; s != nullptr; s = s->Parent()) {
+    if (stop_at_loop && s->Is<sem::LoopStatement>()) {
+      break;
+    }
+    if (s->Is<sem::LoopContinuingBlockStatement>()) {
+      return s->Declaration();
+    }
+    if (auto* f = As<sem::ForLoopStatement>(s->Parent())) {
+      if (f->Declaration()->continuing == s->Declaration()) {
+        return s->Declaration();
+      }
+      if (stop_at_loop) {
+        break;
+      }
+    }
+  }
+  return nullptr;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Resolver::TypeConversionSig
+////////////////////////////////////////////////////////////////////////////////
+bool Resolver::TypeConversionSig::operator==(
+    const TypeConversionSig& rhs) const {
+  return target == rhs.target && source == rhs.source;
+}
+std::size_t Resolver::TypeConversionSig::Hasher::operator()(
+    const TypeConversionSig& sig) const {
+  return utils::Hash(sig.target, sig.source);
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Resolver::TypeConstructorSig
+////////////////////////////////////////////////////////////////////////////////
+Resolver::TypeConstructorSig::TypeConstructorSig(
+    const sem::Type* ty,
+    const std::vector<const sem::Type*> params)
+    : type(ty), parameters(params) {}
+Resolver::TypeConstructorSig::TypeConstructorSig(const TypeConstructorSig&) =
+    default;
+Resolver::TypeConstructorSig::~TypeConstructorSig() = default;
+
+bool Resolver::TypeConstructorSig::operator==(
+    const TypeConstructorSig& rhs) const {
+  return type == rhs.type && parameters == rhs.parameters;
+}
+std::size_t Resolver::TypeConstructorSig::Hasher::operator()(
+    const TypeConstructorSig& sig) const {
+  return utils::Hash(sig.type, sig.parameters);
+}
+
+}  // namespace resolver
+}  // namespace tint