|  | // Copyright 2020 The Tint Authors. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     http://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include "src/reader/spirv/function.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <array> | 
|  | #include <sstream> | 
|  | #include <unordered_map> | 
|  | #include <unordered_set> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | #include "source/opt/basic_block.h" | 
|  | #include "source/opt/function.h" | 
|  | #include "source/opt/instruction.h" | 
|  | #include "source/opt/module.h" | 
|  | #include "spirv/unified1/GLSL.std.450.h" | 
|  | #include "src/ast/array_accessor_expression.h" | 
|  | #include "src/ast/as_expression.h" | 
|  | #include "src/ast/assignment_statement.h" | 
|  | #include "src/ast/binary_expression.h" | 
|  | #include "src/ast/bool_literal.h" | 
|  | #include "src/ast/break_statement.h" | 
|  | #include "src/ast/call_expression.h" | 
|  | #include "src/ast/call_statement.h" | 
|  | #include "src/ast/case_statement.h" | 
|  | #include "src/ast/cast_expression.h" | 
|  | #include "src/ast/continue_statement.h" | 
|  | #include "src/ast/discard_statement.h" | 
|  | #include "src/ast/else_statement.h" | 
|  | #include "src/ast/fallthrough_statement.h" | 
|  | #include "src/ast/identifier_expression.h" | 
|  | #include "src/ast/if_statement.h" | 
|  | #include "src/ast/loop_statement.h" | 
|  | #include "src/ast/member_accessor_expression.h" | 
|  | #include "src/ast/return_statement.h" | 
|  | #include "src/ast/scalar_constructor_expression.h" | 
|  | #include "src/ast/sint_literal.h" | 
|  | #include "src/ast/storage_class.h" | 
|  | #include "src/ast/switch_statement.h" | 
|  | #include "src/ast/type/bool_type.h" | 
|  | #include "src/ast/type/pointer_type.h" | 
|  | #include "src/ast/type/type.h" | 
|  | #include "src/ast/type/u32_type.h" | 
|  | #include "src/ast/type/vector_type.h" | 
|  | #include "src/ast/type_constructor_expression.h" | 
|  | #include "src/ast/uint_literal.h" | 
|  | #include "src/ast/unary_op.h" | 
|  | #include "src/ast/unary_op_expression.h" | 
|  | #include "src/ast/variable.h" | 
|  | #include "src/ast/variable_decl_statement.h" | 
|  | #include "src/reader/spirv/construct.h" | 
|  | #include "src/reader/spirv/fail_stream.h" | 
|  | #include "src/reader/spirv/parser_impl.h" | 
|  |  | 
|  | // Terms: | 
|  | //    CFG: the control flow graph of the function, where basic blocks are the | 
|  | //    nodes, and branches form the directed arcs.  The function entry block is | 
|  | //    the root of the CFG. | 
|  | // | 
|  | //    Suppose H is a header block (i.e. has an OpSelectionMerge or OpLoopMerge). | 
|  | //    Then: | 
|  | //    - Let M(H) be the merge block named by the merge instruction in H. | 
|  | //    - If H is a loop header, i.e. has an OpLoopMerge instruction, then let | 
|  | //      CT(H) be the continue target block named by the OpLoopMerge | 
|  | //      instruction. | 
|  | //    - If H is a selection construct whose header ends in | 
|  | //      OpBranchConditional with true target %then and false target %else, | 
|  | //      then  TT(H) = %then and FT(H) = %else | 
|  | // | 
|  | // Determining output block order: | 
|  | //    The "structured post-order traversal" of the CFG is a post-order traversal | 
|  | //    of the basic blocks in the CFG, where: | 
|  | //      We visit the entry node of the function first. | 
|  | //      When visiting a header block: | 
|  | //        We next visit its merge block | 
|  | //        Then if it's a loop header, we next visit the continue target, | 
|  | //      Then we visit the block's successors (whether it's a header or not) | 
|  | //        If the block ends in an OpBranchConditional, we visit the false target | 
|  | //        before the true target. | 
|  | // | 
|  | //    The "reverse structured post-order traversal" of the CFG is the reverse | 
|  | //    of the structured post-order traversal. | 
|  | //    This is the order of basic blocks as they should be emitted to the WGSL | 
|  | //    function. It is the order computed by ComputeBlockOrder, and stored in | 
|  | //    the |FunctionEmiter::block_order_|. | 
|  | //    Blocks not in this ordering are ignored by the rest of the algorithm. | 
|  | // | 
|  | //    Note: | 
|  | //     - A block D in the function might not appear in this order because | 
|  | //       no block in the order branches to D. | 
|  | //     - An unreachable block D might still be in the order because some header | 
|  | //       block in the order names D as its continue target, or merge block, | 
|  | //       or D is reachable from one of those otherwise-unreachable continue | 
|  | //       targets or merge blocks. | 
|  | // | 
|  | // Terms: | 
|  | //    Let Pos(B) be the index position of a block B in the computed block order. | 
|  | // | 
|  | // CFG intervals and valid nesting: | 
|  | // | 
|  | //    A correctly structured CFG satisfies nesting rules that we can check by | 
|  | //    comparing positions of related blocks. | 
|  | // | 
|  | //    If header block H is in the block order, then the following holds: | 
|  | // | 
|  | //      Pos(H) < Pos(M(H)) | 
|  | // | 
|  | //      If CT(H) exists, then: | 
|  | // | 
|  | //         Pos(H) <= Pos(CT(H)) | 
|  | //         Pos(CT(H)) < Pos(M) | 
|  | // | 
|  | //    This gives us the fundamental ordering of blocks in relation to a | 
|  | //    structured construct: | 
|  | //      The blocks before H in the block order, are not in the construct | 
|  | //      The blocks at M(H) or later in the block order, are not in the construct | 
|  | //      The blocks in a selection headed at H are in positions [ Pos(H), | 
|  | //      Pos(M(H)) ) The blocks in a loop construct headed at H are in positions | 
|  | //      [ Pos(H), Pos(CT(H)) ) The blocks in the continue construct for loop | 
|  | //      headed at H are in | 
|  | //        positions [ Pos(CT(H)), Pos(M(H)) ) | 
|  | // | 
|  | //      Schematically, for a selection construct headed by H, the blocks are in | 
|  | //      order from left to right: | 
|  | // | 
|  | //                 ...a-b-c H d-e-f M(H) n-o-p... | 
|  | // | 
|  | //           where ...a-b-c: blocks before the selection construct | 
|  | //           where H and d-e-f: blocks in the selection construct | 
|  | //           where M(H) and n-o-p...: blocks after the selection construct | 
|  | // | 
|  | //      Schematically, for a loop construct headed by H that is its own | 
|  | //      continue construct, the blocks in order from left to right: | 
|  | // | 
|  | //                 ...a-b-c H=CT(H) d-e-f M(H) n-o-p... | 
|  | // | 
|  | //           where ...a-b-c: blocks before the loop | 
|  | //           where H is the continue construct; CT(H)=H, and the loop construct | 
|  | //           is *empty* | 
|  | //           where d-e-f... are other blocks in the continue construct | 
|  | //           where M(H) and n-o-p...: blocks after the continue construct | 
|  | // | 
|  | //      Schematically, for a multi-block loop construct headed by H, there are | 
|  | //      blocks in order from left to right: | 
|  | // | 
|  | //                 ...a-b-c H d-e-f CT(H) j-k-l M(H) n-o-p... | 
|  | // | 
|  | //           where ...a-b-c: blocks before the loop | 
|  | //           where H and d-e-f: blocks in the loop construct | 
|  | //           where CT(H) and j-k-l: blocks in the continue construct | 
|  | //           where M(H) and n-o-p...: blocks after the loop and continue | 
|  | //           constructs | 
|  | // | 
|  |  | 
|  | namespace tint { | 
|  | namespace reader { | 
|  | namespace spirv { | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Gets the AST unary opcode for the given SPIR-V opcode, if any | 
|  | // @param opcode SPIR-V opcode | 
|  | // @param ast_unary_op return parameter | 
|  | // @returns true if it was a unary operation | 
|  | bool GetUnaryOp(SpvOp opcode, ast::UnaryOp* ast_unary_op) { | 
|  | switch (opcode) { | 
|  | case SpvOpSNegate: | 
|  | case SpvOpFNegate: | 
|  | *ast_unary_op = ast::UnaryOp::kNegation; | 
|  | return true; | 
|  | case SpvOpLogicalNot: | 
|  | case SpvOpNot: | 
|  | *ast_unary_op = ast::UnaryOp::kNot; | 
|  | return true; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Converts a SPIR-V opcode for a WGSL builtin function, if there is a | 
|  | /// direct translation. Returns nullptr otherwise. | 
|  | /// @returns the WGSL builtin function name for the given opcode, or nullptr. | 
|  | const char* GetUnaryBuiltInFunctionName(SpvOp opcode) { | 
|  | switch (opcode) { | 
|  | case SpvOpAny: | 
|  | return "any"; | 
|  | case SpvOpAll: | 
|  | return "all"; | 
|  | case SpvOpIsNan: | 
|  | return "is_nan"; | 
|  | case SpvOpIsInf: | 
|  | return "is_inf"; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Converts a SPIR-V opcode to its corresponding AST binary opcode, if any | 
|  | // @param opcode SPIR-V opcode | 
|  | // @returns the AST binary op for the given opcode, or kNone | 
|  | ast::BinaryOp ConvertBinaryOp(SpvOp opcode) { | 
|  | switch (opcode) { | 
|  | case SpvOpIAdd: | 
|  | case SpvOpFAdd: | 
|  | return ast::BinaryOp::kAdd; | 
|  | case SpvOpISub: | 
|  | case SpvOpFSub: | 
|  | return ast::BinaryOp::kSubtract; | 
|  | case SpvOpIMul: | 
|  | case SpvOpFMul: | 
|  | case SpvOpVectorTimesScalar: | 
|  | case SpvOpMatrixTimesScalar: | 
|  | case SpvOpVectorTimesMatrix: | 
|  | case SpvOpMatrixTimesVector: | 
|  | case SpvOpMatrixTimesMatrix: | 
|  | return ast::BinaryOp::kMultiply; | 
|  | case SpvOpUDiv: | 
|  | case SpvOpSDiv: | 
|  | case SpvOpFDiv: | 
|  | return ast::BinaryOp::kDivide; | 
|  | case SpvOpUMod: | 
|  | case SpvOpSMod: | 
|  | case SpvOpFMod: | 
|  | return ast::BinaryOp::kModulo; | 
|  | case SpvOpShiftLeftLogical: | 
|  | return ast::BinaryOp::kShiftLeft; | 
|  | case SpvOpShiftRightLogical: | 
|  | case SpvOpShiftRightArithmetic: | 
|  | return ast::BinaryOp::kShiftRight; | 
|  | case SpvOpLogicalEqual: | 
|  | case SpvOpIEqual: | 
|  | case SpvOpFOrdEqual: | 
|  | return ast::BinaryOp::kEqual; | 
|  | case SpvOpLogicalNotEqual: | 
|  | case SpvOpINotEqual: | 
|  | case SpvOpFOrdNotEqual: | 
|  | return ast::BinaryOp::kNotEqual; | 
|  | case SpvOpBitwiseAnd: | 
|  | return ast::BinaryOp::kAnd; | 
|  | case SpvOpBitwiseOr: | 
|  | return ast::BinaryOp::kOr; | 
|  | case SpvOpBitwiseXor: | 
|  | return ast::BinaryOp::kXor; | 
|  | case SpvOpLogicalAnd: | 
|  | return ast::BinaryOp::kLogicalAnd; | 
|  | case SpvOpLogicalOr: | 
|  | return ast::BinaryOp::kLogicalOr; | 
|  | case SpvOpUGreaterThan: | 
|  | case SpvOpSGreaterThan: | 
|  | case SpvOpFOrdGreaterThan: | 
|  | return ast::BinaryOp::kGreaterThan; | 
|  | case SpvOpUGreaterThanEqual: | 
|  | case SpvOpSGreaterThanEqual: | 
|  | case SpvOpFOrdGreaterThanEqual: | 
|  | return ast::BinaryOp::kGreaterThanEqual; | 
|  | case SpvOpULessThan: | 
|  | case SpvOpSLessThan: | 
|  | case SpvOpFOrdLessThan: | 
|  | return ast::BinaryOp::kLessThan; | 
|  | case SpvOpULessThanEqual: | 
|  | case SpvOpSLessThanEqual: | 
|  | case SpvOpFOrdLessThanEqual: | 
|  | return ast::BinaryOp::kLessThanEqual; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | // It's not clear what OpSMod should map to. | 
|  | // https://bugs.chromium.org/p/tint/issues/detail?id=52 | 
|  | return ast::BinaryOp::kNone; | 
|  | } | 
|  |  | 
|  | // If the given SPIR-V opcode is a floating point unordered comparison, | 
|  | // then returns the binary float comparison for which it is the negation. | 
|  | // Othewrise returns BinaryOp::kNone. | 
|  | // @param opcode SPIR-V opcode | 
|  | // @returns operation corresponding to negated version of the SPIR-V opcode | 
|  | ast::BinaryOp NegatedFloatCompare(SpvOp opcode) { | 
|  | switch (opcode) { | 
|  | case SpvOpFUnordEqual: | 
|  | return ast::BinaryOp::kNotEqual; | 
|  | case SpvOpFUnordNotEqual: | 
|  | return ast::BinaryOp::kEqual; | 
|  | case SpvOpFUnordLessThan: | 
|  | return ast::BinaryOp::kGreaterThanEqual; | 
|  | case SpvOpFUnordLessThanEqual: | 
|  | return ast::BinaryOp::kGreaterThan; | 
|  | case SpvOpFUnordGreaterThan: | 
|  | return ast::BinaryOp::kLessThanEqual; | 
|  | case SpvOpFUnordGreaterThanEqual: | 
|  | return ast::BinaryOp::kLessThan; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return ast::BinaryOp::kNone; | 
|  | } | 
|  |  | 
|  | // Returns the WGSL standard library function for the given | 
|  | // GLSL.std.450 extended instruction operation code.  Unknown | 
|  | // and invalid opcodes map to the empty string. | 
|  | // @returns the WGSL standard function name, or an empty string. | 
|  | std::string GetGlslStd450FuncName(uint32_t ext_opcode) { | 
|  | switch (ext_opcode) { | 
|  | case GLSLstd450Atan2: | 
|  | return "atan2"; | 
|  | case GLSLstd450Cos: | 
|  | return "cos"; | 
|  | case GLSLstd450Sin: | 
|  | return "sin"; | 
|  | case GLSLstd450Distance: | 
|  | return "distance"; | 
|  | case GLSLstd450Normalize: | 
|  | return "normalize"; | 
|  | case GLSLstd450FClamp: | 
|  | return "fclamp"; | 
|  | case GLSLstd450Length: | 
|  | return "length"; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return ""; | 
|  | } | 
|  |  | 
|  | // @returns the merge block ID for the given basic block, or 0 if there is none. | 
|  | uint32_t MergeFor(const spvtools::opt::BasicBlock& bb) { | 
|  | // Get the OpSelectionMerge or OpLoopMerge instruction, if any. | 
|  | auto* inst = bb.GetMergeInst(); | 
|  | return inst == nullptr ? 0 : inst->GetSingleWordInOperand(0); | 
|  | } | 
|  |  | 
|  | // @returns the continue target ID for the given basic block, or 0 if there | 
|  | // is none. | 
|  | uint32_t ContinueTargetFor(const spvtools::opt::BasicBlock& bb) { | 
|  | // Get the OpLoopMerge instruction, if any. | 
|  | auto* inst = bb.GetLoopMergeInst(); | 
|  | return inst == nullptr ? 0 : inst->GetSingleWordInOperand(1); | 
|  | } | 
|  |  | 
|  | // A structured traverser produces the reverse structured post-order of the | 
|  | // CFG of a function.  The blocks traversed are the transitive closure (minimum | 
|  | // fixed point) of: | 
|  | //  - the entry block | 
|  | //  - a block reached by a branch from another block in the set | 
|  | //  - a block mentioned as a merge block or continue target for a block in the | 
|  | //  set | 
|  | class StructuredTraverser { | 
|  | public: | 
|  | explicit StructuredTraverser(const spvtools::opt::Function& function) | 
|  | : function_(function) { | 
|  | for (auto& block : function_) { | 
|  | id_to_block_[block.id()] = █ | 
|  | } | 
|  | } | 
|  |  | 
|  | // Returns the reverse postorder traversal of the CFG, where: | 
|  | //  - a merge block always follows its associated constructs | 
|  | //  - a continue target always follows the associated loop construct, if any | 
|  | // @returns the IDs of blocks in reverse structured post order | 
|  | std::vector<uint32_t> ReverseStructuredPostOrder() { | 
|  | visit_order_.clear(); | 
|  | visited_.clear(); | 
|  | VisitBackward(function_.entry()->id()); | 
|  |  | 
|  | std::vector<uint32_t> order(visit_order_.rbegin(), visit_order_.rend()); | 
|  | return order; | 
|  | } | 
|  |  | 
|  | private: | 
|  | // Executes a depth first search of the CFG, where right after we visit a | 
|  | // header, we will visit its merge block, then its continue target (if any). | 
|  | // Also records the post order ordering. | 
|  | void VisitBackward(uint32_t id) { | 
|  | if (id == 0) | 
|  | return; | 
|  | if (visited_.count(id)) | 
|  | return; | 
|  | visited_.insert(id); | 
|  |  | 
|  | const spvtools::opt::BasicBlock* bb = | 
|  | id_to_block_[id];  // non-null for valid modules | 
|  | VisitBackward(MergeFor(*bb)); | 
|  | VisitBackward(ContinueTargetFor(*bb)); | 
|  |  | 
|  | // Visit successors. We will naturally skip the continue target and merge | 
|  | // blocks. | 
|  | auto* terminator = bb->terminator(); | 
|  | auto opcode = terminator->opcode(); | 
|  | if (opcode == SpvOpBranchConditional) { | 
|  | // Visit the false branch, then the true branch, to make them come | 
|  | // out in the natural order for an "if". | 
|  | VisitBackward(terminator->GetSingleWordInOperand(2)); | 
|  | VisitBackward(terminator->GetSingleWordInOperand(1)); | 
|  | } else if (opcode == SpvOpBranch) { | 
|  | VisitBackward(terminator->GetSingleWordInOperand(0)); | 
|  | } else if (opcode == SpvOpSwitch) { | 
|  | // TODO(dneto): Consider visiting the labels in literal-value order. | 
|  | std::vector<uint32_t> successors; | 
|  | bb->ForEachSuccessorLabel([&successors](const uint32_t succ_id) { | 
|  | successors.push_back(succ_id); | 
|  | }); | 
|  | for (auto succ_id : successors) { | 
|  | VisitBackward(succ_id); | 
|  | } | 
|  | } | 
|  |  | 
|  | visit_order_.push_back(id); | 
|  | } | 
|  |  | 
|  | const spvtools::opt::Function& function_; | 
|  | std::unordered_map<uint32_t, const spvtools::opt::BasicBlock*> id_to_block_; | 
|  | std::vector<uint32_t> visit_order_; | 
|  | std::unordered_set<uint32_t> visited_; | 
|  | }; | 
|  |  | 
|  | /// @param src a source record | 
|  | /// @returns true if |src| is a non-default Source | 
|  | bool HasSource(const Source& src) { | 
|  | return src.line != 0 || src.column != 0; | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | BlockInfo::BlockInfo(const spvtools::opt::BasicBlock& bb) | 
|  | : basic_block(&bb), id(bb.id()) {} | 
|  |  | 
|  | BlockInfo::~BlockInfo() = default; | 
|  |  | 
|  | DefInfo::DefInfo(const spvtools::opt::Instruction& def_inst, | 
|  | uint32_t the_block_pos, | 
|  | size_t the_index) | 
|  | : inst(def_inst), block_pos(the_block_pos), index(the_index) {} | 
|  |  | 
|  | DefInfo::~DefInfo() = default; | 
|  |  | 
|  | FunctionEmitter::FunctionEmitter(ParserImpl* pi, | 
|  | const spvtools::opt::Function& function) | 
|  | : parser_impl_(*pi), | 
|  | ast_module_(pi->get_module()), | 
|  | ir_context_(*(pi->ir_context())), | 
|  | def_use_mgr_(ir_context_.get_def_use_mgr()), | 
|  | constant_mgr_(ir_context_.get_constant_mgr()), | 
|  | type_mgr_(ir_context_.get_type_mgr()), | 
|  | fail_stream_(pi->fail_stream()), | 
|  | namer_(pi->namer()), | 
|  | function_(function) { | 
|  | PushNewStatementBlock(nullptr, 0, nullptr); | 
|  | } | 
|  |  | 
|  | FunctionEmitter::~FunctionEmitter() = default; | 
|  |  | 
|  | FunctionEmitter::StatementBlock::StatementBlock( | 
|  | const Construct* construct, | 
|  | uint32_t end_id, | 
|  | CompletionAction completion_action, | 
|  | std::unique_ptr<ast::BlockStatement> statements, | 
|  | std::unique_ptr<ast::CaseStatementList> cases) | 
|  | : construct_(construct), | 
|  | end_id_(end_id), | 
|  | completion_action_(completion_action), | 
|  | statements_(std::move(statements)), | 
|  | cases_(std::move(cases)) {} | 
|  |  | 
|  | FunctionEmitter::StatementBlock::StatementBlock(StatementBlock&&) = default; | 
|  |  | 
|  | FunctionEmitter::StatementBlock::~StatementBlock() = default; | 
|  |  | 
|  | void FunctionEmitter::PushNewStatementBlock(const Construct* construct, | 
|  | uint32_t end_id, | 
|  | CompletionAction action) { | 
|  | statements_stack_.emplace_back( | 
|  | StatementBlock{construct, end_id, action, | 
|  | std::make_unique<ast::BlockStatement>(), nullptr}); | 
|  | } | 
|  |  | 
|  | void FunctionEmitter::PushGuard(const std::string& guard_name, | 
|  | uint32_t end_id) { | 
|  | assert(!statements_stack_.empty()); | 
|  | assert(!guard_name.empty()); | 
|  | // Guard control flow by the guard variable.  Introduce a new | 
|  | // if-selection with a then-clause ending at the same block | 
|  | // as the statement block at the top of the stack. | 
|  | const auto& top = statements_stack_.back(); | 
|  | auto* const guard_stmt = | 
|  | AddStatement(std::make_unique<ast::IfStatement>())->AsIf(); | 
|  | guard_stmt->set_condition( | 
|  | std::make_unique<ast::IdentifierExpression>(guard_name)); | 
|  | PushNewStatementBlock(top.construct_, end_id, | 
|  | [guard_stmt](StatementBlock* s) { | 
|  | guard_stmt->set_body(std::move(s->statements_)); | 
|  | }); | 
|  | } | 
|  |  | 
|  | void FunctionEmitter::PushTrueGuard(uint32_t end_id) { | 
|  | assert(!statements_stack_.empty()); | 
|  | const auto& top = statements_stack_.back(); | 
|  | auto* const guard_stmt = | 
|  | AddStatement(std::make_unique<ast::IfStatement>())->AsIf(); | 
|  | guard_stmt->set_condition(MakeTrue()); | 
|  | PushNewStatementBlock(top.construct_, end_id, | 
|  | [guard_stmt](StatementBlock* s) { | 
|  | guard_stmt->set_body(std::move(s->statements_)); | 
|  | }); | 
|  | } | 
|  |  | 
|  | const ast::BlockStatement* FunctionEmitter::ast_body() { | 
|  | assert(!statements_stack_.empty()); | 
|  | return statements_stack_[0].statements_.get(); | 
|  | } | 
|  |  | 
|  | ast::Statement* FunctionEmitter::AddStatement( | 
|  | std::unique_ptr<ast::Statement> statement) { | 
|  | assert(!statements_stack_.empty()); | 
|  | auto* result = statement.get(); | 
|  | if (result != nullptr) { | 
|  | statements_stack_.back().statements_->append(std::move(statement)); | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | ast::Statement* FunctionEmitter::AddStatementForInstruction( | 
|  | std::unique_ptr<ast::Statement> statement, | 
|  | const spvtools::opt::Instruction& inst) { | 
|  | auto* node = AddStatement(std::move(statement)); | 
|  | ApplySourceForInstruction(node, inst); | 
|  | return node; | 
|  | } | 
|  |  | 
|  | ast::Statement* FunctionEmitter::LastStatement() { | 
|  | assert(!statements_stack_.empty()); | 
|  | const auto& statement_list = statements_stack_.back().statements_; | 
|  | assert(!statement_list->empty()); | 
|  | return statement_list->last(); | 
|  | } | 
|  |  | 
|  | bool FunctionEmitter::Emit() { | 
|  | if (failed()) { | 
|  | return false; | 
|  | } | 
|  | // We only care about functions with bodies. | 
|  | if (function_.cbegin() == function_.cend()) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!EmitFunctionDeclaration()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!EmitBody()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Set the body of the AST function node. | 
|  | if (statements_stack_.size() != 1) { | 
|  | return Fail() << "internal error: statement-list stack should have 1 " | 
|  | "element but has " | 
|  | << statements_stack_.size(); | 
|  | } | 
|  | auto body = std::move(statements_stack_[0].statements_); | 
|  | parser_impl_.get_module().functions().back()->set_body(std::move(body)); | 
|  | // Maintain the invariant by repopulating the one and only element. | 
|  | statements_stack_.clear(); | 
|  | PushNewStatementBlock(constructs_[0].get(), 0, nullptr); | 
|  |  | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | bool FunctionEmitter::EmitFunctionDeclaration() { | 
|  | if (failed()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const auto name = namer_.Name(function_.result_id()); | 
|  | // Surprisingly, the "type id" on an OpFunction is the result type of the | 
|  | // function, not the type of the function.  This is the one exceptional case | 
|  | // in SPIR-V where the type ID is not the type of the result ID. | 
|  | auto* ret_ty = parser_impl_.ConvertType(function_.type_id()); | 
|  | if (failed()) { | 
|  | return false; | 
|  | } | 
|  | if (ret_ty == nullptr) { | 
|  | return Fail() | 
|  | << "internal error: unregistered return type for function with ID " | 
|  | << function_.result_id(); | 
|  | } | 
|  |  | 
|  | ast::VariableList ast_params; | 
|  | function_.ForEachParam( | 
|  | [this, &ast_params](const spvtools::opt::Instruction* param) { | 
|  | auto* ast_type = parser_impl_.ConvertType(param->type_id()); | 
|  | if (ast_type != nullptr) { | 
|  | ast_params.emplace_back(parser_impl_.MakeVariable( | 
|  | param->result_id(), ast::StorageClass::kNone, ast_type)); | 
|  | // The value is accessible by name. | 
|  | identifier_values_.insert(param->result_id()); | 
|  | } else { | 
|  | // We've already logged an error and emitted a diagnostic. Do nothing | 
|  | // here. | 
|  | } | 
|  | }); | 
|  | if (failed()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | auto ast_fn = | 
|  | std::make_unique<ast::Function>(name, std::move(ast_params), ret_ty); | 
|  | ast_module_.AddFunction(std::move(ast_fn)); | 
|  |  | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | ast::type::Type* FunctionEmitter::GetVariableStoreType( | 
|  | const spvtools::opt::Instruction& var_decl_inst) { | 
|  | const auto type_id = var_decl_inst.type_id(); | 
|  | auto* var_ref_type = type_mgr_->GetType(type_id); | 
|  | if (!var_ref_type) { | 
|  | Fail() << "internal error: variable type id " << type_id | 
|  | << " has no registered type"; | 
|  | return nullptr; | 
|  | } | 
|  | auto* var_ref_ptr_type = var_ref_type->AsPointer(); | 
|  | if (!var_ref_ptr_type) { | 
|  | Fail() << "internal error: variable type id " << type_id | 
|  | << " is not a pointer type"; | 
|  | return nullptr; | 
|  | } | 
|  | auto var_store_type_id = type_mgr_->GetId(var_ref_ptr_type->pointee_type()); | 
|  | return parser_impl_.ConvertType(var_store_type_id); | 
|  | } | 
|  |  | 
|  | bool FunctionEmitter::EmitBody() { | 
|  | RegisterBasicBlocks(); | 
|  |  | 
|  | if (!TerminatorsAreValid()) { | 
|  | return false; | 
|  | } | 
|  | if (!RegisterMerges()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ComputeBlockOrderAndPositions(); | 
|  | if (!VerifyHeaderContinueMergeOrder()) { | 
|  | return false; | 
|  | } | 
|  | if (!LabelControlFlowConstructs()) { | 
|  | return false; | 
|  | } | 
|  | if (!FindSwitchCaseHeaders()) { | 
|  | return false; | 
|  | } | 
|  | if (!ClassifyCFGEdges()) { | 
|  | return false; | 
|  | } | 
|  | if (!FindIfSelectionInternalHeaders()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!RegisterLocallyDefinedValues()) { | 
|  | return false; | 
|  | } | 
|  | FindValuesNeedingNamedOrHoistedDefinition(); | 
|  |  | 
|  | if (!EmitFunctionVariables()) { | 
|  | return false; | 
|  | } | 
|  | if (!EmitFunctionBodyStatements()) { | 
|  | return false; | 
|  | } | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | void FunctionEmitter::RegisterBasicBlocks() { | 
|  | for (auto& block : function_) { | 
|  | block_info_[block.id()] = std::make_unique<BlockInfo>(block); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool FunctionEmitter::TerminatorsAreValid() { | 
|  | if (failed()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const auto entry_id = function_.begin()->id(); | 
|  | for (const auto& block : function_) { | 
|  | if (!block.terminator()) { | 
|  | return Fail() << "Block " << block.id() << " has no terminator"; | 
|  | } | 
|  | } | 
|  | for (const auto& block : function_) { | 
|  | block.WhileEachSuccessorLabel( | 
|  | [this, &block, entry_id](const uint32_t succ_id) -> bool { | 
|  | if (succ_id == entry_id) { | 
|  | return Fail() << "Block " << block.id() | 
|  | << " branches to function entry block " << entry_id; | 
|  | } | 
|  | if (!GetBlockInfo(succ_id)) { | 
|  | return Fail() << "Block " << block.id() << " in function " | 
|  | << function_.DefInst().result_id() << " branches to " | 
|  | << succ_id << " which is not a block in the function"; | 
|  | } | 
|  | return true; | 
|  | }); | 
|  | } | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | bool FunctionEmitter::RegisterMerges() { | 
|  | if (failed()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const auto entry_id = function_.begin()->id(); | 
|  | for (const auto& block : function_) { | 
|  | const auto block_id = block.id(); | 
|  | auto* block_info = GetBlockInfo(block_id); | 
|  | if (!block_info) { | 
|  | return Fail() << "internal error: block " << block_id | 
|  | << " missing; blocks should already " | 
|  | "have been registered"; | 
|  | } | 
|  |  | 
|  | if (const auto* inst = block.GetMergeInst()) { | 
|  | auto terminator_opcode = block.terminator()->opcode(); | 
|  | switch (inst->opcode()) { | 
|  | case SpvOpSelectionMerge: | 
|  | if ((terminator_opcode != SpvOpBranchConditional) && | 
|  | (terminator_opcode != SpvOpSwitch)) { | 
|  | return Fail() << "Selection header " << block_id | 
|  | << " does not end in an OpBranchConditional or " | 
|  | "OpSwitch instruction"; | 
|  | } | 
|  | break; | 
|  | case SpvOpLoopMerge: | 
|  | if ((terminator_opcode != SpvOpBranchConditional) && | 
|  | (terminator_opcode != SpvOpBranch)) { | 
|  | return Fail() << "Loop header " << block_id | 
|  | << " does not end in an OpBranch or " | 
|  | "OpBranchConditional instruction"; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | const uint32_t header = block.id(); | 
|  | auto* header_info = block_info; | 
|  | const uint32_t merge = inst->GetSingleWordInOperand(0); | 
|  | auto* merge_info = GetBlockInfo(merge); | 
|  | if (!merge_info) { | 
|  | return Fail() << "Structured header block " << header | 
|  | << " declares invalid merge block " << merge; | 
|  | } | 
|  | if (merge == header) { | 
|  | return Fail() << "Structured header block " << header | 
|  | << " cannot be its own merge block"; | 
|  | } | 
|  | if (merge_info->header_for_merge) { | 
|  | return Fail() << "Block " << merge | 
|  | << " declared as merge block for more than one header: " | 
|  | << merge_info->header_for_merge << ", " << header; | 
|  | } | 
|  | merge_info->header_for_merge = header; | 
|  | header_info->merge_for_header = merge; | 
|  |  | 
|  | if (inst->opcode() == SpvOpLoopMerge) { | 
|  | if (header == entry_id) { | 
|  | return Fail() << "Function entry block " << entry_id | 
|  | << " cannot be a loop header"; | 
|  | } | 
|  | const uint32_t ct = inst->GetSingleWordInOperand(1); | 
|  | auto* ct_info = GetBlockInfo(ct); | 
|  | if (!ct_info) { | 
|  | return Fail() << "Structured header " << header | 
|  | << " declares invalid continue target " << ct; | 
|  | } | 
|  | if (ct == merge) { | 
|  | return Fail() << "Invalid structured header block " << header | 
|  | << ": declares block " << ct | 
|  | << " as both its merge block and continue target"; | 
|  | } | 
|  | if (ct_info->header_for_continue) { | 
|  | return Fail() | 
|  | << "Block " << ct | 
|  | << " declared as continue target for more than one header: " | 
|  | << ct_info->header_for_continue << ", " << header; | 
|  | } | 
|  | ct_info->header_for_continue = header; | 
|  | header_info->continue_for_header = ct; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check single-block loop cases. | 
|  | bool is_single_block_loop = false; | 
|  | block_info->basic_block->ForEachSuccessorLabel( | 
|  | [&is_single_block_loop, block_id](const uint32_t succ) { | 
|  | if (block_id == succ) | 
|  | is_single_block_loop = true; | 
|  | }); | 
|  | const auto ct = block_info->continue_for_header; | 
|  | block_info->is_continue_entire_loop = ct == block_id; | 
|  | if (is_single_block_loop && !block_info->is_continue_entire_loop) { | 
|  | return Fail() << "Block " << block_id | 
|  | << " branches to itself but is not its own continue target"; | 
|  | } | 
|  | // It's valid for a the header of a multi-block loop header to declare | 
|  | // itself as its own continue target. | 
|  | } | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | void FunctionEmitter::ComputeBlockOrderAndPositions() { | 
|  | block_order_ = StructuredTraverser(function_).ReverseStructuredPostOrder(); | 
|  |  | 
|  | for (uint32_t i = 0; i < block_order_.size(); ++i) { | 
|  | GetBlockInfo(block_order_[i])->pos = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool FunctionEmitter::VerifyHeaderContinueMergeOrder() { | 
|  | // Verify interval rules for a structured header block: | 
|  | // | 
|  | //    If the CFG satisfies structured control flow rules, then: | 
|  | //    If header H is reachable, then the following "interval rules" hold, | 
|  | //    where M(H) is H's merge block, and CT(H) is H's continue target: | 
|  | // | 
|  | //      Pos(H) < Pos(M(H)) | 
|  | // | 
|  | //      If CT(H) exists, then: | 
|  | //         Pos(H) <= Pos(CT(H)) | 
|  | //         Pos(CT(H)) < Pos(M) | 
|  | // | 
|  | for (auto block_id : block_order_) { | 
|  | const auto* block_info = GetBlockInfo(block_id); | 
|  | const auto merge = block_info->merge_for_header; | 
|  | if (merge == 0) { | 
|  | continue; | 
|  | } | 
|  | // This is a header. | 
|  | const auto header = block_id; | 
|  | const auto* header_info = block_info; | 
|  | const auto header_pos = header_info->pos; | 
|  | const auto merge_pos = GetBlockInfo(merge)->pos; | 
|  |  | 
|  | // Pos(H) < Pos(M(H)) | 
|  | // Note: When recording merges we made sure H != M(H) | 
|  | if (merge_pos <= header_pos) { | 
|  | return Fail() << "Header " << header | 
|  | << " does not strictly dominate its merge block " << merge; | 
|  | // TODO(dneto): Report a path from the entry block to the merge block | 
|  | // without going through the header block. | 
|  | } | 
|  |  | 
|  | const auto ct = block_info->continue_for_header; | 
|  | if (ct == 0) { | 
|  | continue; | 
|  | } | 
|  | // Furthermore, this is a loop header. | 
|  | const auto* ct_info = GetBlockInfo(ct); | 
|  | const auto ct_pos = ct_info->pos; | 
|  | // Pos(H) <= Pos(CT(H)) | 
|  | if (ct_pos < header_pos) { | 
|  | Fail() << "Loop header " << header | 
|  | << " does not dominate its continue target " << ct; | 
|  | } | 
|  | // Pos(CT(H)) < Pos(M(H)) | 
|  | // Note: When recording merges we made sure CT(H) != M(H) | 
|  | if (merge_pos <= ct_pos) { | 
|  | return Fail() << "Merge block " << merge << " for loop headed at block " | 
|  | << header | 
|  | << " appears at or before the loop's continue " | 
|  | "construct headed by " | 
|  | "block " | 
|  | << ct; | 
|  | } | 
|  | } | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | bool FunctionEmitter::LabelControlFlowConstructs() { | 
|  | // Label each block in the block order with its nearest enclosing structured | 
|  | // control flow construct. Populates the |construct| member of BlockInfo. | 
|  |  | 
|  | //  Keep a stack of enclosing structured control flow constructs.  Start | 
|  | //  with the synthetic construct representing the entire function. | 
|  | // | 
|  | //  Scan from left to right in the block order, and check conditions | 
|  | //  on each block in the following order: | 
|  | // | 
|  | //        a. When you reach a merge block, the top of the stack should | 
|  | //           be the associated header. Pop it off. | 
|  | //        b. When you reach a header, push it on the stack. | 
|  | //        c. When you reach a continue target, push it on the stack. | 
|  | //           (A block can be both a header and a continue target.) | 
|  | //        c. When you reach a block with an edge branching backward (in the | 
|  | //           structured order) to block T: | 
|  | //            T should be a loop header, and the top of the stack should be a | 
|  | //            continue target associated with T. | 
|  | //            This is the end of the continue construct. Pop the continue | 
|  | //            target off the stack. | 
|  | // | 
|  | //       Note: A loop header can declare itself as its own continue target. | 
|  | // | 
|  | //       Note: For a single-block loop, that block is a header, its own | 
|  | //       continue target, and its own backedge block. | 
|  | // | 
|  | //       Note: We pop the merge off first because a merge block that marks | 
|  | //       the end of one construct can be a single-block loop.  So that block | 
|  | //       is a merge, a header, a continue target, and a backedge block. | 
|  | //       But we want to finish processing of the merge before dealing with | 
|  | //       the loop. | 
|  | // | 
|  | //      In the same scan, mark each basic block with the nearest enclosing | 
|  | //      header: the most recent header for which we haven't reached its merge | 
|  | //      block. Also mark the the most recent continue target for which we | 
|  | //      haven't reached the backedge block. | 
|  |  | 
|  | assert(block_order_.size() > 0); | 
|  | constructs_.clear(); | 
|  | const auto entry_id = block_order_[0]; | 
|  |  | 
|  | // The stack of enclosing constructs. | 
|  | std::vector<Construct*> enclosing; | 
|  |  | 
|  | // Creates a control flow construct and pushes it onto the stack. | 
|  | // Its parent is the top of the stack, or nullptr if the stack is empty. | 
|  | // Returns the newly created construct. | 
|  | auto push_construct = [this, &enclosing](size_t depth, Construct::Kind k, | 
|  | uint32_t begin_id, | 
|  | uint32_t end_id) -> Construct* { | 
|  | const auto begin_pos = GetBlockInfo(begin_id)->pos; | 
|  | const auto end_pos = | 
|  | end_id == 0 ? uint32_t(block_order_.size()) : GetBlockInfo(end_id)->pos; | 
|  | const auto* parent = enclosing.empty() ? nullptr : enclosing.back(); | 
|  | auto scope_end_pos = end_pos; | 
|  | // A loop construct is added right after its associated continue construct. | 
|  | // In that case, adjust the parent up. | 
|  | if (k == Construct::kLoop) { | 
|  | assert(parent); | 
|  | assert(parent->kind == Construct::kContinue); | 
|  | scope_end_pos = parent->end_pos; | 
|  | parent = parent->parent; | 
|  | } | 
|  | constructs_.push_back(std::make_unique<Construct>( | 
|  | parent, static_cast<int>(depth), k, begin_id, end_id, begin_pos, | 
|  | end_pos, scope_end_pos)); | 
|  | Construct* result = constructs_.back().get(); | 
|  | enclosing.push_back(result); | 
|  | return result; | 
|  | }; | 
|  |  | 
|  | // Make a synthetic kFunction construct to enclose all blocks in the function. | 
|  | push_construct(0, Construct::kFunction, entry_id, 0); | 
|  | // The entry block can be a selection construct, so be sure to process | 
|  | // it anyway. | 
|  |  | 
|  | for (uint32_t i = 0; i < block_order_.size(); ++i) { | 
|  | const auto block_id = block_order_[i]; | 
|  | assert(block_id > 0); | 
|  | auto* block_info = GetBlockInfo(block_id); | 
|  | assert(block_info); | 
|  |  | 
|  | if (enclosing.empty()) { | 
|  | return Fail() << "internal error: too many merge blocks before block " | 
|  | << block_id; | 
|  | } | 
|  | const Construct* top = enclosing.back(); | 
|  |  | 
|  | while (block_id == top->end_id) { | 
|  | // We've reached a predeclared end of the construct.  Pop it off the | 
|  | // stack. | 
|  | enclosing.pop_back(); | 
|  | if (enclosing.empty()) { | 
|  | return Fail() << "internal error: too many merge blocks before block " | 
|  | << block_id; | 
|  | } | 
|  | top = enclosing.back(); | 
|  | } | 
|  |  | 
|  | const auto merge = block_info->merge_for_header; | 
|  | if (merge != 0) { | 
|  | // The current block is a header. | 
|  | const auto header = block_id; | 
|  | const auto* header_info = block_info; | 
|  | const auto depth = 1 + top->depth; | 
|  | const auto ct = header_info->continue_for_header; | 
|  | if (ct != 0) { | 
|  | // The current block is a loop header. | 
|  | // We should see the continue construct after the loop construct, so | 
|  | // push the loop construct last. | 
|  |  | 
|  | // From the interval rule, the continue construct consists of blocks | 
|  | // in the block order, starting at the continue target, until just | 
|  | // before the merge block. | 
|  | top = push_construct(depth, Construct::kContinue, ct, merge); | 
|  | // A loop header that is its own continue target will have an | 
|  | // empty loop construct. Only create a loop construct when | 
|  | // the continue target is *not* the same as the loop header. | 
|  | if (header != ct) { | 
|  | // From the interval rule, the loop construct consists of blocks | 
|  | // in the block order, starting at the header, until just | 
|  | // before the continue target. | 
|  | top = push_construct(depth, Construct::kLoop, header, ct); | 
|  | } | 
|  | } else { | 
|  | // From the interval rule, the selection construct consists of blocks | 
|  | // in the block order, starting at the header, until just before the | 
|  | // merge block. | 
|  | const auto branch_opcode = | 
|  | header_info->basic_block->terminator()->opcode(); | 
|  | const auto kind = (branch_opcode == SpvOpBranchConditional) | 
|  | ? Construct::kIfSelection | 
|  | : Construct::kSwitchSelection; | 
|  | top = push_construct(depth, kind, header, merge); | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(top); | 
|  | block_info->construct = top; | 
|  | } | 
|  |  | 
|  | // At the end of the block list, we should only have the kFunction construct | 
|  | // left. | 
|  | if (enclosing.size() != 1) { | 
|  | return Fail() << "internal error: unbalanced structured constructs when " | 
|  | "labeling structured constructs: ended with " | 
|  | << enclosing.size() - 1 << " unterminated constructs"; | 
|  | } | 
|  | const auto* top = enclosing[0]; | 
|  | if (top->kind != Construct::kFunction || top->depth != 0) { | 
|  | return Fail() << "internal error: outermost construct is not a function?!"; | 
|  | } | 
|  |  | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | bool FunctionEmitter::FindSwitchCaseHeaders() { | 
|  | if (failed()) { | 
|  | return false; | 
|  | } | 
|  | for (auto& construct : constructs_) { | 
|  | if (construct->kind != Construct::kSwitchSelection) { | 
|  | continue; | 
|  | } | 
|  | const auto* branch = | 
|  | GetBlockInfo(construct->begin_id)->basic_block->terminator(); | 
|  |  | 
|  | // Mark the default block | 
|  | const auto default_id = branch->GetSingleWordInOperand(1); | 
|  | auto* default_block = GetBlockInfo(default_id); | 
|  | // A default target can't be a backedge. | 
|  | if (construct->begin_pos >= default_block->pos) { | 
|  | // An OpSwitch must dominate its cases.  Also, it can't be a self-loop | 
|  | // as that would be a backedge, and backedges can only target a loop, | 
|  | // and loops use an OpLoopMerge instruction, which can't preceded an | 
|  | // OpSwitch. | 
|  | return Fail() << "Switch branch from block " << construct->begin_id | 
|  | << " to default target block " << default_id | 
|  | << " can't be a back-edge"; | 
|  | } | 
|  | // A default target can be the merge block, but can't go past it. | 
|  | if (construct->end_pos < default_block->pos) { | 
|  | return Fail() << "Switch branch from block " << construct->begin_id | 
|  | << " to default block " << default_id | 
|  | << " escapes the selection construct"; | 
|  | } | 
|  | if (default_block->default_head_for) { | 
|  | // An OpSwitch must dominate its cases, including the default target. | 
|  | return Fail() << "Block " << default_id | 
|  | << " is declared as the default target for two OpSwitch " | 
|  | "instructions, at blocks " | 
|  | << default_block->default_head_for->begin_id << " and " | 
|  | << construct->begin_id; | 
|  | } | 
|  | if ((default_block->header_for_merge != 0) && | 
|  | (default_block->header_for_merge != construct->begin_id)) { | 
|  | // The switch instruction for this default block is an alternate path to | 
|  | // the merge block, and hence the merge block is not dominated by its own | 
|  | // (different) header. | 
|  | return Fail() << "Block " << default_block->id | 
|  | << " is the default block for switch-selection header " | 
|  | << construct->begin_id << " and also the merge block for " | 
|  | << default_block->header_for_merge | 
|  | << " (violates dominance rule)"; | 
|  | } | 
|  |  | 
|  | default_block->default_head_for = construct.get(); | 
|  | default_block->default_is_merge = default_block->pos == construct->end_pos; | 
|  |  | 
|  | // Map a case target to the list of values selecting that case. | 
|  | std::unordered_map<uint32_t, std::vector<uint64_t>> block_to_values; | 
|  | std::vector<uint32_t> case_targets; | 
|  | std::unordered_set<uint64_t> case_values; | 
|  |  | 
|  | // Process case targets. | 
|  | for (uint32_t iarg = 2; iarg + 1 < branch->NumInOperands(); iarg += 2) { | 
|  | const auto value = branch->GetInOperand(iarg).AsLiteralUint64(); | 
|  | const auto case_target_id = branch->GetSingleWordInOperand(iarg + 1); | 
|  |  | 
|  | if (case_values.count(value)) { | 
|  | return Fail() << "Duplicate case value " << value | 
|  | << " in OpSwitch in block " << construct->begin_id; | 
|  | } | 
|  | case_values.insert(value); | 
|  | if (block_to_values.count(case_target_id) == 0) { | 
|  | case_targets.push_back(case_target_id); | 
|  | } | 
|  | block_to_values[case_target_id].push_back(value); | 
|  | } | 
|  |  | 
|  | for (uint32_t case_target_id : case_targets) { | 
|  | auto* case_block = GetBlockInfo(case_target_id); | 
|  |  | 
|  | case_block->case_values = std::make_unique<std::vector<uint64_t>>( | 
|  | std::move(block_to_values[case_target_id])); | 
|  |  | 
|  | // A case target can't be a back-edge. | 
|  | if (construct->begin_pos >= case_block->pos) { | 
|  | // An OpSwitch must dominate its cases.  Also, it can't be a self-loop | 
|  | // as that would be a backedge, and backedges can only target a loop, | 
|  | // and loops use an OpLoopMerge instruction, which can't preceded an | 
|  | // OpSwitch. | 
|  | return Fail() << "Switch branch from block " << construct->begin_id | 
|  | << " to case target block " << case_target_id | 
|  | << " can't be a back-edge"; | 
|  | } | 
|  | // A case target can be the merge block, but can't go past it. | 
|  | if (construct->end_pos < case_block->pos) { | 
|  | return Fail() << "Switch branch from block " << construct->begin_id | 
|  | << " to case target block " << case_target_id | 
|  | << " escapes the selection construct"; | 
|  | } | 
|  | if (case_block->header_for_merge != 0 && | 
|  | case_block->header_for_merge != construct->begin_id) { | 
|  | // The switch instruction for this case block is an alternate path to | 
|  | // the merge block, and hence the merge block is not dominated by its | 
|  | // own (different) header. | 
|  | return Fail() << "Block " << case_block->id | 
|  | << " is a case block for switch-selection header " | 
|  | << construct->begin_id << " and also the merge block for " | 
|  | << case_block->header_for_merge | 
|  | << " (violates dominance rule)"; | 
|  | } | 
|  |  | 
|  | // Mark the target as a case target. | 
|  | if (case_block->case_head_for) { | 
|  | // An OpSwitch must dominate its cases. | 
|  | return Fail() | 
|  | << "Block " << case_target_id | 
|  | << " is declared as the switch case target for two OpSwitch " | 
|  | "instructions, at blocks " | 
|  | << case_block->case_head_for->begin_id << " and " | 
|  | << construct->begin_id; | 
|  | } | 
|  | case_block->case_head_for = construct.get(); | 
|  | } | 
|  | } | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | BlockInfo* FunctionEmitter::HeaderIfBreakable(const Construct* c) { | 
|  | if (c == nullptr) { | 
|  | return nullptr; | 
|  | } | 
|  | switch (c->kind) { | 
|  | case Construct::kLoop: | 
|  | case Construct::kSwitchSelection: | 
|  | return GetBlockInfo(c->begin_id); | 
|  | case Construct::kContinue: { | 
|  | const auto* continue_target = GetBlockInfo(c->begin_id); | 
|  | return GetBlockInfo(continue_target->header_for_continue); | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | const Construct* FunctionEmitter::SiblingLoopConstruct( | 
|  | const Construct* c) const { | 
|  | if (c == nullptr || c->kind != Construct::kContinue) { | 
|  | return nullptr; | 
|  | } | 
|  | const uint32_t continue_target_id = c->begin_id; | 
|  | const auto* continue_target = GetBlockInfo(continue_target_id); | 
|  | const uint32_t header_id = continue_target->header_for_continue; | 
|  | if (continue_target_id == header_id) { | 
|  | // The continue target is the whole loop. | 
|  | return nullptr; | 
|  | } | 
|  | const auto* candidate = GetBlockInfo(header_id)->construct; | 
|  | // Walk up the construct tree until we hit the loop.  In future | 
|  | // we might handle the corner case where the same block is both a | 
|  | // loop header and a selection header. For example, where the | 
|  | // loop header block has a conditional branch going to distinct | 
|  | // targets inside the loop body. | 
|  | while (candidate && candidate->kind != Construct::kLoop) { | 
|  | candidate = candidate->parent; | 
|  | } | 
|  | return candidate; | 
|  | } | 
|  |  | 
|  | bool FunctionEmitter::ClassifyCFGEdges() { | 
|  | if (failed()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Checks validity of CFG edges leaving each basic block.  This implicitly | 
|  | // checks dominance rules for headers and continue constructs. | 
|  | // | 
|  | // For each branch encountered, classify each edge (S,T) as: | 
|  | //    - a back-edge | 
|  | //    - a structured exit (specific ways of branching to enclosing construct) | 
|  | //    - a normal (forward) edge, either natural control flow or a case | 
|  | //    fallthrough | 
|  | // | 
|  | // If more than one block is targeted by a normal edge, then S must be a | 
|  | // structured header. | 
|  | // | 
|  | // Term: NEC(B) is the nearest enclosing construct for B. | 
|  | // | 
|  | // If edge (S,T) is a normal edge, and NEC(S) != NEC(T), then | 
|  | //    T is the header block of its NEC(T), and | 
|  | //    NEC(S) is the parent of NEC(T). | 
|  |  | 
|  | for (const auto src : block_order_) { | 
|  | assert(src > 0); | 
|  | auto* src_info = GetBlockInfo(src); | 
|  | assert(src_info); | 
|  | const auto src_pos = src_info->pos; | 
|  | const auto& src_construct = *(src_info->construct); | 
|  |  | 
|  | // Compute the ordered list of unique successors. | 
|  | std::vector<uint32_t> successors; | 
|  | { | 
|  | std::unordered_set<uint32_t> visited; | 
|  | src_info->basic_block->ForEachSuccessorLabel( | 
|  | [&successors, &visited](const uint32_t succ) { | 
|  | if (visited.count(succ) == 0) { | 
|  | successors.push_back(succ); | 
|  | visited.insert(succ); | 
|  | } | 
|  | }); | 
|  | } | 
|  |  | 
|  | // There should only be one backedge per backedge block. | 
|  | uint32_t num_backedges = 0; | 
|  |  | 
|  | // Track destinations for normal forward edges, either kForward | 
|  | // or kCaseFallThroughkIfBreak. These count toward the need | 
|  | // to have a merge instruction.  We also track kIfBreak edges | 
|  | // because when used with normal forward edges, we'll need | 
|  | // to generate a flow guard variable. | 
|  | std::vector<uint32_t> normal_forward_edges; | 
|  | std::vector<uint32_t> if_break_edges; | 
|  |  | 
|  | if (successors.empty() && src_construct.enclosing_continue) { | 
|  | // Kill and return are not allowed in a continue construct. | 
|  | return Fail() << "Invalid function exit at block " << src | 
|  | << " from continue construct starting at " | 
|  | << src_construct.enclosing_continue->begin_id; | 
|  | } | 
|  |  | 
|  | for (const auto dest : successors) { | 
|  | const auto* dest_info = GetBlockInfo(dest); | 
|  | // We've already checked terminators are valid. | 
|  | assert(dest_info); | 
|  | const auto dest_pos = dest_info->pos; | 
|  |  | 
|  | // Insert the edge kind entry and keep a handle to update | 
|  | // its classification. | 
|  | EdgeKind& edge_kind = src_info->succ_edge[dest]; | 
|  |  | 
|  | if (src_pos >= dest_pos) { | 
|  | // This is a backedge. | 
|  | edge_kind = EdgeKind::kBack; | 
|  | num_backedges++; | 
|  | const auto* continue_construct = src_construct.enclosing_continue; | 
|  | if (!continue_construct) { | 
|  | return Fail() << "Invalid backedge (" << src << "->" << dest | 
|  | << "): " << src << " is not in a continue construct"; | 
|  | } | 
|  | if (src_pos != continue_construct->end_pos - 1) { | 
|  | return Fail() << "Invalid exit (" << src << "->" << dest | 
|  | << ") from continue construct: " << src | 
|  | << " is not the last block in the continue construct " | 
|  | "starting at " | 
|  | << src_construct.begin_id | 
|  | << " (violates post-dominance rule)"; | 
|  | } | 
|  | const auto* ct_info = GetBlockInfo(continue_construct->begin_id); | 
|  | assert(ct_info); | 
|  | if (ct_info->header_for_continue != dest) { | 
|  | return Fail() | 
|  | << "Invalid backedge (" << src << "->" << dest | 
|  | << "): does not branch to the corresponding loop header, " | 
|  | "expected " | 
|  | << ct_info->header_for_continue; | 
|  | } | 
|  | } else { | 
|  | // This is a forward edge. | 
|  | // For now, classify it that way, but we might update it. | 
|  | edge_kind = EdgeKind::kForward; | 
|  |  | 
|  | // Exit from a continue construct can only be from the last block. | 
|  | const auto* continue_construct = src_construct.enclosing_continue; | 
|  | if (continue_construct != nullptr) { | 
|  | if (continue_construct->ContainsPos(src_pos) && | 
|  | !continue_construct->ContainsPos(dest_pos) && | 
|  | (src_pos != continue_construct->end_pos - 1)) { | 
|  | return Fail() << "Invalid exit (" << src << "->" << dest | 
|  | << ") from continue construct: " << src | 
|  | << " is not the last block in the continue construct " | 
|  | "starting at " | 
|  | << continue_construct->begin_id | 
|  | << " (violates post-dominance rule)"; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check valid structured exit cases. | 
|  |  | 
|  | if (edge_kind == EdgeKind::kForward) { | 
|  | // Check for a 'break' from a loop or from a switch. | 
|  | const auto* breakable_header = HeaderIfBreakable( | 
|  | src_construct.enclosing_loop_or_continue_or_switch); | 
|  | if (breakable_header != nullptr) { | 
|  | if (dest == breakable_header->merge_for_header) { | 
|  | // It's a break. | 
|  | edge_kind = (breakable_header->construct->kind == | 
|  | Construct::kSwitchSelection) | 
|  | ? EdgeKind::kSwitchBreak | 
|  | : EdgeKind::kLoopBreak; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (edge_kind == EdgeKind::kForward) { | 
|  | // Check for a 'continue' from within a loop. | 
|  | const auto* loop_header = | 
|  | HeaderIfBreakable(src_construct.enclosing_loop); | 
|  | if (loop_header != nullptr) { | 
|  | if (dest == loop_header->continue_for_header) { | 
|  | // It's a continue. | 
|  | edge_kind = EdgeKind::kLoopContinue; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (edge_kind == EdgeKind::kForward) { | 
|  | const auto& header_info = *GetBlockInfo(src_construct.begin_id); | 
|  | if (dest == header_info.merge_for_header) { | 
|  | // Branch to construct's merge block.  The loop break and | 
|  | // switch break cases have already been covered. | 
|  | edge_kind = EdgeKind::kIfBreak; | 
|  | } | 
|  | } | 
|  |  | 
|  | // A forward edge into a case construct that comes from something | 
|  | // other than the OpSwitch is actually a fallthrough. | 
|  | if (edge_kind == EdgeKind::kForward) { | 
|  | const auto* switch_construct = | 
|  | (dest_info->case_head_for ? dest_info->case_head_for | 
|  | : dest_info->default_head_for); | 
|  | if (switch_construct != nullptr) { | 
|  | if (src != switch_construct->begin_id) { | 
|  | edge_kind = EdgeKind::kCaseFallThrough; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // The edge-kind has been finalized. | 
|  |  | 
|  | if ((edge_kind == EdgeKind::kForward) || | 
|  | (edge_kind == EdgeKind::kCaseFallThrough)) { | 
|  | normal_forward_edges.push_back(dest); | 
|  | } | 
|  | if (edge_kind == EdgeKind::kIfBreak) { | 
|  | if_break_edges.push_back(dest); | 
|  | } | 
|  |  | 
|  | if ((edge_kind == EdgeKind::kForward) || | 
|  | (edge_kind == EdgeKind::kCaseFallThrough)) { | 
|  | // Check for an invalid forward exit out of this construct. | 
|  | if (dest_info->pos >= src_construct.end_pos) { | 
|  | // In most cases we're bypassing the merge block for the source | 
|  | // construct. | 
|  | auto end_block = src_construct.end_id; | 
|  | const char* end_block_desc = "merge block"; | 
|  | if (src_construct.kind == Construct::kLoop) { | 
|  | // For a loop construct, we have two valid places to go: the | 
|  | // continue target or the merge for the loop header, which is | 
|  | // further down. | 
|  | const auto loop_merge = | 
|  | GetBlockInfo(src_construct.begin_id)->merge_for_header; | 
|  | if (dest_info->pos >= GetBlockInfo(loop_merge)->pos) { | 
|  | // We're bypassing the loop's merge block. | 
|  | end_block = loop_merge; | 
|  | } else { | 
|  | // We're bypassing the loop's continue target, and going into | 
|  | // the middle of the continue construct. | 
|  | end_block_desc = "continue target"; | 
|  | } | 
|  | } | 
|  | return Fail() | 
|  | << "Branch from block " << src << " to block " << dest | 
|  | << " is an invalid exit from construct starting at block " | 
|  | << src_construct.begin_id << "; branch bypasses " | 
|  | << end_block_desc << " " << end_block; | 
|  | } | 
|  |  | 
|  | // Check dominance. | 
|  |  | 
|  | //      Look for edges that violate the dominance condition: a branch | 
|  | //      from X to Y where: | 
|  | //        If Y is in a nearest enclosing continue construct headed by | 
|  | //        CT: | 
|  | //          Y is not CT, and | 
|  | //          In the structured order, X appears before CT order or | 
|  | //          after CT's backedge block. | 
|  | //        Otherwise, if Y is in a nearest enclosing construct | 
|  | //        headed by H: | 
|  | //          Y is not H, and | 
|  | //          In the structured order, X appears before H or after H's | 
|  | //          merge block. | 
|  |  | 
|  | const auto& dest_construct = *(dest_info->construct); | 
|  | if (dest != dest_construct.begin_id && | 
|  | !dest_construct.ContainsPos(src_pos)) { | 
|  | return Fail() << "Branch from " << src << " to " << dest | 
|  | << " bypasses " | 
|  | << (dest_construct.kind == Construct::kContinue | 
|  | ? "continue target " | 
|  | : "header ") | 
|  | << dest_construct.begin_id | 
|  | << " (dominance rule violated)"; | 
|  | } | 
|  | } | 
|  | }  // end forward edge | 
|  | }    // end successor | 
|  |  | 
|  | if (num_backedges > 1) { | 
|  | return Fail() << "Block " << src | 
|  | << " has too many backedges: " << num_backedges; | 
|  | } | 
|  | if ((normal_forward_edges.size() > 1) && | 
|  | (src_info->merge_for_header == 0)) { | 
|  | return Fail() << "Control flow diverges at block " << src << " (to " | 
|  | << normal_forward_edges[0] << ", " | 
|  | << normal_forward_edges[1] | 
|  | << ") but it is not a structured header (it has no merge " | 
|  | "instruction)"; | 
|  | } | 
|  | if ((normal_forward_edges.size() + if_break_edges.size() > 1) && | 
|  | (src_info->merge_for_header == 0)) { | 
|  | // There is a branch to the merge of an if-selection combined | 
|  | // with an other normal forward branch.  Control within the | 
|  | // if-selection needs to be gated by a flow predicate. | 
|  | for (auto if_break_dest : if_break_edges) { | 
|  | auto* head_info = | 
|  | GetBlockInfo(GetBlockInfo(if_break_dest)->header_for_merge); | 
|  | // Generate a guard name, but only once. | 
|  | if (head_info->flow_guard_name.empty()) { | 
|  | const std::string guard = "guard" + std::to_string(head_info->id); | 
|  | head_info->flow_guard_name = namer_.MakeDerivedName(guard); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | bool FunctionEmitter::FindIfSelectionInternalHeaders() { | 
|  | if (failed()) { | 
|  | return false; | 
|  | } | 
|  | for (auto& construct : constructs_) { | 
|  | if (construct->kind != Construct::kIfSelection) { | 
|  | continue; | 
|  | } | 
|  | auto* if_header_info = GetBlockInfo(construct->begin_id); | 
|  | const auto* branch = if_header_info->basic_block->terminator(); | 
|  | const auto true_head = branch->GetSingleWordInOperand(1); | 
|  | const auto false_head = branch->GetSingleWordInOperand(2); | 
|  |  | 
|  | auto* true_head_info = GetBlockInfo(true_head); | 
|  | auto* false_head_info = GetBlockInfo(false_head); | 
|  | const auto true_head_pos = true_head_info->pos; | 
|  | const auto false_head_pos = false_head_info->pos; | 
|  |  | 
|  | const bool contains_true = construct->ContainsPos(true_head_pos); | 
|  | const bool contains_false = construct->ContainsPos(false_head_pos); | 
|  |  | 
|  | if (contains_true) { | 
|  | if_header_info->true_head = true_head; | 
|  | } | 
|  | if (contains_false) { | 
|  | if_header_info->false_head = false_head; | 
|  | } | 
|  |  | 
|  | if ((true_head_info->header_for_merge != 0) && | 
|  | (true_head_info->header_for_merge != construct->begin_id)) { | 
|  | // The OpBranchConditional instruction for the true head block is an | 
|  | // alternate path to the merge block, and hence the merge block is not | 
|  | // dominated by its own (different) header. | 
|  | return Fail() << "Block " << true_head | 
|  | << " is the true branch for if-selection header " | 
|  | << construct->begin_id | 
|  | << " and also the merge block for header block " | 
|  | << true_head_info->header_for_merge | 
|  | << " (violates dominance rule)"; | 
|  | } | 
|  | if ((false_head_info->header_for_merge != 0) && | 
|  | (false_head_info->header_for_merge != construct->begin_id)) { | 
|  | // The OpBranchConditional instruction for the false head block is an | 
|  | // alternate path to the merge block, and hence the merge block is not | 
|  | // dominated by its own (different) header. | 
|  | return Fail() << "Block " << false_head | 
|  | << " is the false branch for if-selection header " | 
|  | << construct->begin_id | 
|  | << " and also the merge block for header block " | 
|  | << false_head_info->header_for_merge | 
|  | << " (violates dominance rule)"; | 
|  | } | 
|  |  | 
|  | if (contains_true && contains_false && (true_head_pos != false_head_pos)) { | 
|  | // This construct has both a "then" clause and an "else" clause. | 
|  | // | 
|  | // We have this structure: | 
|  | // | 
|  | //   Option 1: | 
|  | // | 
|  | //     * condbranch | 
|  | //        * true-head (start of then-clause) | 
|  | //        ... | 
|  | //        * end-then-clause | 
|  | //        * false-head (start of else-clause) | 
|  | //        ... | 
|  | //        * end-false-clause | 
|  | //        * premerge-head | 
|  | //        ... | 
|  | //     * selection merge | 
|  | // | 
|  | //   Option 2: | 
|  | // | 
|  | //     * condbranch | 
|  | //        * true-head (start of then-clause) | 
|  | //        ... | 
|  | //        * end-then-clause | 
|  | //        * false-head (start of else-clause) and also premerge-head | 
|  | //        ... | 
|  | //        * end-false-clause | 
|  | //     * selection merge | 
|  | // | 
|  | //   Option 3: | 
|  | // | 
|  | //     * condbranch | 
|  | //        * false-head (start of else-clause) | 
|  | //        ... | 
|  | //        * end-else-clause | 
|  | //        * true-head (start of then-clause) and also premerge-head | 
|  | //        ... | 
|  | //        * end-then-clause | 
|  | //     * selection merge | 
|  | // | 
|  | // The premerge-head exists if there is a kForward branch from the end | 
|  | // of the first clause to a block within the surrounding selection. | 
|  | // The first clause might be a then-clause or an else-clause. | 
|  | const auto second_head = std::max(true_head_pos, false_head_pos); | 
|  | const auto end_first_clause_pos = second_head - 1; | 
|  | assert(end_first_clause_pos < block_order_.size()); | 
|  | const auto end_first_clause = block_order_[end_first_clause_pos]; | 
|  | uint32_t premerge_id = 0; | 
|  | uint32_t if_break_id = 0; | 
|  | for (auto& then_succ_iter : GetBlockInfo(end_first_clause)->succ_edge) { | 
|  | const uint32_t dest_id = then_succ_iter.first; | 
|  | const auto edge_kind = then_succ_iter.second; | 
|  | switch (edge_kind) { | 
|  | case EdgeKind::kIfBreak: | 
|  | if_break_id = dest_id; | 
|  | break; | 
|  | case EdgeKind::kForward: { | 
|  | if (construct->ContainsPos(GetBlockInfo(dest_id)->pos)) { | 
|  | // It's a premerge. | 
|  | if (premerge_id != 0) { | 
|  | // TODO(dneto): I think this is impossible to trigger at this | 
|  | // point in the flow. It would require a merge instruction to | 
|  | // get past the check of "at-most-one-forward-edge". | 
|  | return Fail() | 
|  | << "invalid structure: then-clause headed by block " | 
|  | << true_head << " ending at block " << end_first_clause | 
|  | << " has two forward edges to within selection" | 
|  | << " going to " << premerge_id << " and " << dest_id; | 
|  | } | 
|  | premerge_id = dest_id; | 
|  | auto* dest_block_info = GetBlockInfo(dest_id); | 
|  | if_header_info->premerge_head = dest_id; | 
|  | if (dest_block_info->header_for_merge != 0) { | 
|  | // Premerge has two edges coming into it, from the then-clause | 
|  | // and the else-clause. It's also, by construction, not the | 
|  | // merge block of the if-selection.  So it must not be a merge | 
|  | // block itself. The OpBranchConditional instruction for the | 
|  | // false head block is an alternate path to the merge block, and | 
|  | // hence the merge block is not dominated by its own (different) | 
|  | // header. | 
|  | return Fail() | 
|  | << "Block " << premerge_id << " is the merge block for " | 
|  | << dest_block_info->header_for_merge | 
|  | << " but has alternate paths reaching it, starting from" | 
|  | << " blocks " << true_head << " and " << false_head | 
|  | << " which are the true and false branches for the" | 
|  | << " if-selection header block " << construct->begin_id | 
|  | << " (violates dominance rule)"; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (if_break_id != 0 && premerge_id != 0) { | 
|  | return Fail() << "Block " << end_first_clause | 
|  | << " in if-selection headed at block " | 
|  | << construct->begin_id | 
|  | << " branches to both the merge block " << if_break_id | 
|  | << " and also to block " << premerge_id | 
|  | << " later in the selection"; | 
|  | } | 
|  | } | 
|  | } | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | bool FunctionEmitter::EmitFunctionVariables() { | 
|  | if (failed()) { | 
|  | return false; | 
|  | } | 
|  | for (auto& inst : *function_.entry()) { | 
|  | if (inst.opcode() != SpvOpVariable) { | 
|  | continue; | 
|  | } | 
|  | auto* var_store_type = GetVariableStoreType(inst); | 
|  | if (failed()) { | 
|  | return false; | 
|  | } | 
|  | auto var = parser_impl_.MakeVariable( | 
|  | inst.result_id(), ast::StorageClass::kFunction, var_store_type); | 
|  | if (inst.NumInOperands() > 1) { | 
|  | // SPIR-V initializers are always constants. | 
|  | // (OpenCL also allows the ID of an OpVariable, but we don't handle that | 
|  | // here.) | 
|  | var->set_constructor( | 
|  | parser_impl_.MakeConstantExpression(inst.GetSingleWordInOperand(1)) | 
|  | .expr); | 
|  | } | 
|  | // TODO(dneto): Add the initializer via Variable::set_constructor. | 
|  | auto var_decl_stmt = | 
|  | std::make_unique<ast::VariableDeclStatement>(std::move(var)); | 
|  | AddStatementForInstruction(std::move(var_decl_stmt), inst); | 
|  | // Save this as an already-named value. | 
|  | identifier_values_.insert(inst.result_id()); | 
|  | } | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | TypedExpression FunctionEmitter::MakeExpression(uint32_t id) { | 
|  | if (failed()) { | 
|  | return {}; | 
|  | } | 
|  | if (identifier_values_.count(id)) { | 
|  | return TypedExpression( | 
|  | parser_impl_.ConvertType(def_use_mgr_->GetDef(id)->type_id()), | 
|  | std::make_unique<ast::IdentifierExpression>(namer_.Name(id))); | 
|  | } | 
|  | if (singly_used_values_.count(id)) { | 
|  | auto expr = std::move(singly_used_values_[id]); | 
|  | singly_used_values_.erase(id); | 
|  | return expr; | 
|  | } | 
|  | const auto* spirv_constant = constant_mgr_->FindDeclaredConstant(id); | 
|  | if (spirv_constant) { | 
|  | return parser_impl_.MakeConstantExpression(id); | 
|  | } | 
|  | const auto* inst = def_use_mgr_->GetDef(id); | 
|  | if (inst == nullptr) { | 
|  | Fail() << "ID " << id << " does not have a defining SPIR-V instruction"; | 
|  | return {}; | 
|  | } | 
|  | switch (inst->opcode()) { | 
|  | case SpvOpVariable: | 
|  | // This occurs for module-scope variables. | 
|  | return TypedExpression(parser_impl_.ConvertType(inst->type_id()), | 
|  | std::make_unique<ast::IdentifierExpression>( | 
|  | namer_.Name(inst->result_id()))); | 
|  | default: | 
|  | break; | 
|  | } | 
|  | Fail() << "unhandled expression for ID " << id << "\n" << inst->PrettyPrint(); | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | bool FunctionEmitter::EmitFunctionBodyStatements() { | 
|  | // Dump the basic blocks in order, grouped by construct. | 
|  |  | 
|  | // We maintain a stack of StatementBlock objects, where new statements | 
|  | // are always written to the topmost entry of the stack. By this point in | 
|  | // processing, we have already recorded the interesting control flow | 
|  | // boundaries in the BlockInfo and associated Construct objects. As we | 
|  | // enter a new statement grouping, we push onto the stack, and also schedule | 
|  | // the statement block's completion and removal at a future block's ID. | 
|  |  | 
|  | // Upon entry, the statement stack has one entry representing the whole | 
|  | // function. | 
|  | assert(!constructs_.empty()); | 
|  | Construct* function_construct = constructs_[0].get(); | 
|  | assert(function_construct != nullptr); | 
|  | assert(function_construct->kind == Construct::kFunction); | 
|  | // Make the first entry valid by filling in the construct field, which | 
|  | // had not been computed at the time the entry was first created. | 
|  | // TODO(dneto): refactor how the first construct is created vs. | 
|  | // this statements stack entry is populated. | 
|  | assert(statements_stack_.size() == 1); | 
|  | statements_stack_[0].construct_ = function_construct; | 
|  |  | 
|  | for (auto block_id : block_order()) { | 
|  | if (!EmitBasicBlock(*GetBlockInfo(block_id))) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | bool FunctionEmitter::EmitBasicBlock(const BlockInfo& block_info) { | 
|  | // Close off previous constructs. | 
|  | while (!statements_stack_.empty() && | 
|  | (statements_stack_.back().end_id_ == block_info.id)) { | 
|  | StatementBlock& sb = statements_stack_.back(); | 
|  | sb.completion_action_(&sb); | 
|  | statements_stack_.pop_back(); | 
|  | } | 
|  | if (statements_stack_.empty()) { | 
|  | return Fail() << "internal error: statements stack empty at block " | 
|  | << block_info.id; | 
|  | } | 
|  |  | 
|  | // Enter new constructs. | 
|  |  | 
|  | std::vector<const Construct*> entering_constructs;  // inner most comes first | 
|  | { | 
|  | auto* here = block_info.construct; | 
|  | auto* const top_construct = statements_stack_.back().construct_; | 
|  | while (here != top_construct) { | 
|  | // Only enter a construct at its header block. | 
|  | if (here->begin_id == block_info.id) { | 
|  | entering_constructs.push_back(here); | 
|  | } | 
|  | here = here->parent; | 
|  | } | 
|  | } | 
|  | // What constructs can we have entered? | 
|  | // - It can't be kFunction, because there is only one of those, and it was | 
|  | //   already on the stack at the outermost level. | 
|  | // - We have at most one of kIfSelection, kSwitchSelection, or kLoop because | 
|  | //   each of those is headed by a block with a merge instruction (OpLoopMerge | 
|  | //   for kLoop, and OpSelectionMerge for the others), and the kIfSelection and | 
|  | //   kSwitchSelection header blocks end in different branch instructions. | 
|  | // - A kContinue can contain a kContinue | 
|  | //   This is possible in Vulkan SPIR-V, but Tint disallows this by the rule | 
|  | //   that a block can be continue target for at most one header block. See | 
|  | //   test DISABLED_BlockIsContinueForMoreThanOneHeader. If we generalize this, | 
|  | //   then by a dominance argument, the inner loop continue target can only be | 
|  | //   a single-block loop. | 
|  | // TODO(dneto): Handle this case. | 
|  | // - All that's left is a kContinue and one of kIfSelection, kSwitchSelection, | 
|  | //   kLoop. | 
|  | // | 
|  | //   The kContinue can be the parent of the other.  For example, a selection | 
|  | //   starting at the first block of a continue construct. | 
|  | // | 
|  | //   The kContinue can't be the child of the other because either: | 
|  | //     - The other can't be kLoop because: | 
|  | //        - If the kLoop is for a different loop then the kContinue, then | 
|  | //          the kContinue must be its own loop header, and so the same | 
|  | //          block is two different loops. That's a contradiction. | 
|  | //        - If the kLoop is for a the same loop, then this is a contradiction | 
|  | //          because a kContinue and its kLoop have disjoint block sets. | 
|  | //     - The other construct can't be a selection because: | 
|  | //       - The kContinue construct is the entire loop, i.e. the continue | 
|  | //         target is its own loop header block.  But then the continue target | 
|  | //         has an OpLoopMerge instruction, which contradicts this block being | 
|  | //         a selection header. | 
|  | //       - The kContinue is in a multi-block loop that is has a non-empty | 
|  | //         kLoop; and the selection contains the kContinue block but not the | 
|  | //         loop block. That breaks dominance rules. That is, the continue | 
|  | //         target is dominated by that loop header, and so gets found by the | 
|  | //         block traversal on the outside before the selection is found. The | 
|  | //         selection is inside the outer loop. | 
|  | // | 
|  | // So we fall into one of the following cases: | 
|  | //  - We are entering 0 or 1 constructs, or | 
|  | //  - We are entering 2 constructs, with the outer one being a kContinue, the | 
|  | //    inner one is not a continue. | 
|  | if (entering_constructs.size() > 2) { | 
|  | return Fail() << "internal error: bad construct nesting found"; | 
|  | } | 
|  | if (entering_constructs.size() == 2) { | 
|  | auto inner_kind = entering_constructs[0]->kind; | 
|  | auto outer_kind = entering_constructs[1]->kind; | 
|  | if (outer_kind != Construct::kContinue) { | 
|  | return Fail() << "internal error: bad construct nesting. Only Continue " | 
|  | "construct can be outer construct on same block.  Got " | 
|  | "outer kind " | 
|  | << int(outer_kind) << " inner kind " << int(inner_kind); | 
|  | } | 
|  | if (inner_kind == Construct::kContinue) { | 
|  | return Fail() << "internal error: unsupported construct nesting: " | 
|  | "Continue around Continue"; | 
|  | } | 
|  | if (inner_kind != Construct::kIfSelection && | 
|  | inner_kind != Construct::kSwitchSelection && | 
|  | inner_kind != Construct::kLoop) { | 
|  | return Fail() << "internal error: bad construct nesting. Continue around " | 
|  | "something other than if, switch, or loop"; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Enter constructs from outermost to innermost. | 
|  | // kLoop and kContinue push a new statement-block onto the stack before | 
|  | // emitting statements in the block. | 
|  | // kIfSelection and kSwitchSelection emit statements in the block and then | 
|  | // emit push a new statement-block. Only emit the statements in the block | 
|  | // once. | 
|  |  | 
|  | // Have we emitted the statements for this block? | 
|  | bool emitted = false; | 
|  |  | 
|  | // When entering an if-selection or switch-selection, we will emit the WGSL | 
|  | // construct to cause the divergent branching.  But otherwise, we will | 
|  | // emit a "normal" block terminator, which occurs at the end of this method. | 
|  | bool has_normal_terminator = true; | 
|  |  | 
|  | for (auto iter = entering_constructs.rbegin(); | 
|  | iter != entering_constructs.rend(); ++iter) { | 
|  | const Construct* construct = *iter; | 
|  |  | 
|  | switch (construct->kind) { | 
|  | case Construct::kFunction: | 
|  | return Fail() << "internal error: nested function construct"; | 
|  |  | 
|  | case Construct::kLoop: | 
|  | if (!EmitLoopStart(construct)) { | 
|  | return false; | 
|  | } | 
|  | if (!EmitStatementsInBasicBlock(block_info, &emitted)) { | 
|  | return false; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Construct::kContinue: | 
|  | if (block_info.is_continue_entire_loop) { | 
|  | if (!EmitLoopStart(construct)) { | 
|  | return false; | 
|  | } | 
|  | if (!EmitStatementsInBasicBlock(block_info, &emitted)) { | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | if (!EmitContinuingStart(construct)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Construct::kIfSelection: | 
|  | if (!EmitStatementsInBasicBlock(block_info, &emitted)) { | 
|  | return false; | 
|  | } | 
|  | if (!EmitIfStart(block_info)) { | 
|  | return false; | 
|  | } | 
|  | has_normal_terminator = false; | 
|  | break; | 
|  |  | 
|  | case Construct::kSwitchSelection: | 
|  | if (!EmitStatementsInBasicBlock(block_info, &emitted)) { | 
|  | return false; | 
|  | } | 
|  | if (!EmitSwitchStart(block_info)) { | 
|  | return false; | 
|  | } | 
|  | has_normal_terminator = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we aren't starting or transitioning, then emit the normal | 
|  | // statements now. | 
|  | if (!EmitStatementsInBasicBlock(block_info, &emitted)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (has_normal_terminator) { | 
|  | if (!EmitNormalTerminator(block_info)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | bool FunctionEmitter::EmitIfStart(const BlockInfo& block_info) { | 
|  | // The block is the if-header block.  So its construct is the if construct. | 
|  | auto* construct = block_info.construct; | 
|  | assert(construct->kind == Construct::kIfSelection); | 
|  | assert(construct->begin_id == block_info.id); | 
|  |  | 
|  | const uint32_t true_head = block_info.true_head; | 
|  | const uint32_t false_head = block_info.false_head; | 
|  | const uint32_t premerge_head = block_info.premerge_head; | 
|  |  | 
|  | const std::string guard_name = block_info.flow_guard_name; | 
|  | if (!guard_name.empty()) { | 
|  | // Declare the guard variable just before the "if", initialized to true. | 
|  | auto guard_var = std::make_unique<ast::Variable>( | 
|  | guard_name, ast::StorageClass::kFunction, parser_impl_.BoolType()); | 
|  | guard_var->set_constructor(MakeTrue()); | 
|  | auto guard_decl = | 
|  | std::make_unique<ast::VariableDeclStatement>(std::move(guard_var)); | 
|  | AddStatement(std::move(guard_decl)); | 
|  | } | 
|  |  | 
|  | auto* const if_stmt = | 
|  | AddStatement(std::make_unique<ast::IfStatement>())->AsIf(); | 
|  | const auto condition_id = | 
|  | block_info.basic_block->terminator()->GetSingleWordInOperand(0); | 
|  | // Generate the code for the condition. | 
|  | if_stmt->set_condition(std::move(MakeExpression(condition_id).expr)); | 
|  |  | 
|  | // Compute the block IDs that should end the then-clause and the else-clause. | 
|  |  | 
|  | // We need to know where the *emitted* selection should end, i.e. the intended | 
|  | // merge block id.  That should be the current premerge block, if it exists, | 
|  | // or otherwise the declared merge block. | 
|  | // | 
|  | // This is another way to think about it: | 
|  | //   If there is a premerge, then there are three cases: | 
|  | //    - premerge_head is different from the true_head and false_head: | 
|  | //      - Premerge comes last. In effect, move the selection merge up | 
|  | //        to where the premerge begins. | 
|  | //    - premerge_head is the same as the false_head | 
|  | //      - This is really an if-then without an else clause. | 
|  | //        Move the merge up to where the premerge is. | 
|  | //    - premerge_head is the same as the true_head | 
|  | //      - This is really an if-else without an then clause. | 
|  | //        Emit it as:   if (cond) {} else {....} | 
|  | //        Move the merge up to where the premerge is. | 
|  | const uint32_t intended_merge = | 
|  | premerge_head ? premerge_head : construct->end_id; | 
|  |  | 
|  | // then-clause: | 
|  | //   If true_head exists: | 
|  | //     spans from true head to the earlier of the false head (if it exists) | 
|  | //     or the selection merge. | 
|  | //   Otherwise: | 
|  | //     ends at from the false head (if it exists), otherwise the selection | 
|  | //     end. | 
|  | const uint32_t then_end = false_head ? false_head : intended_merge; | 
|  |  | 
|  | // else-clause: | 
|  | //   ends at the premerge head (if it exists) or at the selection end. | 
|  | const uint32_t else_end = premerge_head ? premerge_head : intended_merge; | 
|  |  | 
|  | // Push statement blocks for the then-clause and the else-clause. | 
|  | // But make sure we do it in the right order. | 
|  |  | 
|  | auto push_then = [this, if_stmt, then_end, construct]() { | 
|  | // Push the then clause onto the stack. | 
|  | PushNewStatementBlock(construct, then_end, [if_stmt](StatementBlock* s) { | 
|  | // The "then" consists of the statement list | 
|  | // from the top of statments stack, without an | 
|  | // elseif condition. | 
|  | if_stmt->set_body(std::move(s->statements_)); | 
|  | }); | 
|  | }; | 
|  |  | 
|  | auto push_else = [this, if_stmt, else_end, construct]() { | 
|  | // Push the else clause onto the stack first. | 
|  | PushNewStatementBlock(construct, else_end, [if_stmt](StatementBlock* s) { | 
|  | // Only set the else-clause if there are statements to fill it. | 
|  | if (!s->statements_->empty()) { | 
|  | // The "else" consists of the statement list from the top of statments | 
|  | // stack, without an elseif condition. | 
|  | ast::ElseStatementList else_stmts; | 
|  | else_stmts.emplace_back(std::make_unique<ast::ElseStatement>( | 
|  | nullptr, std::move(s->statements_))); | 
|  | if_stmt->set_else_statements(std::move(else_stmts)); | 
|  | } | 
|  | }); | 
|  | }; | 
|  |  | 
|  | if (GetBlockInfo(else_end)->pos < GetBlockInfo(then_end)->pos) { | 
|  | // Process the else-clause first.  The then-clause will be empty so avoid | 
|  | // pushing onto the stack at all. | 
|  | push_else(); | 
|  | } else { | 
|  | // Blocks for the then-clause appear before blocks for the else-clause. | 
|  | // So push the else-clause handling onto the stack first. The else-clause | 
|  | // might be empty, but this works anyway. | 
|  |  | 
|  | // Handle the premerge, if it exists. | 
|  | if (premerge_head) { | 
|  | // The top of the stack is the statement block that is the parent of the | 
|  | // if-statement. Adding statements now will place them after that 'if'. | 
|  | if (guard_name.empty()) { | 
|  | // We won't have a flow guard for the premerge. | 
|  | // Insert a trivial if(true) { ... } around the blocks from the | 
|  | // premerge head until the end of the if-selection.  This is needed | 
|  | // to ensure uniform reconvergence occurs at the end of the if-selection | 
|  | // just like in the original SPIR-V. | 
|  | PushTrueGuard(construct->end_id); | 
|  | } else { | 
|  | // Add a flow guard around the blocks in the premrege area. | 
|  | PushGuard(guard_name, construct->end_id); | 
|  | } | 
|  | } | 
|  |  | 
|  | push_else(); | 
|  | if (true_head && false_head && !guard_name.empty()) { | 
|  | // There are non-trivial then and else clauses. | 
|  | // We have to guard the start of the else. | 
|  | PushGuard(guard_name, else_end); | 
|  | } | 
|  | push_then(); | 
|  | } | 
|  |  | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | bool FunctionEmitter::EmitSwitchStart(const BlockInfo& block_info) { | 
|  | // The block is the if-header block.  So its construct is the if construct. | 
|  | auto* construct = block_info.construct; | 
|  | assert(construct->kind == Construct::kSwitchSelection); | 
|  | assert(construct->begin_id == block_info.id); | 
|  | const auto* branch = block_info.basic_block->terminator(); | 
|  |  | 
|  | auto* const switch_stmt = | 
|  | AddStatement(std::make_unique<ast::SwitchStatement>())->AsSwitch(); | 
|  | const auto selector_id = branch->GetSingleWordInOperand(0); | 
|  | // Generate the code for the selector. | 
|  | auto selector = MakeExpression(selector_id); | 
|  | switch_stmt->set_condition(std::move(selector.expr)); | 
|  |  | 
|  | // First, push the statement block for the entire switch.  All the actual | 
|  | // work is done by completion actions of the case/default clauses. | 
|  | PushNewStatementBlock( | 
|  | construct, construct->end_id, [switch_stmt](StatementBlock* s) { | 
|  | switch_stmt->set_body(std::move(*std::move(s->cases_))); | 
|  | }); | 
|  | statements_stack_.back().cases_ = std::make_unique<ast::CaseStatementList>(); | 
|  | // Grab a pointer to the case list.  It will get buried in the statement block | 
|  | // stack. | 
|  | auto* cases = statements_stack_.back().cases_.get(); | 
|  |  | 
|  | // We will push statement-blocks onto the stack to gather the statements in | 
|  | // the default clause and cases clauses. Determine the list of blocks | 
|  | // that start each clause. | 
|  | std::vector<const BlockInfo*> clause_heads; | 
|  |  | 
|  | // Collect the case clauses, even if they are just the merge block. | 
|  | // First the default clause. | 
|  | const auto default_id = branch->GetSingleWordInOperand(1); | 
|  | const auto* default_info = GetBlockInfo(default_id); | 
|  | clause_heads.push_back(default_info); | 
|  | // Now the case clauses. | 
|  | for (uint32_t iarg = 2; iarg + 1 < branch->NumInOperands(); iarg += 2) { | 
|  | const auto case_target_id = branch->GetSingleWordInOperand(iarg + 1); | 
|  | clause_heads.push_back(GetBlockInfo(case_target_id)); | 
|  | } | 
|  |  | 
|  | std::stable_sort(clause_heads.begin(), clause_heads.end(), | 
|  | [](const BlockInfo* lhs, const BlockInfo* rhs) { | 
|  | return lhs->pos < rhs->pos; | 
|  | }); | 
|  | // Remove duplicates | 
|  | { | 
|  | // Use read index r, and write index w. | 
|  | // Invariant: w <= r; | 
|  | size_t w = 0; | 
|  | for (size_t r = 0; r < clause_heads.size(); ++r) { | 
|  | if (clause_heads[r] != clause_heads[w]) { | 
|  | ++w;  // Advance the write cursor. | 
|  | } | 
|  | clause_heads[w] = clause_heads[r]; | 
|  | } | 
|  | // We know it's not empty because it always has at least a default clause. | 
|  | assert(!clause_heads.empty()); | 
|  | clause_heads.resize(w + 1); | 
|  | } | 
|  |  | 
|  | // Push them on in reverse order. | 
|  | const auto last_clause_index = clause_heads.size() - 1; | 
|  | for (size_t i = last_clause_index;; --i) { | 
|  | // Create the case clause.  Temporarily put it in the wrong order | 
|  | // on the case statement list. | 
|  | cases->emplace_back(std::make_unique<ast::CaseStatement>()); | 
|  | auto* clause = cases->back().get(); | 
|  |  | 
|  | // Create a list of integer literals for the selector values leading to | 
|  | // this case clause. | 
|  | ast::CaseSelectorList selectors; | 
|  | const auto* values_ptr = clause_heads[i]->case_values.get(); | 
|  | const bool has_selectors = (values_ptr && !values_ptr->empty()); | 
|  | if (has_selectors) { | 
|  | std::vector<uint64_t> values(values_ptr->begin(), values_ptr->end()); | 
|  | std::stable_sort(values.begin(), values.end()); | 
|  | for (auto value : values) { | 
|  | // The rest of this module can handle up to 64 bit switch values. | 
|  | // The Tint AST handles 32-bit values. | 
|  | const uint32_t value32 = uint32_t(value & 0xFFFFFFFF); | 
|  | if (selector.type->is_unsigned_scalar_or_vector()) { | 
|  | selectors.emplace_back( | 
|  | std::make_unique<ast::UintLiteral>(selector.type, value32)); | 
|  | } else { | 
|  | selectors.emplace_back( | 
|  | std::make_unique<ast::SintLiteral>(selector.type, value32)); | 
|  | } | 
|  | } | 
|  | clause->set_selectors(std::move(selectors)); | 
|  | } | 
|  |  | 
|  | // Where does this clause end? | 
|  | const auto end_id = (i + 1 < clause_heads.size()) ? clause_heads[i + 1]->id | 
|  | : construct->end_id; | 
|  |  | 
|  | PushNewStatementBlock(construct, end_id, [clause](StatementBlock* s) { | 
|  | clause->set_body(std::move(s->statements_)); | 
|  | }); | 
|  |  | 
|  | if ((default_info == clause_heads[i]) && has_selectors && | 
|  | construct->ContainsPos(default_info->pos)) { | 
|  | // Generate a default clause with a just fallthrough. | 
|  | auto stmts = std::make_unique<ast::BlockStatement>(); | 
|  | stmts->append(std::make_unique<ast::FallthroughStatement>()); | 
|  | auto case_stmt = std::make_unique<ast::CaseStatement>(); | 
|  | case_stmt->set_body(std::move(stmts)); | 
|  | cases->emplace_back(std::move(case_stmt)); | 
|  | } | 
|  |  | 
|  | if (i == 0) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We've listed cases in reverse order in the switch statement. Reorder them | 
|  | // to match the presentation order in WGSL. | 
|  | std::reverse(cases->begin(), cases->end()); | 
|  |  | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | bool FunctionEmitter::EmitLoopStart(const Construct* construct) { | 
|  | auto* loop = AddStatement(std::make_unique<ast::LoopStatement>())->AsLoop(); | 
|  | PushNewStatementBlock( | 
|  | construct, construct->end_id, | 
|  | [loop](StatementBlock* s) { loop->set_body(std::move(s->statements_)); }); | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | bool FunctionEmitter::EmitContinuingStart(const Construct* construct) { | 
|  | // A continue construct has the same depth as its associated loop | 
|  | // construct. Start a continue construct. | 
|  | auto* loop_candidate = LastStatement(); | 
|  | if (!loop_candidate->IsLoop()) { | 
|  | return Fail() << "internal error: starting continue construct, " | 
|  | "expected loop on top of stack"; | 
|  | } | 
|  | auto* loop = loop_candidate->AsLoop(); | 
|  | PushNewStatementBlock(construct, construct->end_id, | 
|  | [loop](StatementBlock* s) { | 
|  | loop->set_continuing(std::move(s->statements_)); | 
|  | }); | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | bool FunctionEmitter::EmitNormalTerminator(const BlockInfo& block_info) { | 
|  | const auto& terminator = *(block_info.basic_block->terminator()); | 
|  | switch (terminator.opcode()) { | 
|  | case SpvOpReturn: | 
|  | AddStatement(std::make_unique<ast::ReturnStatement>()); | 
|  | return true; | 
|  | case SpvOpReturnValue: { | 
|  | auto value = MakeExpression(terminator.GetSingleWordInOperand(0)); | 
|  | AddStatement( | 
|  | std::make_unique<ast::ReturnStatement>(std::move(value.expr))); | 
|  | } | 
|  | return true; | 
|  | case SpvOpKill: | 
|  | // For now, assume SPIR-V OpKill has same semantics as WGSL discard. | 
|  | // TODO(dneto): https://github.com/gpuweb/gpuweb/issues/676 | 
|  | AddStatement(std::make_unique<ast::DiscardStatement>()); | 
|  | return true; | 
|  | case SpvOpUnreachable: | 
|  | // Translate as if it's a return. This avoids the problem where WGSL | 
|  | // requires a return statement at the end of the function body. | 
|  | { | 
|  | const auto* result_type = type_mgr_->GetType(function_.type_id()); | 
|  | if (result_type->AsVoid() != nullptr) { | 
|  | AddStatement(std::make_unique<ast::ReturnStatement>()); | 
|  | } else { | 
|  | auto* ast_type = parser_impl_.ConvertType(function_.type_id()); | 
|  | AddStatement(std::make_unique<ast::ReturnStatement>( | 
|  | parser_impl_.MakeNullValue(ast_type))); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | case SpvOpBranch: { | 
|  | const auto dest_id = terminator.GetSingleWordInOperand(0); | 
|  | AddStatement(MakeBranch(block_info, *GetBlockInfo(dest_id))); | 
|  | return true; | 
|  | } | 
|  | case SpvOpBranchConditional: { | 
|  | // If both destinations are the same, then do the same as we would | 
|  | // for an unconditional branch (OpBranch). | 
|  | const auto true_dest = terminator.GetSingleWordInOperand(1); | 
|  | const auto false_dest = terminator.GetSingleWordInOperand(2); | 
|  | if (true_dest == false_dest) { | 
|  | // This is like an uncondtional branch. | 
|  | AddStatement(MakeBranch(block_info, *GetBlockInfo(true_dest))); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const EdgeKind true_kind = block_info.succ_edge.find(true_dest)->second; | 
|  | const EdgeKind false_kind = block_info.succ_edge.find(false_dest)->second; | 
|  | auto* const true_info = GetBlockInfo(true_dest); | 
|  | auto* const false_info = GetBlockInfo(false_dest); | 
|  | auto cond = MakeExpression(terminator.GetSingleWordInOperand(0)).expr; | 
|  |  | 
|  | // We have two distinct destinations. But we only get here if this | 
|  | // is a normal terminator; in particular the source block is *not* the | 
|  | // start of an if-selection or a switch-selection.  So at most one branch | 
|  | // is a kForward, kCaseFallThrough, or kIfBreak. | 
|  |  | 
|  | // The fallthrough case is special because WGSL requires the fallthrough | 
|  | // statement to be last in the case clause. | 
|  | if (true_kind == EdgeKind::kCaseFallThrough) { | 
|  | return EmitConditionalCaseFallThrough(block_info, std::move(cond), | 
|  | false_kind, *false_info, true); | 
|  | } else if (false_kind == EdgeKind::kCaseFallThrough) { | 
|  | return EmitConditionalCaseFallThrough(block_info, std::move(cond), | 
|  | true_kind, *true_info, false); | 
|  | } | 
|  |  | 
|  | // At this point, at most one edge is kForward or kIfBreak. | 
|  |  | 
|  | // Emit an 'if' statement to express the *other* branch as a conditional | 
|  | // break or continue.  Either or both of these could be nullptr. | 
|  | // (A nullptr is generated for kIfBreak, kForward, or kBack.) | 
|  | // Also if one of the branches is an if-break out of an if-selection | 
|  | // requiring a flow guard, then get that flow guard name too.  It will | 
|  | // come from at most one of these two branches. | 
|  | std::string flow_guard; | 
|  | auto true_branch = | 
|  | MakeBranchDetailed(block_info, *true_info, false, &flow_guard); | 
|  | auto false_branch = | 
|  | MakeBranchDetailed(block_info, *false_info, false, &flow_guard); | 
|  |  | 
|  | AddStatement(MakeSimpleIf(std::move(cond), std::move(true_branch), | 
|  | std::move(false_branch))); | 
|  | if (!flow_guard.empty()) { | 
|  | PushGuard(flow_guard, statements_stack_.back().end_id_); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | case SpvOpSwitch: | 
|  | // TODO(dneto) | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<ast::Statement> FunctionEmitter::MakeBranchDetailed( | 
|  | const BlockInfo& src_info, | 
|  | const BlockInfo& dest_info, | 
|  | bool forced, | 
|  | std::string* flow_guard_name_ptr) const { | 
|  | auto kind = src_info.succ_edge.find(dest_info.id)->second; | 
|  | switch (kind) { | 
|  | case EdgeKind::kBack: | 
|  | // Nothing to do. The loop backedge is implicit. | 
|  | break; | 
|  | case EdgeKind::kSwitchBreak: { | 
|  | if (forced) { | 
|  | return std::make_unique<ast::BreakStatement>(); | 
|  | } | 
|  | // Unless forced, don't bother with a break at the end of a case/default | 
|  | // clause. | 
|  | const auto header = dest_info.header_for_merge; | 
|  | assert(header != 0); | 
|  | const auto* exiting_construct = GetBlockInfo(header)->construct; | 
|  | assert(exiting_construct->kind == Construct::kSwitchSelection); | 
|  | const auto candidate_next_case_pos = src_info.pos + 1; | 
|  | // Leaving the last block from the last case? | 
|  | if (candidate_next_case_pos == dest_info.pos) { | 
|  | // No break needed. | 
|  | return nullptr; | 
|  | } | 
|  | // Leaving the last block from not-the-last-case? | 
|  | if (exiting_construct->ContainsPos(candidate_next_case_pos)) { | 
|  | const auto* candidate_next_case = | 
|  | GetBlockInfo(block_order_[candidate_next_case_pos]); | 
|  | if (candidate_next_case->case_head_for == exiting_construct || | 
|  | candidate_next_case->default_head_for == exiting_construct) { | 
|  | // No break needed. | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  | // We need a break. | 
|  | return std::make_unique<ast::BreakStatement>(); | 
|  | } | 
|  | case EdgeKind::kLoopBreak: | 
|  | return std::make_unique<ast::BreakStatement>(); | 
|  | case EdgeKind::kLoopContinue: | 
|  | // An unconditional continue to the next block is redundant and ugly. | 
|  | // Skip it in that case. | 
|  | if (dest_info.pos == 1 + src_info.pos) { | 
|  | break; | 
|  | } | 
|  | // Otherwise, emit a regular continue statement. | 
|  | return std::make_unique<ast::ContinueStatement>(); | 
|  | case EdgeKind::kIfBreak: { | 
|  | const auto& flow_guard = | 
|  | GetBlockInfo(dest_info.header_for_merge)->flow_guard_name; | 
|  | if (!flow_guard.empty()) { | 
|  | if (flow_guard_name_ptr != nullptr) { | 
|  | *flow_guard_name_ptr = flow_guard; | 
|  | } | 
|  | // Signal an exit from the branch. | 
|  | return std::make_unique<ast::AssignmentStatement>( | 
|  | std::make_unique<ast::IdentifierExpression>(flow_guard), | 
|  | MakeFalse()); | 
|  | } | 
|  |  | 
|  | // For an unconditional branch, the break out to an if-selection | 
|  | // merge block is implicit. | 
|  | break; | 
|  | } | 
|  | case EdgeKind::kCaseFallThrough: | 
|  | return std::make_unique<ast::FallthroughStatement>(); | 
|  | case EdgeKind::kForward: | 
|  | // Unconditional forward branch is implicit. | 
|  | break; | 
|  | } | 
|  | return {nullptr}; | 
|  | } | 
|  |  | 
|  | std::unique_ptr<ast::Statement> FunctionEmitter::MakeSimpleIf( | 
|  | std::unique_ptr<ast::Expression> condition, | 
|  | std::unique_ptr<ast::Statement> then_stmt, | 
|  | std::unique_ptr<ast::Statement> else_stmt) const { | 
|  | if ((then_stmt == nullptr) && (else_stmt == nullptr)) { | 
|  | return nullptr; | 
|  | } | 
|  | auto if_stmt = std::make_unique<ast::IfStatement>(); | 
|  | if_stmt->set_condition(std::move(condition)); | 
|  | if (then_stmt != nullptr) { | 
|  | auto stmts = std::make_unique<ast::BlockStatement>(); | 
|  | stmts->append(std::move(then_stmt)); | 
|  | if_stmt->set_body(std::move(stmts)); | 
|  | } | 
|  | if (else_stmt != nullptr) { | 
|  | auto stmts = std::make_unique<ast::BlockStatement>(); | 
|  | stmts->append(std::move(else_stmt)); | 
|  | ast::ElseStatementList else_stmts; | 
|  | else_stmts.emplace_back( | 
|  | std::make_unique<ast::ElseStatement>(nullptr, std::move(stmts))); | 
|  | if_stmt->set_else_statements(std::move(else_stmts)); | 
|  | } | 
|  | return if_stmt; | 
|  | } | 
|  |  | 
|  | bool FunctionEmitter::EmitConditionalCaseFallThrough( | 
|  | const BlockInfo& src_info, | 
|  | std::unique_ptr<ast::Expression> cond, | 
|  | EdgeKind other_edge_kind, | 
|  | const BlockInfo& other_dest, | 
|  | bool fall_through_is_true_branch) { | 
|  | // In WGSL, the fallthrough statement must come last in the case clause. | 
|  | // So we'll emit an if statement for the other branch, and then emit | 
|  | // the fallthrough. | 
|  |  | 
|  | // We have two distinct destinations. But we only get here if this | 
|  | // is a normal terminator; in particular the source block is *not* the | 
|  | // start of an if-selection.  So at most one branch is a kForward or | 
|  | // kCaseFallThrough. | 
|  | if (other_edge_kind == EdgeKind::kForward) { | 
|  | return Fail() | 
|  | << "internal error: normal terminator OpBranchConditional has " | 
|  | "both forward and fallthrough edges"; | 
|  | } | 
|  | if (other_edge_kind == EdgeKind::kIfBreak) { | 
|  | return Fail() | 
|  | << "internal error: normal terminator OpBranchConditional has " | 
|  | "both IfBreak and fallthrough edges.  Violates nesting rule"; | 
|  | } | 
|  | if (other_edge_kind == EdgeKind::kBack) { | 
|  | return Fail() | 
|  | << "internal error: normal terminator OpBranchConditional has " | 
|  | "both backedge and fallthrough edges.  Violates nesting rule"; | 
|  | } | 
|  | auto other_branch = MakeForcedBranch(src_info, other_dest); | 
|  | if (other_branch == nullptr) { | 
|  | return Fail() << "internal error: expected a branch for edge-kind " | 
|  | << int(other_edge_kind); | 
|  | } | 
|  | if (fall_through_is_true_branch) { | 
|  | AddStatement( | 
|  | MakeSimpleIf(std::move(cond), nullptr, std::move(other_branch))); | 
|  | } else { | 
|  | AddStatement( | 
|  | MakeSimpleIf(std::move(cond), std::move(other_branch), nullptr)); | 
|  | } | 
|  | AddStatement(std::make_unique<ast::FallthroughStatement>()); | 
|  |  | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | bool FunctionEmitter::EmitStatementsInBasicBlock(const BlockInfo& block_info, | 
|  | bool* already_emitted) { | 
|  | if (*already_emitted) { | 
|  | // Only emit this part of the basic block once. | 
|  | return true; | 
|  | } | 
|  | // Returns the given list of local definition IDs, sorted by their index. | 
|  | auto sorted_by_index = [this](const std::vector<uint32_t>& ids) { | 
|  | auto sorted = ids; | 
|  | std::stable_sort(sorted.begin(), sorted.end(), | 
|  | [this](const uint32_t lhs, const uint32_t rhs) { | 
|  | return GetDefInfo(lhs)->index < GetDefInfo(rhs)->index; | 
|  | }); | 
|  | return sorted; | 
|  | }; | 
|  |  | 
|  | // Emit declarations of hoisted variables, in index order. | 
|  | for (auto id : sorted_by_index(block_info.hoisted_ids)) { | 
|  | const auto* def_inst = def_use_mgr_->GetDef(id); | 
|  | assert(def_inst); | 
|  | auto* ast_type = | 
|  | RemapStorageClass(parser_impl_.ConvertType(def_inst->type_id()), id); | 
|  | AddStatement(std::make_unique<ast::VariableDeclStatement>( | 
|  | parser_impl_.MakeVariable(id, ast::StorageClass::kFunction, ast_type))); | 
|  | // Save this as an already-named value. | 
|  | identifier_values_.insert(id); | 
|  | } | 
|  | // Emit declarations of phi state variables, in index order. | 
|  | for (auto id : sorted_by_index(block_info.phis_needing_state_vars)) { | 
|  | const auto* def_inst = def_use_mgr_->GetDef(id); | 
|  | assert(def_inst); | 
|  | const auto phi_var_name = GetDefInfo(id)->phi_var; | 
|  | assert(!phi_var_name.empty()); | 
|  | auto var = std::make_unique<ast::Variable>( | 
|  | phi_var_name, ast::StorageClass::kFunction, | 
|  | parser_impl_.ConvertType(def_inst->type_id())); | 
|  | AddStatement(std::make_unique<ast::VariableDeclStatement>(std::move(var))); | 
|  | } | 
|  |  | 
|  | // Emit regular statements. | 
|  | const spvtools::opt::BasicBlock& bb = *(block_info.basic_block); | 
|  | const auto* terminator = bb.terminator(); | 
|  | const auto* merge = bb.GetMergeInst();  // Might be nullptr | 
|  | for (auto& inst : bb) { | 
|  | if (&inst == terminator || &inst == merge || inst.opcode() == SpvOpLabel || | 
|  | inst.opcode() == SpvOpVariable) { | 
|  | continue; | 
|  | } | 
|  | if (!EmitStatement(inst)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Emit assignments to carry values to phi nodes in potential destinations. | 
|  | // Do it in index order. | 
|  | if (!block_info.phi_assignments.empty()) { | 
|  | auto sorted = block_info.phi_assignments; | 
|  | std::stable_sort(sorted.begin(), sorted.end(), | 
|  | [this](const BlockInfo::PhiAssignment& lhs, | 
|  | const BlockInfo::PhiAssignment& rhs) { | 
|  | return GetDefInfo(lhs.phi_id)->index < | 
|  | GetDefInfo(rhs.phi_id)->index; | 
|  | }); | 
|  | for (auto assignment : block_info.phi_assignments) { | 
|  | const auto var_name = GetDefInfo(assignment.phi_id)->phi_var; | 
|  | auto expr = MakeExpression(assignment.value); | 
|  | AddStatement(std::make_unique<ast::AssignmentStatement>( | 
|  | std::make_unique<ast::IdentifierExpression>(var_name), | 
|  | std::move(expr.expr))); | 
|  | } | 
|  | } | 
|  |  | 
|  | *already_emitted = true; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool FunctionEmitter::EmitConstDefinition( | 
|  | const spvtools::opt::Instruction& inst, | 
|  | TypedExpression ast_expr) { | 
|  | if (!ast_expr.expr) { | 
|  | return false; | 
|  | } | 
|  | auto ast_const = parser_impl_.MakeVariable( | 
|  | inst.result_id(), ast::StorageClass::kNone, ast_expr.type); | 
|  | if (!ast_const) { | 
|  | return false; | 
|  | } | 
|  | ast_const->set_constructor(std::move(ast_expr.expr)); | 
|  | ast_const->set_is_const(true); | 
|  | AddStatementForInstruction( | 
|  | std::make_unique<ast::VariableDeclStatement>(std::move(ast_const)), inst); | 
|  | // Save this as an already-named value. | 
|  | identifier_values_.insert(inst.result_id()); | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | bool FunctionEmitter::EmitConstDefOrWriteToHoistedVar( | 
|  | const spvtools::opt::Instruction& inst, | 
|  | TypedExpression ast_expr) { | 
|  | const auto result_id = inst.result_id(); | 
|  | const auto* def_info = GetDefInfo(result_id); | 
|  | if (def_info && def_info->requires_hoisted_def) { | 
|  | // Emit an assignment of the expression to the hoisted variable. | 
|  | AddStatementForInstruction( | 
|  | std::make_unique<ast::AssignmentStatement>( | 
|  | std::make_unique<ast::IdentifierExpression>(namer_.Name(result_id)), | 
|  | std::move(ast_expr.expr)), | 
|  | inst); | 
|  | return true; | 
|  | } | 
|  | return EmitConstDefinition(inst, std::move(ast_expr)); | 
|  | } | 
|  |  | 
|  | bool FunctionEmitter::EmitStatement(const spvtools::opt::Instruction& inst) { | 
|  | const auto result_id = inst.result_id(); | 
|  | const auto type_id = inst.type_id(); | 
|  |  | 
|  | if (type_id != 0) { | 
|  | const auto& builtin_position_info = parser_impl_.GetBuiltInPositionInfo(); | 
|  | if ((type_id == builtin_position_info.struct_type_id) || | 
|  | (type_id == builtin_position_info.pointer_type_id)) { | 
|  | return Fail() << "operations producing a per-vertex structure are not " | 
|  | "supported: " | 
|  | << inst.PrettyPrint(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle combinatorial instructions. | 
|  | const auto* def_info = GetDefInfo(result_id); | 
|  | auto combinatorial_expr = MaybeEmitCombinatorialValue(inst); | 
|  | if (combinatorial_expr.expr != nullptr) { | 
|  | if (def_info == nullptr) { | 
|  | return Fail() << "internal error: result ID %" << result_id | 
|  | << " is missing a def_info"; | 
|  | } | 
|  | if (def_info->requires_hoisted_def || def_info->requires_named_const_def || | 
|  | def_info->num_uses != 1) { | 
|  | // Generate a const definition or an assignment to a hoisted definition | 
|  | // now and later use the const or variable name at the uses of this value. | 
|  | return EmitConstDefOrWriteToHoistedVar(inst, | 
|  | std::move(combinatorial_expr)); | 
|  | } | 
|  | // It is harmless to defer emitting the expression until it's used. | 
|  | // Any supporting statements have already been emitted. | 
|  | singly_used_values_.insert( | 
|  | std::make_pair(result_id, std::move(combinatorial_expr))); | 
|  | return success(); | 
|  | } | 
|  | if (failed()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | switch (inst.opcode()) { | 
|  | case SpvOpNop: | 
|  | return true; | 
|  |  | 
|  | case SpvOpStore: { | 
|  | const auto ptr_id = inst.GetSingleWordInOperand(0); | 
|  | const auto value_id = inst.GetSingleWordInOperand(1); | 
|  | const auto ptr_type_id = def_use_mgr_->GetDef(ptr_id)->type_id(); | 
|  | const auto& builtin_position_info = parser_impl_.GetBuiltInPositionInfo(); | 
|  | if (ptr_type_id == builtin_position_info.pointer_type_id) { | 
|  | return Fail() | 
|  | << "storing to the whole per-vertex structure is not supported: " | 
|  | << inst.PrettyPrint(); | 
|  | } | 
|  |  | 
|  | // TODO(dneto): Order of evaluation? | 
|  | auto lhs = MakeExpression(ptr_id); | 
|  | auto rhs = MakeExpression(value_id); | 
|  | AddStatementForInstruction(std::make_unique<ast::AssignmentStatement>( | 
|  | std::move(lhs.expr), std::move(rhs.expr)), | 
|  | inst); | 
|  | return success(); | 
|  | } | 
|  | case SpvOpLoad: { | 
|  | // Memory accesses must be issued in SPIR-V program order. | 
|  | // So represent a load by a new const definition. | 
|  | auto expr = MakeExpression(inst.GetSingleWordInOperand(0)); | 
|  | // The load result type is the pointee type of its operand. | 
|  | assert(expr.type->IsPointer()); | 
|  | expr.type = expr.type->AsPointer()->type(); | 
|  | return EmitConstDefOrWriteToHoistedVar(inst, std::move(expr)); | 
|  | } | 
|  | case SpvOpCopyObject: { | 
|  | // Arguably, OpCopyObject is purely combinatorial. On the other hand, | 
|  | // it exists to make a new name for something. So we choose to make | 
|  | // a new named constant definition. | 
|  | auto expr = MakeExpression(inst.GetSingleWordInOperand(0)); | 
|  | expr.type = RemapStorageClass(expr.type, result_id); | 
|  | return EmitConstDefOrWriteToHoistedVar(inst, std::move(expr)); | 
|  | } | 
|  | case SpvOpPhi: { | 
|  | // Emit a read from the associated state variable. | 
|  | auto expr = TypedExpression( | 
|  | parser_impl_.ConvertType(inst.type_id()), | 
|  | std::make_unique<ast::IdentifierExpression>(def_info->phi_var)); | 
|  | return EmitConstDefOrWriteToHoistedVar(inst, std::move(expr)); | 
|  | } | 
|  | case SpvOpFunctionCall: | 
|  | return EmitFunctionCall(inst); | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return Fail() << "unhandled instruction with opcode " << inst.opcode() << ": " | 
|  | << inst.PrettyPrint(); | 
|  | } | 
|  |  | 
|  | TypedExpression FunctionEmitter::MakeOperand( | 
|  | const spvtools::opt::Instruction& inst, | 
|  | uint32_t operand_index) { | 
|  | auto expr = this->MakeExpression(inst.GetSingleWordInOperand(operand_index)); | 
|  | return parser_impl_.RectifyOperandSignedness(inst.opcode(), std::move(expr)); | 
|  | } | 
|  |  | 
|  | TypedExpression FunctionEmitter::MaybeEmitCombinatorialValue( | 
|  | const spvtools::opt::Instruction& inst) { | 
|  | if (inst.result_id() == 0) { | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | const auto opcode = inst.opcode(); | 
|  |  | 
|  | ast::type::Type* ast_type = | 
|  | inst.type_id() != 0 ? parser_impl_.ConvertType(inst.type_id()) : nullptr; | 
|  |  | 
|  | auto binary_op = ConvertBinaryOp(opcode); | 
|  | if (binary_op != ast::BinaryOp::kNone) { | 
|  | auto arg0 = MakeOperand(inst, 0); | 
|  | auto arg1 = MakeOperand(inst, 1); | 
|  | auto binary_expr = std::make_unique<ast::BinaryExpression>( | 
|  | binary_op, std::move(arg0.expr), std::move(arg1.expr)); | 
|  | TypedExpression result(ast_type, std::move(binary_expr)); | 
|  | return parser_impl_.RectifyForcedResultType(std::move(result), opcode, | 
|  | arg0.type); | 
|  | } | 
|  |  | 
|  | auto unary_op = ast::UnaryOp::kNegation; | 
|  | if (GetUnaryOp(opcode, &unary_op)) { | 
|  | auto arg0 = MakeOperand(inst, 0); | 
|  | auto unary_expr = std::make_unique<ast::UnaryOpExpression>( | 
|  | unary_op, std::move(arg0.expr)); | 
|  | TypedExpression result(ast_type, std::move(unary_expr)); | 
|  | return parser_impl_.RectifyForcedResultType(std::move(result), opcode, | 
|  | arg0.type); | 
|  | } | 
|  |  | 
|  | const char* unary_builtin_name = GetUnaryBuiltInFunctionName(opcode); | 
|  | if (unary_builtin_name != nullptr) { | 
|  | ast::ExpressionList params; | 
|  | params.emplace_back(MakeOperand(inst, 0).expr); | 
|  | return {ast_type, | 
|  | std::make_unique<ast::CallExpression>( | 
|  | std::make_unique<ast::IdentifierExpression>(unary_builtin_name), | 
|  | std::move(params))}; | 
|  | } | 
|  |  | 
|  | if (opcode == SpvOpAccessChain || opcode == SpvOpInBoundsAccessChain) { | 
|  | return MakeAccessChain(inst); | 
|  | } | 
|  |  | 
|  | if (opcode == SpvOpBitcast) { | 
|  | return {ast_type, std::make_unique<ast::AsExpression>( | 
|  | ast_type, MakeOperand(inst, 0).expr)}; | 
|  | } | 
|  |  | 
|  | auto negated_op = NegatedFloatCompare(opcode); | 
|  | if (negated_op != ast::BinaryOp::kNone) { | 
|  | auto arg0 = MakeOperand(inst, 0); | 
|  | auto arg1 = MakeOperand(inst, 1); | 
|  | auto binary_expr = std::make_unique<ast::BinaryExpression>( | 
|  | negated_op, std::move(arg0.expr), std::move(arg1.expr)); | 
|  | auto negated_expr = std::make_unique<ast::UnaryOpExpression>( | 
|  | ast::UnaryOp::kNot, std::move(binary_expr)); | 
|  | return {ast_type, std::move(negated_expr)}; | 
|  | } | 
|  |  | 
|  | if (opcode == SpvOpExtInst) { | 
|  | const auto import = inst.GetSingleWordInOperand(0); | 
|  | if (parser_impl_.glsl_std_450_imports().count(import) == 0) { | 
|  | Fail() << "unhandled extended instruction import with ID " << import; | 
|  | return {}; | 
|  | } | 
|  | return EmitGlslStd450ExtInst(inst); | 
|  | } | 
|  |  | 
|  | if (opcode == SpvOpCompositeConstruct) { | 
|  | ast::ExpressionList operands; | 
|  | for (uint32_t iarg = 0; iarg < inst.NumInOperands(); ++iarg) { | 
|  | operands.emplace_back(MakeOperand(inst, iarg).expr); | 
|  | } | 
|  | return {ast_type, std::make_unique<ast::TypeConstructorExpression>( | 
|  | ast_type, std::move(operands))}; | 
|  | } | 
|  |  | 
|  | if (opcode == SpvOpCompositeExtract) { | 
|  | return MakeCompositeExtract(inst); | 
|  | } | 
|  |  | 
|  | if (opcode == SpvOpVectorShuffle) { | 
|  | return MakeVectorShuffle(inst); | 
|  | } | 
|  |  | 
|  | if (opcode == SpvOpConvertSToF || opcode == SpvOpConvertUToF || | 
|  | opcode == SpvOpConvertFToS || opcode == SpvOpConvertFToU) { | 
|  | return MakeNumericConversion(inst); | 
|  | } | 
|  |  | 
|  | if (opcode == SpvOpUndef) { | 
|  | // Replace undef with the null value. | 
|  | return {ast_type, parser_impl_.MakeNullValue(ast_type)}; | 
|  | } | 
|  |  | 
|  | if (opcode == SpvOpSelect) { | 
|  | return MakeSimpleSelect(inst); | 
|  | } | 
|  |  | 
|  | // builtin readonly function | 
|  | // glsl.std.450 readonly function | 
|  |  | 
|  | // Instructions: | 
|  | //    OpSatConvertSToU // Only in Kernel (OpenCL), not in WebGPU | 
|  | //    OpSatConvertUToS // Only in Kernel (OpenCL), not in WebGPU | 
|  | //    OpUConvert // Only needed when multiple widths supported | 
|  | //    OpSConvert // Only needed when multiple widths supported | 
|  | //    OpFConvert // Only needed when multiple widths supported | 
|  | //    OpConvertPtrToU // Not in WebGPU | 
|  | //    OpConvertUToPtr // Not in WebGPU | 
|  | //    OpPtrCastToGeneric // Not in Vulkan | 
|  | //    OpGenericCastToPtr // Not in Vulkan | 
|  | //    OpGenericCastToPtrExplicit // Not in Vulkan | 
|  | // | 
|  | //    OpArrayLength | 
|  | //    OpVectorExtractDynamic | 
|  | //    OpVectorInsertDynamic | 
|  | //    OpCompositeInsert | 
|  |  | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | TypedExpression FunctionEmitter::EmitGlslStd450ExtInst( | 
|  | const spvtools::opt::Instruction& inst) { | 
|  | const auto ext_opcode = inst.GetSingleWordInOperand(1); | 
|  | const auto name = GetGlslStd450FuncName(ext_opcode); | 
|  | if (name.empty()) { | 
|  | Fail() << "unhandled GLSL.std.450 instruction " << ext_opcode; | 
|  | return {}; | 
|  | } | 
|  | auto func = std::make_unique<ast::IdentifierExpression>( | 
|  | std::vector<std::string>{parser_impl_.GlslStd450Prefix(), name}); | 
|  | ast::ExpressionList operands; | 
|  | // All parameters to GLSL.std.450 extended instructions are IDs. | 
|  | for (uint32_t iarg = 2; iarg < inst.NumInOperands(); ++iarg) { | 
|  | operands.emplace_back(MakeOperand(inst, iarg).expr); | 
|  | } | 
|  | auto* ast_type = parser_impl_.ConvertType(inst.type_id()); | 
|  | auto call = std::make_unique<ast::CallExpression>(std::move(func), | 
|  | std::move(operands)); | 
|  | return {ast_type, std::move(call)}; | 
|  | } | 
|  |  | 
|  | TypedExpression FunctionEmitter::MakeAccessChain( | 
|  | const spvtools::opt::Instruction& inst) { | 
|  | if (inst.NumInOperands() < 1) { | 
|  | // Binary parsing will fail on this anyway. | 
|  | Fail() << "invalid access chain: has no input operands"; | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | // A SPIR-V access chain is a single instruction with multiple indices | 
|  | // walking down into composites.  The Tint AST represents this as | 
|  | // ever-deeper nested indexing expressions. Start off with an expression | 
|  | // for the base, and then bury that inside nested indexing expressions. | 
|  | TypedExpression current_expr(MakeOperand(inst, 0)); | 
|  | const auto constants = constant_mgr_->GetOperandConstants(&inst); | 
|  | static const char* swizzles[] = {"x", "y", "z", "w"}; | 
|  |  | 
|  | const auto base_id = inst.GetSingleWordInOperand(0); | 
|  | auto ptr_ty_id = def_use_mgr_->GetDef(base_id)->type_id(); | 
|  | uint32_t first_index = 1; | 
|  | const auto num_in_operands = inst.NumInOperands(); | 
|  |  | 
|  | // If the variable was originally gl_PerVertex, then in the AST we | 
|  | // have instead emitted a gl_Position variable. | 
|  | { | 
|  | const auto& builtin_position_info = parser_impl_.GetBuiltInPositionInfo(); | 
|  | if (base_id == builtin_position_info.per_vertex_var_id) { | 
|  | // We only support the Position member. | 
|  | const auto* member_index_inst = | 
|  | def_use_mgr_->GetDef(inst.GetSingleWordInOperand(first_index)); | 
|  | if (member_index_inst == nullptr) { | 
|  | Fail() | 
|  | << "first index of access chain does not reference an instruction: " | 
|  | << inst.PrettyPrint(); | 
|  | return {}; | 
|  | } | 
|  | const auto* member_index_const = | 
|  | constant_mgr_->GetConstantFromInst(member_index_inst); | 
|  | if (member_index_const == nullptr) { | 
|  | Fail() << "first index of access chain into per-vertex structure is " | 
|  | "not a constant: " | 
|  | << inst.PrettyPrint(); | 
|  | return {}; | 
|  | } | 
|  | const auto* member_index_const_int = member_index_const->AsIntConstant(); | 
|  | if (member_index_const_int == nullptr) { | 
|  | Fail() << "first index of access chain into per-vertex structure is " | 
|  | "not a constant integer: " | 
|  | << inst.PrettyPrint(); | 
|  | return {}; | 
|  | } | 
|  | const auto member_index_value = | 
|  | member_index_const_int->GetZeroExtendedValue(); | 
|  | if (member_index_value != builtin_position_info.member_index) { | 
|  | Fail() << "accessing per-vertex member " << member_index_value | 
|  | << " is not supported. Only Position is supported"; | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | // Skip past the member index that gets us to Position. | 
|  | first_index = first_index + 1; | 
|  | // Replace the gl_PerVertex reference with the gl_Position reference | 
|  | ptr_ty_id = builtin_position_info.member_pointer_type_id; | 
|  | current_expr.expr = | 
|  | std::make_unique<ast::IdentifierExpression>(namer_.Name(base_id)); | 
|  | current_expr.type = parser_impl_.ConvertType(ptr_ty_id); | 
|  | } | 
|  | } | 
|  |  | 
|  | const auto* ptr_type_inst = def_use_mgr_->GetDef(ptr_ty_id); | 
|  | if (!ptr_type_inst || (ptr_type_inst->opcode() != SpvOpTypePointer)) { | 
|  | Fail() << "Access chain %" << inst.result_id() | 
|  | << " base pointer is not of pointer type"; | 
|  | return {}; | 
|  | } | 
|  | SpvStorageClass storage_class = | 
|  | static_cast<SpvStorageClass>(ptr_type_inst->GetSingleWordInOperand(0)); | 
|  | uint32_t pointee_type_id = ptr_type_inst->GetSingleWordInOperand(1); | 
|  |  | 
|  | // Build up a nested expression for the access chain by walking down the type | 
|  | // hierarchy, maintaining |pointee_type_id| as the SPIR-V ID of the type of | 
|  | // the object pointed to after processing the previous indices. | 
|  | for (uint32_t index = first_index; index < num_in_operands; ++index) { | 
|  | const auto* index_const = | 
|  | constants[index] ? constants[index]->AsIntConstant() : nullptr; | 
|  | const int64_t index_const_val = | 
|  | index_const ? index_const->GetSignExtendedValue() : 0; | 
|  | std::unique_ptr<ast::Expression> next_expr; | 
|  |  | 
|  | const auto* pointee_type_inst = def_use_mgr_->GetDef(pointee_type_id); | 
|  | if (!pointee_type_inst) { | 
|  | Fail() << "pointee type %" << pointee_type_id | 
|  | << " is invalid after following " << (index - first_index) | 
|  | << " indices: " << inst.PrettyPrint(); | 
|  | return {}; | 
|  | } | 
|  | switch (pointee_type_inst->opcode()) { | 
|  | case SpvOpTypeVector: | 
|  | if (index_const) { | 
|  | // Try generating a MemberAccessor expression | 
|  | const auto num_elems = pointee_type_inst->GetSingleWordInOperand(1); | 
|  | if (index_const_val < 0 || num_elems <= index_const_val) { | 
|  | Fail() << "Access chain %" << inst.result_id() << " index %" | 
|  | << inst.GetSingleWordInOperand(index) << " value " | 
|  | << index_const_val << " is out of bounds for vector of " | 
|  | << num_elems << " elements"; | 
|  | return {}; | 
|  | } | 
|  | if (uint64_t(index_const_val) >= | 
|  | sizeof(swizzles) / sizeof(swizzles[0])) { | 
|  | Fail() << "internal error: swizzle index " << index_const_val | 
|  | << " is too big. Max handled index is " | 
|  | << ((sizeof(swizzles) / sizeof(swizzles[0])) - 1); | 
|  | } | 
|  | auto letter_index = std::make_unique<ast::IdentifierExpression>( | 
|  | swizzles[index_const_val]); | 
|  | next_expr = std::make_unique<ast::MemberAccessorExpression>( | 
|  | std::move(current_expr.expr), std::move(letter_index)); | 
|  | } else { | 
|  | // Non-constant index. Use array syntax | 
|  | next_expr = std::make_unique<ast::ArrayAccessorExpression>( | 
|  | std::move(current_expr.expr), | 
|  | std::move(MakeOperand(inst, index).expr)); | 
|  | } | 
|  | // All vector components are the same type. | 
|  | pointee_type_id = pointee_type_inst->GetSingleWordInOperand(0); | 
|  | break; | 
|  | case SpvOpTypeMatrix: | 
|  | // Use array syntax. | 
|  | next_expr = std::make_unique<ast::ArrayAccessorExpression>( | 
|  | std::move(current_expr.expr), | 
|  | std::move(MakeOperand(inst, index).expr)); | 
|  | // All matrix components are the same type. | 
|  | pointee_type_id = pointee_type_inst->GetSingleWordInOperand(0); | 
|  | break; | 
|  | case SpvOpTypeArray: | 
|  | next_expr = std::make_unique<ast::ArrayAccessorExpression>( | 
|  | std::move(current_expr.expr), | 
|  | std::move(MakeOperand(inst, index).expr)); | 
|  | pointee_type_id = pointee_type_inst->GetSingleWordInOperand(0); | 
|  | break; | 
|  | case SpvOpTypeRuntimeArray: | 
|  | next_expr = std::make_unique<ast::ArrayAccessorExpression>( | 
|  | std::move(current_expr.expr), | 
|  | std::move(MakeOperand(inst, index).expr)); | 
|  | pointee_type_id = pointee_type_inst->GetSingleWordInOperand(0); | 
|  | break; | 
|  | case SpvOpTypeStruct: { | 
|  | if (!index_const) { | 
|  | Fail() << "Access chain %" << inst.result_id() << " index %" | 
|  | << inst.GetSingleWordInOperand(index) | 
|  | << " is a non-constant index into a structure %" | 
|  | << pointee_type_id; | 
|  | return {}; | 
|  | } | 
|  | const auto num_members = pointee_type_inst->NumInOperands(); | 
|  | if ((index_const_val < 0) || num_members <= uint64_t(index_const_val)) { | 
|  | Fail() << "Access chain %" << inst.result_id() << " index value " | 
|  | << index_const_val << " is out of bounds for structure %" | 
|  | << pointee_type_id << " having " << num_members << " members"; | 
|  | return {}; | 
|  | } | 
|  | auto member_access = std::make_unique<ast::IdentifierExpression>( | 
|  | namer_.GetMemberName(pointee_type_id, uint32_t(index_const_val))); | 
|  |  | 
|  | next_expr = std::make_unique<ast::MemberAccessorExpression>( | 
|  | std::move(current_expr.expr), std::move(member_access)); | 
|  | pointee_type_id = pointee_type_inst->GetSingleWordInOperand( | 
|  | static_cast<uint32_t>(index_const_val)); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | Fail() << "Access chain with unknown or invalid pointee type %" | 
|  | << pointee_type_id << ": " << pointee_type_inst->PrettyPrint(); | 
|  | return {}; | 
|  | } | 
|  | const auto pointer_type_id = | 
|  | type_mgr_->FindPointerToType(pointee_type_id, storage_class); | 
|  | auto* ast_pointer_type = parser_impl_.ConvertType(pointer_type_id); | 
|  | assert(ast_pointer_type); | 
|  | assert(ast_pointer_type->IsPointer()); | 
|  | current_expr.reset(TypedExpression(ast_pointer_type, std::move(next_expr))); | 
|  | } | 
|  | return current_expr; | 
|  | } | 
|  |  | 
|  | TypedExpression FunctionEmitter::MakeCompositeExtract( | 
|  | const spvtools::opt::Instruction& inst) { | 
|  | // This is structurally similar to creating an access chain, but | 
|  | // the SPIR-V instruction has literal indices instead of IDs for indices. | 
|  |  | 
|  | // A SPIR-V composite extract is a single instruction with multiple | 
|  | // literal indices walking down into composites. The Tint AST represents | 
|  | // this as ever-deeper nested indexing expressions. Start off with an | 
|  | // expression for the composite, and then bury that inside nested indexing | 
|  | // expressions. | 
|  | TypedExpression current_expr(MakeOperand(inst, 0)); | 
|  |  | 
|  | auto make_index = [](uint32_t literal) { | 
|  | ast::type::U32Type u32; | 
|  | return std::make_unique<ast::ScalarConstructorExpression>( | 
|  | std::make_unique<ast::UintLiteral>(&u32, literal)); | 
|  | }; | 
|  | static const char* swizzles[] = {"x", "y", "z", "w"}; | 
|  |  | 
|  | const auto composite = inst.GetSingleWordInOperand(0); | 
|  | auto current_type_id = def_use_mgr_->GetDef(composite)->type_id(); | 
|  | // Build up a nested expression for the access chain by walking down the type | 
|  | // hierarchy, maintaining |current_type_id| as the SPIR-V ID of the type of | 
|  | // the object pointed to after processing the previous indices. | 
|  | const auto num_in_operands = inst.NumInOperands(); | 
|  | for (uint32_t index = 1; index < num_in_operands; ++index) { | 
|  | const uint32_t index_val = inst.GetSingleWordInOperand(index); | 
|  |  | 
|  | const auto* current_type_inst = def_use_mgr_->GetDef(current_type_id); | 
|  | if (!current_type_inst) { | 
|  | Fail() << "composite type %" << current_type_id | 
|  | << " is invalid after following " << (index - 1) | 
|  | << " indices: " << inst.PrettyPrint(); | 
|  | return {}; | 
|  | } | 
|  | std::unique_ptr<ast::Expression> next_expr; | 
|  | switch (current_type_inst->opcode()) { | 
|  | case SpvOpTypeVector: { | 
|  | // Try generating a MemberAccessor expression. That result in something | 
|  | // like  "foo.z", which is more idiomatic than "foo[2]". | 
|  | const auto num_elems = current_type_inst->GetSingleWordInOperand(1); | 
|  | if (num_elems <= index_val) { | 
|  | Fail() << "CompositeExtract %" << inst.result_id() << " index value " | 
|  | << index_val << " is out of bounds for vector of " << num_elems | 
|  | << " elements"; | 
|  | return {}; | 
|  | } | 
|  | if (index_val >= sizeof(swizzles) / sizeof(swizzles[0])) { | 
|  | Fail() << "internal error: swizzle index " << index_val | 
|  | << " is too big. Max handled index is " | 
|  | << ((sizeof(swizzles) / sizeof(swizzles[0])) - 1); | 
|  | } | 
|  | auto letter_index = | 
|  | std::make_unique<ast::IdentifierExpression>(swizzles[index_val]); | 
|  | next_expr = std::make_unique<ast::MemberAccessorExpression>( | 
|  | std::move(current_expr.expr), std::move(letter_index)); | 
|  | // All vector components are the same type. | 
|  | current_type_id = current_type_inst->GetSingleWordInOperand(0); | 
|  | break; | 
|  | } | 
|  | case SpvOpTypeMatrix: { | 
|  | // Check bounds | 
|  | const auto num_elems = current_type_inst->GetSingleWordInOperand(1); | 
|  | if (num_elems <= index_val) { | 
|  | Fail() << "CompositeExtract %" << inst.result_id() << " index value " | 
|  | << index_val << " is out of bounds for matrix of " << num_elems | 
|  | << " elements"; | 
|  | return {}; | 
|  | } | 
|  | if (index_val >= sizeof(swizzles) / sizeof(swizzles[0])) { | 
|  | Fail() << "internal error: swizzle index " << index_val | 
|  | << " is too big. Max handled index is " | 
|  | << ((sizeof(swizzles) / sizeof(swizzles[0])) - 1); | 
|  | } | 
|  | // Use array syntax. | 
|  | next_expr = std::make_unique<ast::ArrayAccessorExpression>( | 
|  | std::move(current_expr.expr), make_index(index_val)); | 
|  | // All matrix components are the same type. | 
|  | current_type_id = current_type_inst->GetSingleWordInOperand(0); | 
|  | break; | 
|  | } | 
|  | case SpvOpTypeArray: | 
|  | // The array size could be a spec constant, and so it's not always | 
|  | // statically checkable.  Instead, rely on a runtime index clamp | 
|  | // or runtime check to keep this safe. | 
|  | next_expr = std::make_unique<ast::ArrayAccessorExpression>( | 
|  | std::move(current_expr.expr), make_index(index_val)); | 
|  | current_type_id = current_type_inst->GetSingleWordInOperand(0); | 
|  | break; | 
|  | case SpvOpTypeRuntimeArray: | 
|  | Fail() << "can't do OpCompositeExtract on a runtime array"; | 
|  | return {}; | 
|  | case SpvOpTypeStruct: { | 
|  | const auto num_members = current_type_inst->NumInOperands(); | 
|  | if (num_members <= index_val) { | 
|  | Fail() << "CompositeExtract %" << inst.result_id() << " index value " | 
|  | << index_val << " is out of bounds for structure %" | 
|  | << current_type_id << " having " << num_members << " members"; | 
|  | return {}; | 
|  | } | 
|  | auto member_access = std::make_unique<ast::IdentifierExpression>( | 
|  | namer_.GetMemberName(current_type_id, uint32_t(index_val))); | 
|  |  | 
|  | next_expr = std::make_unique<ast::MemberAccessorExpression>( | 
|  | std::move(current_expr.expr), std::move(member_access)); | 
|  | current_type_id = current_type_inst->GetSingleWordInOperand(index_val); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | Fail() << "CompositeExtract with bad type %" << current_type_id << ": " | 
|  | << current_type_inst->PrettyPrint(); | 
|  | return {}; | 
|  | } | 
|  | current_expr.reset(TypedExpression( | 
|  | parser_impl_.ConvertType(current_type_id), std::move(next_expr))); | 
|  | } | 
|  | return current_expr; | 
|  | } | 
|  |  | 
|  | std::unique_ptr<ast::Expression> FunctionEmitter::MakeTrue() const { | 
|  | return std::make_unique<ast::ScalarConstructorExpression>( | 
|  | std::make_unique<ast::BoolLiteral>(parser_impl_.BoolType(), true)); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<ast::Expression> FunctionEmitter::MakeFalse() const { | 
|  | ast::type::BoolType bool_type; | 
|  | return std::make_unique<ast::ScalarConstructorExpression>( | 
|  | std::make_unique<ast::BoolLiteral>(parser_impl_.BoolType(), false)); | 
|  | } | 
|  |  | 
|  | TypedExpression FunctionEmitter::MakeVectorShuffle( | 
|  | const spvtools::opt::Instruction& inst) { | 
|  | const auto vec0_id = inst.GetSingleWordInOperand(0); | 
|  | const auto vec1_id = inst.GetSingleWordInOperand(1); | 
|  | const spvtools::opt::Instruction& vec0 = *(def_use_mgr_->GetDef(vec0_id)); | 
|  | const spvtools::opt::Instruction& vec1 = *(def_use_mgr_->GetDef(vec1_id)); | 
|  | const auto vec0_len = | 
|  | type_mgr_->GetType(vec0.type_id())->AsVector()->element_count(); | 
|  | const auto vec1_len = | 
|  | type_mgr_->GetType(vec1.type_id())->AsVector()->element_count(); | 
|  |  | 
|  | // Idiomatic vector accessors. | 
|  | const char* swizzles[] = {"x", "y", "z", "w"}; | 
|  |  | 
|  | // Generate an ast::TypeConstructor expression. | 
|  | // Assume the literal indices are valid, and there is a valid number of them. | 
|  | ast::type::VectorType* result_type = | 
|  | parser_impl_.ConvertType(inst.type_id())->AsVector(); | 
|  | ast::ExpressionList values; | 
|  | for (uint32_t i = 2; i < inst.NumInOperands(); ++i) { | 
|  | const auto index = inst.GetSingleWordInOperand(i); | 
|  | if (index < vec0_len) { | 
|  | assert(index < sizeof(swizzles) / sizeof(swizzles[0])); | 
|  | values.emplace_back(std::make_unique<ast::MemberAccessorExpression>( | 
|  | MakeExpression(vec0_id).expr, | 
|  | std::make_unique<ast::IdentifierExpression>(swizzles[index]))); | 
|  | } else if (index < vec0_len + vec1_len) { | 
|  | const auto sub_index = index - vec0_len; | 
|  | assert(sub_index < sizeof(swizzles) / sizeof(swizzles[0])); | 
|  | values.emplace_back(std::make_unique<ast::MemberAccessorExpression>( | 
|  | MakeExpression(vec1_id).expr, | 
|  | std::make_unique<ast::IdentifierExpression>(swizzles[sub_index]))); | 
|  | } else if (index == 0xFFFFFFFF) { | 
|  | // By rule, this maps to OpUndef.  Instead, make it zero. | 
|  | values.emplace_back(parser_impl_.MakeNullValue(result_type->type())); | 
|  | } else { | 
|  | Fail() << "invalid vectorshuffle ID %" << inst.result_id() | 
|  | << ": index too large: " << index; | 
|  | return {}; | 
|  | } | 
|  | } | 
|  | return {result_type, std::make_unique<ast::TypeConstructorExpression>( | 
|  | result_type, std::move(values))}; | 
|  | } | 
|  |  | 
|  | bool FunctionEmitter::RegisterLocallyDefinedValues() { | 
|  | // Create a DefInfo for each value definition in this function. | 
|  | size_t index = 0; | 
|  | for (auto block_id : block_order_) { | 
|  | const auto* block_info = GetBlockInfo(block_id); | 
|  | const auto block_pos = block_info->pos; | 
|  | for (const auto& inst : *(block_info->basic_block)) { | 
|  | const auto result_id = inst.result_id(); | 
|  | if ((result_id == 0) || inst.opcode() == SpvOpLabel) { | 
|  | continue; | 
|  | } | 
|  | def_info_[result_id] = std::make_unique<DefInfo>(inst, block_pos, index); | 
|  | index++; | 
|  |  | 
|  | // Determine storage class for pointer values. Do this in order because | 
|  | // we might rely on the storage class for a previously-visited definition. | 
|  | // Logical pointers can't be transmitted through OpPhi, so remaining | 
|  | // pointer definitions are SSA values, and their definitions must be | 
|  | // visited before their uses. | 
|  | auto& storage_class = def_info_[result_id]->storage_class; | 
|  | const auto* type = type_mgr_->GetType(inst.type_id()); | 
|  | if (type && type->AsPointer()) { | 
|  | const auto* ast_type = parser_impl_.ConvertType(inst.type_id()); | 
|  | if (ast_type && ast_type->AsPointer()) { | 
|  | storage_class = ast_type->AsPointer()->storage_class(); | 
|  | } | 
|  | switch (inst.opcode()) { | 
|  | case SpvOpUndef: | 
|  | case SpvOpVariable: | 
|  | // Keep the default decision based on the result type. | 
|  | break; | 
|  | case SpvOpAccessChain: | 
|  | case SpvOpCopyObject: | 
|  | // Inherit from the first operand. We need this so we can pick up | 
|  | // a remapped storage buffer. | 
|  | storage_class = | 
|  | GetStorageClassForPointerValue(inst.GetSingleWordInOperand(0)); | 
|  | break; | 
|  | default: | 
|  | return Fail() << "pointer defined in function from unknown opcode: " | 
|  | << inst.PrettyPrint(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ast::StorageClass FunctionEmitter::GetStorageClassForPointerValue(uint32_t id) { | 
|  | auto where = def_info_.find(id); | 
|  | if (where != def_info_.end()) { | 
|  | return where->second.get()->storage_class; | 
|  | } | 
|  | const auto type_id = def_use_mgr_->GetDef(id)->type_id(); | 
|  | if (type_id) { | 
|  | auto* ast_type = parser_impl_.ConvertType(type_id); | 
|  | if (ast_type && ast_type->IsPointer()) { | 
|  | return ast_type->AsPointer()->storage_class(); | 
|  | } | 
|  | } | 
|  | return ast::StorageClass::kNone; | 
|  | } | 
|  |  | 
|  | ast::type::Type* FunctionEmitter::RemapStorageClass(ast::type::Type* type, | 
|  | uint32_t result_id) { | 
|  | if (type->IsPointer()) { | 
|  | // Remap an old-style storage buffer pointer to a new-style storage | 
|  | // buffer pointer. | 
|  | const auto* ast_ptr_type = type->AsPointer(); | 
|  | const auto sc = GetStorageClassForPointerValue(result_id); | 
|  | if (ast_ptr_type->storage_class() != sc) { | 
|  | return parser_impl_.context().type_mgr().Get( | 
|  | std::make_unique<ast::type::PointerType>(ast_ptr_type->type(), sc)); | 
|  | } | 
|  | } | 
|  | return type; | 
|  | } | 
|  |  | 
|  | void FunctionEmitter::FindValuesNeedingNamedOrHoistedDefinition() { | 
|  | // Mark vector operands of OpVectorShuffle as needing a named definition, | 
|  | // but only if they are defined in this function as well. | 
|  | for (auto& id_def_info_pair : def_info_) { | 
|  | const auto& inst = id_def_info_pair.second->inst; | 
|  | if (inst.opcode() == SpvOpVectorShuffle) { | 
|  | // We might access the vector operands multiple times. Make sure they | 
|  | // are evaluated only once. | 
|  | for (auto vector_arg : std::array<uint32_t, 2>{0, 1}) { | 
|  | auto id = inst.GetSingleWordInOperand(vector_arg); | 
|  | auto* operand_def = GetDefInfo(id); | 
|  | if (operand_def) { | 
|  | operand_def->requires_named_const_def = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Scan uses of locally defined IDs, in function block order. | 
|  | for (auto block_id : block_order_) { | 
|  | const auto* block_info = GetBlockInfo(block_id); | 
|  | const auto block_pos = block_info->pos; | 
|  | for (const auto& inst : *(block_info->basic_block)) { | 
|  | // Update bookkeeping for locally-defined IDs used by this instruction. | 
|  | inst.ForEachInId([this, block_pos, block_info](const uint32_t* id_ptr) { | 
|  | auto* def_info = GetDefInfo(*id_ptr); | 
|  | if (def_info) { | 
|  | // Update usage count. | 
|  | def_info->num_uses++; | 
|  | // Update usage span. | 
|  | def_info->last_use_pos = std::max(def_info->last_use_pos, block_pos); | 
|  |  | 
|  | // Determine whether this ID is defined in a different construct | 
|  | // from this use. | 
|  | const auto defining_block = block_order_[def_info->block_pos]; | 
|  | const auto* def_in_construct = | 
|  | GetBlockInfo(defining_block)->construct; | 
|  | if (def_in_construct != block_info->construct) { | 
|  | def_info->used_in_another_construct = true; | 
|  | } | 
|  | } | 
|  | }); | 
|  |  | 
|  | if (inst.opcode() == SpvOpPhi) { | 
|  | // Declare a name for the variable used to carry values to a phi. | 
|  | const auto phi_id = inst.result_id(); | 
|  | auto* phi_def_info = GetDefInfo(phi_id); | 
|  | phi_def_info->phi_var = | 
|  | namer_.MakeDerivedName(namer_.Name(phi_id) + "_phi"); | 
|  | // Track all the places where we need to mention the variable, | 
|  | // so we can place its declaration.  First, record the location of | 
|  | // the read from the variable. | 
|  | uint32_t first_pos = block_pos; | 
|  | uint32_t last_pos = block_pos; | 
|  | // Record the assignments that will propagate values from predecessor | 
|  | // blocks. | 
|  | for (uint32_t i = 0; i + 1 < inst.NumInOperands(); i += 2) { | 
|  | const uint32_t value_id = inst.GetSingleWordInOperand(i); | 
|  | const uint32_t pred_block_id = inst.GetSingleWordInOperand(i + 1); | 
|  | auto* pred_block_info = GetBlockInfo(pred_block_id); | 
|  | // The predecessor might not be in the block order at all, so we | 
|  | // need this guard. | 
|  | if (pred_block_info) { | 
|  | // Record the assignment that needs to occur at the end | 
|  | // of the predecessor block. | 
|  | pred_block_info->phi_assignments.push_back({phi_id, value_id}); | 
|  | first_pos = std::min(first_pos, pred_block_info->pos); | 
|  | last_pos = std::min(last_pos, pred_block_info->pos); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Schedule the declaration of the state variable. | 
|  | const auto* enclosing_construct = | 
|  | GetEnclosingScope(first_pos, last_pos); | 
|  | GetBlockInfo(enclosing_construct->begin_id) | 
|  | ->phis_needing_state_vars.push_back(phi_id); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // For an ID defined in this function, determine if its evaluation and | 
|  | // potential declaration needs special handling: | 
|  | // - Compensate for the fact that dominance does not map directly to scope. | 
|  | //   A definition could dominate its use, but a named definition in WGSL | 
|  | //   at the location of the definition could go out of scope by the time | 
|  | //   you reach the use.  In that case, we hoist the definition to a basic | 
|  | //   block at the smallest scope enclosing both the definition and all | 
|  | //   its uses. | 
|  | // - If value is used in a different construct than its definition, then it | 
|  | //   needs a named constant definition.  Otherwise we might sink an | 
|  | //   expensive computation into control flow, and hence change performance. | 
|  | for (auto& id_def_info_pair : def_info_) { | 
|  | const auto def_id = id_def_info_pair.first; | 
|  | auto* def_info = id_def_info_pair.second.get(); | 
|  | if (def_info->num_uses == 0) { | 
|  | // There is no need to adjust the location of the declaration. | 
|  | continue; | 
|  | } | 
|  | // The first use must be the at the SSA definition, because block order | 
|  | // respects dominance. | 
|  | const auto first_pos = def_info->block_pos; | 
|  | const auto last_use_pos = def_info->last_use_pos; | 
|  |  | 
|  | const auto* def_in_construct = | 
|  | GetBlockInfo(block_order_[first_pos])->construct; | 
|  | // A definition in the first block of an kIfSelection or kSwitchSelection | 
|  | // occurs before the branch, and so that definition should count as | 
|  | // having been defined at the scope of the parent construct. | 
|  | if (first_pos == def_in_construct->begin_pos) { | 
|  | if ((def_in_construct->kind == Construct::kIfSelection) || | 
|  | (def_in_construct->kind == Construct::kSwitchSelection)) { | 
|  | def_in_construct = def_in_construct->parent; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool should_hoist = false; | 
|  | if (!def_in_construct->ContainsPos(last_use_pos)) { | 
|  | // To satisfy scoping, we have to hoist the definition out to an enclosing | 
|  | // construct. | 
|  | should_hoist = true; | 
|  | } else { | 
|  | // Avoid moving combinatorial values across constructs.  This is a | 
|  | // simple heuristic to avoid changing the cost of an operation | 
|  | // by moving it into or out of a loop, for example. | 
|  | if ((def_info->storage_class == ast::StorageClass::kNone) && | 
|  | def_info->used_in_another_construct) { | 
|  | should_hoist = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (should_hoist) { | 
|  | const auto* enclosing_construct = | 
|  | GetEnclosingScope(first_pos, last_use_pos); | 
|  | if (enclosing_construct == def_in_construct) { | 
|  | // We can use a plain 'const' definition. | 
|  | def_info->requires_named_const_def = true; | 
|  | } else { | 
|  | // We need to make a hoisted variable definition. | 
|  | // TODO(dneto): Handle non-storable types, particularly pointers. | 
|  | def_info->requires_hoisted_def = true; | 
|  | auto* hoist_to_block = GetBlockInfo(enclosing_construct->begin_id); | 
|  | hoist_to_block->hoisted_ids.push_back(def_id); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | const Construct* FunctionEmitter::GetEnclosingScope(uint32_t first_pos, | 
|  | uint32_t last_pos) const { | 
|  | const auto* enclosing_construct = | 
|  | GetBlockInfo(block_order_[first_pos])->construct; | 
|  | assert(enclosing_construct != nullptr); | 
|  | // Constructs are strictly nesting, so follow parent pointers | 
|  | while (enclosing_construct && | 
|  | !enclosing_construct->ScopeContainsPos(last_pos)) { | 
|  | // The scope of a continue construct is enclosed in its associated loop | 
|  | // construct, but they are siblings in our construct tree. | 
|  | const auto* sibling_loop = SiblingLoopConstruct(enclosing_construct); | 
|  | // Go to the sibling loop if it exists, otherwise walk up to the parent. | 
|  | enclosing_construct = | 
|  | sibling_loop ? sibling_loop : enclosing_construct->parent; | 
|  | } | 
|  | // At worst, we go all the way out to the function construct. | 
|  | assert(enclosing_construct != nullptr); | 
|  | return enclosing_construct; | 
|  | } | 
|  |  | 
|  | TypedExpression FunctionEmitter::MakeNumericConversion( | 
|  | const spvtools::opt::Instruction& inst) { | 
|  | const auto opcode = inst.opcode(); | 
|  | auto* requested_type = parser_impl_.ConvertType(inst.type_id()); | 
|  | auto arg_expr = MakeOperand(inst, 0); | 
|  | if (!arg_expr.expr || !arg_expr.type) { | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | ast::type::Type* expr_type = nullptr; | 
|  | if ((opcode == SpvOpConvertSToF) || (opcode == SpvOpConvertUToF)) { | 
|  | if (arg_expr.type->is_integer_scalar_or_vector()) { | 
|  | expr_type = requested_type; | 
|  | } else { | 
|  | Fail() << "operand for conversion to floating point must be integral " | 
|  | "scalar or vector, but got: " | 
|  | << arg_expr.type->type_name(); | 
|  | } | 
|  | } else if (inst.opcode() == SpvOpConvertFToU) { | 
|  | if (arg_expr.type->is_float_scalar_or_vector()) { | 
|  | expr_type = parser_impl_.GetUnsignedIntMatchingShape(arg_expr.type); | 
|  | } else { | 
|  | Fail() << "operand for conversion to unsigned integer must be floating " | 
|  | "point scalar or vector, but got: " | 
|  | << arg_expr.type->type_name(); | 
|  | } | 
|  | } else if (inst.opcode() == SpvOpConvertFToS) { | 
|  | if (arg_expr.type->is_float_scalar_or_vector()) { | 
|  | expr_type = parser_impl_.GetSignedIntMatchingShape(arg_expr.type); | 
|  | } else { | 
|  | Fail() << "operand for conversion to signed integer must be floating " | 
|  | "point scalar or vector, but got: " | 
|  | << arg_expr.type->type_name(); | 
|  | } | 
|  | } | 
|  | if (expr_type == nullptr) { | 
|  | // The diagnostic has already been emitted. | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | TypedExpression result(expr_type, std::make_unique<ast::CastExpression>( | 
|  | expr_type, std::move(arg_expr.expr))); | 
|  |  | 
|  | if (requested_type == expr_type) { | 
|  | return result; | 
|  | } | 
|  | return {requested_type, std::make_unique<ast::AsExpression>( | 
|  | requested_type, std::move(result.expr))}; | 
|  | } | 
|  |  | 
|  | bool FunctionEmitter::EmitFunctionCall(const spvtools::opt::Instruction& inst) { | 
|  | // We ignore function attributes such as Inline, DontInline, Pure, Const. | 
|  | auto function = std::make_unique<ast::IdentifierExpression>( | 
|  | namer_.Name(inst.GetSingleWordInOperand(0))); | 
|  |  | 
|  | ast::ExpressionList params; | 
|  | for (uint32_t iarg = 1; iarg < inst.NumInOperands(); ++iarg) { | 
|  | params.emplace_back(MakeOperand(inst, iarg).expr); | 
|  | } | 
|  | auto call_expr = std::make_unique<ast::CallExpression>(std::move(function), | 
|  | std::move(params)); | 
|  | auto* result_type = parser_impl_.ConvertType(inst.type_id()); | 
|  | if (!result_type) { | 
|  | return Fail() << "internal error: no mapped type result of call: " | 
|  | << inst.PrettyPrint(); | 
|  | } | 
|  |  | 
|  | if (result_type->IsVoid()) { | 
|  | return nullptr != | 
|  | AddStatementForInstruction( | 
|  | std::make_unique<ast::CallStatement>(std::move(call_expr)), | 
|  | inst); | 
|  | } | 
|  |  | 
|  | return EmitConstDefOrWriteToHoistedVar(inst, | 
|  | {result_type, std::move(call_expr)}); | 
|  | } | 
|  |  | 
|  | TypedExpression FunctionEmitter::MakeSimpleSelect( | 
|  | const spvtools::opt::Instruction& inst) { | 
|  | auto condition = MakeOperand(inst, 0); | 
|  | auto operand1 = MakeOperand(inst, 1); | 
|  | auto operand2 = MakeOperand(inst, 2); | 
|  |  | 
|  | // SPIR-V validation requires: | 
|  | // - the condition to be bool or bool vector, so we don't check it here. | 
|  | // - operand1, operand2, and result type to match. | 
|  | // - you can't select over pointers or pointer vectors, unless you also have | 
|  | //   a VariablePointers* capability, which is not allowed in by WebGPU. | 
|  | auto* op_ty = operand1.type; | 
|  | if (op_ty->IsVector() || op_ty->is_float_scalar() || | 
|  | op_ty->is_integer_scalar() || op_ty->IsBool()) { | 
|  | ast::ExpressionList params; | 
|  | params.push_back(std::move(operand1.expr)); | 
|  | params.push_back(std::move(operand2.expr)); | 
|  | // The condition goes last. | 
|  | params.push_back(std::move(condition.expr)); | 
|  | return {operand1.type, | 
|  | std::make_unique<ast::CallExpression>( | 
|  | std::make_unique<ast::IdentifierExpression>("select"), | 
|  | std::move(params))}; | 
|  | } | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | void FunctionEmitter::ApplySourceForInstruction( | 
|  | ast::Node* node, | 
|  | const spvtools::opt::Instruction& inst) { | 
|  | if (!node) { | 
|  | return; | 
|  | } | 
|  | const Source& existing = node->source(); | 
|  | if (!HasSource(existing)) { | 
|  | node->set_source(parser_impl_.GetSourceForInst(&inst)); | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace spirv | 
|  | }  // namespace reader | 
|  | }  // namespace tint |