| // Copyright 2020 The Tint Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "src/type_determiner.h" |
| |
| #include <memory> |
| #include <vector> |
| |
| #include "src/ast/array_accessor_expression.h" |
| #include "src/ast/assignment_statement.h" |
| #include "src/ast/binary_expression.h" |
| #include "src/ast/bitcast_expression.h" |
| #include "src/ast/block_statement.h" |
| #include "src/ast/break_statement.h" |
| #include "src/ast/call_expression.h" |
| #include "src/ast/call_statement.h" |
| #include "src/ast/case_statement.h" |
| #include "src/ast/continue_statement.h" |
| #include "src/ast/discard_statement.h" |
| #include "src/ast/else_statement.h" |
| #include "src/ast/fallthrough_statement.h" |
| #include "src/ast/identifier_expression.h" |
| #include "src/ast/if_statement.h" |
| #include "src/ast/intrinsic.h" |
| #include "src/ast/loop_statement.h" |
| #include "src/ast/member_accessor_expression.h" |
| #include "src/ast/return_statement.h" |
| #include "src/ast/scalar_constructor_expression.h" |
| #include "src/ast/switch_statement.h" |
| #include "src/ast/type_constructor_expression.h" |
| #include "src/ast/unary_op_expression.h" |
| #include "src/ast/variable_decl_statement.h" |
| #include "src/type/array_type.h" |
| #include "src/type/bool_type.h" |
| #include "src/type/depth_texture_type.h" |
| #include "src/type/f32_type.h" |
| #include "src/type/i32_type.h" |
| #include "src/type/matrix_type.h" |
| #include "src/type/multisampled_texture_type.h" |
| #include "src/type/pointer_type.h" |
| #include "src/type/sampled_texture_type.h" |
| #include "src/type/storage_texture_type.h" |
| #include "src/type/struct_type.h" |
| #include "src/type/texture_type.h" |
| #include "src/type/u32_type.h" |
| #include "src/type/vector_type.h" |
| #include "src/type/void_type.h" |
| |
| namespace tint { |
| |
| TypeDeterminer::TypeDeterminer(Program* program) : program_(program) {} |
| |
| TypeDeterminer::~TypeDeterminer() = default; |
| |
| diag::List TypeDeterminer::Run(Program* program) { |
| TypeDeterminer td(program); |
| if (!td.Determine()) { |
| diag::Diagnostic err; |
| err.severity = diag::Severity::Error; |
| err.message = td.error(); |
| return {err}; |
| } |
| return {}; |
| } |
| |
| void TypeDeterminer::set_error(const Source& src, const std::string& msg) { |
| error_ = ""; |
| if (src.range.begin.line > 0) { |
| error_ += std::to_string(src.range.begin.line) + ":" + |
| std::to_string(src.range.begin.column) + ": "; |
| } |
| error_ += msg; |
| } |
| |
| void TypeDeterminer::set_referenced_from_function_if_needed(ast::Variable* var, |
| bool local) { |
| if (current_function_ == nullptr) { |
| return; |
| } |
| if (var->storage_class() == ast::StorageClass::kNone || |
| var->storage_class() == ast::StorageClass::kFunction) { |
| return; |
| } |
| |
| current_function_->add_referenced_module_variable(var); |
| if (local) { |
| current_function_->add_local_referenced_module_variable(var); |
| } |
| } |
| |
| bool TypeDeterminer::Determine() { |
| std::vector<type::StorageTexture*> storage_textures; |
| for (auto* ty : program_->Types()) { |
| if (auto* storage = ty->UnwrapIfNeeded()->As<type::StorageTexture>()) { |
| storage_textures.emplace_back(storage); |
| } |
| } |
| |
| for (auto* storage : storage_textures) { |
| if (!DetermineStorageTextureSubtype(storage)) { |
| set_error(Source{}, "unable to determine storage texture subtype for: " + |
| storage->type_name()); |
| return false; |
| } |
| } |
| |
| for (auto* var : program_->AST().GlobalVariables()) { |
| variable_stack_.set_global(var->symbol(), var); |
| |
| if (var->has_constructor()) { |
| if (!DetermineResultType(var->constructor())) { |
| return false; |
| } |
| } |
| } |
| |
| if (!DetermineFunctions(program_->AST().Functions())) { |
| return false; |
| } |
| |
| // Walk over the caller to callee information and update functions with which |
| // entry points call those functions. |
| for (auto* func : program_->AST().Functions()) { |
| if (!func->IsEntryPoint()) { |
| continue; |
| } |
| for (const auto& callee : caller_to_callee_[func->symbol()]) { |
| set_entry_points(callee, func->symbol()); |
| } |
| } |
| |
| return true; |
| } |
| |
| void TypeDeterminer::set_entry_points(const Symbol& fn_sym, Symbol ep_sym) { |
| symbol_to_function_[fn_sym]->add_ancestor_entry_point(ep_sym); |
| |
| for (const auto& callee : caller_to_callee_[fn_sym]) { |
| set_entry_points(callee, ep_sym); |
| } |
| } |
| |
| bool TypeDeterminer::DetermineFunctions(const ast::FunctionList& funcs) { |
| for (auto* func : funcs) { |
| if (!DetermineFunction(func)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool TypeDeterminer::DetermineFunction(ast::Function* func) { |
| symbol_to_function_[func->symbol()] = func; |
| |
| current_function_ = func; |
| |
| variable_stack_.push_scope(); |
| for (auto* param : func->params()) { |
| variable_stack_.set(param->symbol(), param); |
| } |
| |
| if (!DetermineStatements(func->body())) { |
| return false; |
| } |
| variable_stack_.pop_scope(); |
| |
| current_function_ = nullptr; |
| |
| return true; |
| } |
| |
| bool TypeDeterminer::DetermineStatements(const ast::BlockStatement* stmts) { |
| for (auto* stmt : *stmts) { |
| if (!DetermineVariableStorageClass(stmt)) { |
| return false; |
| } |
| |
| if (!DetermineResultType(stmt)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool TypeDeterminer::DetermineVariableStorageClass(ast::Statement* stmt) { |
| auto* var_decl = stmt->As<ast::VariableDeclStatement>(); |
| if (var_decl == nullptr) { |
| return true; |
| } |
| |
| auto* var = var_decl->variable(); |
| // Nothing to do for const |
| if (var->is_const()) { |
| return true; |
| } |
| |
| if (var->storage_class() == ast::StorageClass::kFunction) { |
| return true; |
| } |
| |
| if (var->storage_class() != ast::StorageClass::kNone) { |
| set_error(stmt->source(), |
| "function variable has a non-function storage class"); |
| return false; |
| } |
| |
| var->set_storage_class(ast::StorageClass::kFunction); |
| return true; |
| } |
| |
| bool TypeDeterminer::DetermineResultType(ast::Statement* stmt) { |
| if (auto* a = stmt->As<ast::AssignmentStatement>()) { |
| return DetermineResultType(a->lhs()) && DetermineResultType(a->rhs()); |
| } |
| if (auto* b = stmt->As<ast::BlockStatement>()) { |
| return DetermineStatements(b); |
| } |
| if (stmt->Is<ast::BreakStatement>()) { |
| return true; |
| } |
| if (auto* c = stmt->As<ast::CallStatement>()) { |
| return DetermineResultType(c->expr()); |
| } |
| if (auto* c = stmt->As<ast::CaseStatement>()) { |
| return DetermineStatements(c->body()); |
| } |
| if (stmt->Is<ast::ContinueStatement>()) { |
| return true; |
| } |
| if (stmt->Is<ast::DiscardStatement>()) { |
| return true; |
| } |
| if (auto* e = stmt->As<ast::ElseStatement>()) { |
| return DetermineResultType(e->condition()) && |
| DetermineStatements(e->body()); |
| } |
| if (stmt->Is<ast::FallthroughStatement>()) { |
| return true; |
| } |
| if (auto* i = stmt->As<ast::IfStatement>()) { |
| if (!DetermineResultType(i->condition()) || |
| !DetermineStatements(i->body())) { |
| return false; |
| } |
| |
| for (auto* else_stmt : i->else_statements()) { |
| if (!DetermineResultType(else_stmt)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| if (auto* l = stmt->As<ast::LoopStatement>()) { |
| return DetermineStatements(l->body()) && |
| DetermineStatements(l->continuing()); |
| } |
| if (auto* r = stmt->As<ast::ReturnStatement>()) { |
| return DetermineResultType(r->value()); |
| } |
| if (auto* s = stmt->As<ast::SwitchStatement>()) { |
| if (!DetermineResultType(s->condition())) { |
| return false; |
| } |
| for (auto* case_stmt : s->body()) { |
| if (!DetermineResultType(case_stmt)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| if (auto* v = stmt->As<ast::VariableDeclStatement>()) { |
| variable_stack_.set(v->variable()->symbol(), v->variable()); |
| return DetermineResultType(v->variable()->constructor()); |
| } |
| |
| set_error(stmt->source(), |
| "unknown statement type for type determination: " + stmt->str()); |
| return false; |
| } |
| |
| bool TypeDeterminer::DetermineResultType(const ast::ExpressionList& list) { |
| for (auto* expr : list) { |
| if (!DetermineResultType(expr)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool TypeDeterminer::DetermineResultType(ast::Expression* expr) { |
| // This is blindly called above, so in some cases the expression won't exist. |
| if (!expr) { |
| return true; |
| } |
| |
| if (auto* a = expr->As<ast::ArrayAccessorExpression>()) { |
| return DetermineArrayAccessor(a); |
| } |
| if (auto* b = expr->As<ast::BinaryExpression>()) { |
| return DetermineBinary(b); |
| } |
| if (auto* b = expr->As<ast::BitcastExpression>()) { |
| return DetermineBitcast(b); |
| } |
| if (auto* c = expr->As<ast::CallExpression>()) { |
| return DetermineCall(c); |
| } |
| if (auto* c = expr->As<ast::ConstructorExpression>()) { |
| return DetermineConstructor(c); |
| } |
| if (auto* i = expr->As<ast::IdentifierExpression>()) { |
| return DetermineIdentifier(i); |
| } |
| if (auto* m = expr->As<ast::MemberAccessorExpression>()) { |
| return DetermineMemberAccessor(m); |
| } |
| if (auto* u = expr->As<ast::UnaryOpExpression>()) { |
| return DetermineUnaryOp(u); |
| } |
| |
| set_error(expr->source(), "unknown expression for type determination"); |
| return false; |
| } |
| |
| bool TypeDeterminer::DetermineArrayAccessor( |
| ast::ArrayAccessorExpression* expr) { |
| if (!DetermineResultType(expr->array())) { |
| return false; |
| } |
| if (!DetermineResultType(expr->idx_expr())) { |
| return false; |
| } |
| |
| auto* res = expr->array()->result_type(); |
| auto* parent_type = res->UnwrapAll(); |
| type::Type* ret = nullptr; |
| if (auto* arr = parent_type->As<type::Array>()) { |
| ret = arr->type(); |
| } else if (auto* vec = parent_type->As<type::Vector>()) { |
| ret = vec->type(); |
| } else if (auto* mat = parent_type->As<type::Matrix>()) { |
| ret = program_->create<type::Vector>(mat->type(), mat->rows()); |
| } else { |
| set_error(expr->source(), "invalid parent type (" + |
| parent_type->type_name() + |
| ") in array accessor"); |
| return false; |
| } |
| |
| // If we're extracting from a pointer, we return a pointer. |
| if (auto* ptr = res->As<type::Pointer>()) { |
| ret = program_->create<type::Pointer>(ret, ptr->storage_class()); |
| } else if (auto* arr = parent_type->As<type::Array>()) { |
| if (!arr->type()->is_scalar()) { |
| // If we extract a non-scalar from an array then we also get a pointer. We |
| // will generate a Function storage class variable to store this |
| // into. |
| ret = program_->create<type::Pointer>(ret, ast::StorageClass::kFunction); |
| } |
| } |
| expr->set_result_type(ret); |
| |
| return true; |
| } |
| |
| bool TypeDeterminer::DetermineBitcast(ast::BitcastExpression* expr) { |
| if (!DetermineResultType(expr->expr())) { |
| return false; |
| } |
| expr->set_result_type(expr->type()); |
| return true; |
| } |
| |
| bool TypeDeterminer::DetermineCall(ast::CallExpression* expr) { |
| if (!DetermineResultType(expr->func())) { |
| return false; |
| } |
| if (!DetermineResultType(expr->params())) { |
| return false; |
| } |
| |
| // The expression has to be an identifier as you can't store function pointers |
| // but, if it isn't we'll just use the normal result determination to be on |
| // the safe side. |
| if (auto* ident = expr->func()->As<ast::IdentifierExpression>()) { |
| if (ident->IsIntrinsic()) { |
| if (!DetermineIntrinsic(ident, expr)) { |
| return false; |
| } |
| } else { |
| if (current_function_) { |
| caller_to_callee_[current_function_->symbol()].push_back( |
| ident->symbol()); |
| |
| auto* callee_func = program_->AST().Functions().Find(ident->symbol()); |
| if (callee_func == nullptr) { |
| set_error(expr->source(), |
| "unable to find called function: " + |
| program_->Symbols().NameFor(ident->symbol())); |
| return false; |
| } |
| |
| // We inherit any referenced variables from the callee. |
| for (auto* var : callee_func->referenced_module_variables()) { |
| set_referenced_from_function_if_needed(var, false); |
| } |
| } |
| |
| // An identifier with a single name is a function call, not an import |
| // lookup which we can handle with the regular identifier lookup. |
| if (!DetermineResultType(ident)) { |
| return false; |
| } |
| } |
| } else { |
| if (!DetermineResultType(expr->func())) { |
| return false; |
| } |
| } |
| |
| if (!expr->func()->result_type()) { |
| auto func_sym = expr->func()->As<ast::IdentifierExpression>()->symbol(); |
| set_error(expr->source(), |
| "v-0005: function must be declared before use: '" + |
| program_->Symbols().NameFor(func_sym) + "'"); |
| return false; |
| } |
| |
| expr->set_result_type(expr->func()->result_type()); |
| return true; |
| } |
| |
| namespace { |
| |
| enum class IntrinsicDataType { |
| kFloatOrIntScalarOrVector, |
| kFloatScalarOrVector, |
| kIntScalarOrVector, |
| kFloatVector, |
| kMatrix, |
| }; |
| struct IntrinsicData { |
| ast::Intrinsic intrinsic; |
| uint8_t param_count; |
| IntrinsicDataType data_type; |
| uint8_t vector_size; |
| }; |
| |
| // Note, this isn't all the intrinsics. Some are handled specially before |
| // we get to the generic code. See the DetermineIntrinsic code below. |
| constexpr const IntrinsicData kIntrinsicData[] = { |
| {ast::Intrinsic::kAbs, 1, IntrinsicDataType::kFloatOrIntScalarOrVector, 0}, |
| {ast::Intrinsic::kAcos, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kAsin, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kAtan, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kAtan2, 2, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kCeil, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kClamp, 3, IntrinsicDataType::kFloatOrIntScalarOrVector, |
| 0}, |
| {ast::Intrinsic::kCos, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kCosh, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kCountOneBits, 1, IntrinsicDataType::kIntScalarOrVector, |
| 0}, |
| {ast::Intrinsic::kCross, 2, IntrinsicDataType::kFloatVector, 3}, |
| {ast::Intrinsic::kDeterminant, 1, IntrinsicDataType::kMatrix, 0}, |
| {ast::Intrinsic::kDistance, 2, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kExp, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kExp2, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kFaceForward, 3, IntrinsicDataType::kFloatScalarOrVector, |
| 0}, |
| {ast::Intrinsic::kFloor, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kFma, 3, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kFract, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kFrexp, 2, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kInverseSqrt, 1, IntrinsicDataType::kFloatScalarOrVector, |
| 0}, |
| {ast::Intrinsic::kLdexp, 2, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kLength, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kLog, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kLog2, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kMax, 2, IntrinsicDataType::kFloatOrIntScalarOrVector, 0}, |
| {ast::Intrinsic::kMin, 2, IntrinsicDataType::kFloatOrIntScalarOrVector, 0}, |
| {ast::Intrinsic::kMix, 3, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kModf, 2, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kNormalize, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kPow, 2, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kReflect, 2, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kReverseBits, 1, IntrinsicDataType::kIntScalarOrVector, 0}, |
| {ast::Intrinsic::kRound, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kSign, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kSin, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kSinh, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kSmoothStep, 3, IntrinsicDataType::kFloatScalarOrVector, |
| 0}, |
| {ast::Intrinsic::kSqrt, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kStep, 2, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kTan, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kTanh, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kTrunc, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| }; |
| |
| constexpr const uint32_t kIntrinsicDataCount = |
| sizeof(kIntrinsicData) / sizeof(IntrinsicData); |
| |
| } // namespace |
| |
| bool TypeDeterminer::DetermineIntrinsic(ast::IdentifierExpression* ident, |
| ast::CallExpression* expr) { |
| if (ast::intrinsic::IsDerivative(ident->intrinsic())) { |
| if (expr->params().size() != 1) { |
| set_error(expr->source(), |
| "incorrect number of parameters for " + |
| program_->Symbols().NameFor(ident->symbol())); |
| return false; |
| } |
| |
| // The result type must be the same as the type of the parameter. |
| auto* param_type = expr->params()[0]->result_type()->UnwrapPtrIfNeeded(); |
| expr->func()->set_result_type(param_type); |
| return true; |
| } |
| if (ident->intrinsic() == ast::Intrinsic::kAny || |
| ident->intrinsic() == ast::Intrinsic::kAll) { |
| expr->func()->set_result_type(program_->create<type::Bool>()); |
| return true; |
| } |
| if (ident->intrinsic() == ast::Intrinsic::kArrayLength) { |
| expr->func()->set_result_type(program_->create<type::U32>()); |
| return true; |
| } |
| if (ast::intrinsic::IsFloatClassificationIntrinsic(ident->intrinsic())) { |
| if (expr->params().size() != 1) { |
| set_error(expr->source(), |
| "incorrect number of parameters for " + |
| program_->Symbols().NameFor(ident->symbol())); |
| return false; |
| } |
| |
| auto* bool_type = program_->create<type::Bool>(); |
| |
| auto* param_type = expr->params()[0]->result_type()->UnwrapPtrIfNeeded(); |
| if (auto* vec = param_type->As<type::Vector>()) { |
| expr->func()->set_result_type( |
| program_->create<type::Vector>(bool_type, vec->size())); |
| } else { |
| expr->func()->set_result_type(bool_type); |
| } |
| return true; |
| } |
| if (ast::intrinsic::IsTextureIntrinsic(ident->intrinsic())) { |
| ast::intrinsic::TextureSignature::Parameters param; |
| |
| auto* texture_param = expr->params()[0]; |
| if (!texture_param->result_type()->UnwrapAll()->Is<type::Texture>()) { |
| set_error(expr->source(), |
| "invalid first argument for " + |
| program_->Symbols().NameFor(ident->symbol())); |
| return false; |
| } |
| type::Texture* texture = |
| texture_param->result_type()->UnwrapAll()->As<type::Texture>(); |
| |
| bool is_array = type::IsTextureArray(texture->dim()); |
| bool is_multisampled = texture->Is<type::MultisampledTexture>(); |
| switch (ident->intrinsic()) { |
| case ast::Intrinsic::kTextureDimensions: |
| param.idx.texture = param.count++; |
| if (expr->params().size() > param.count) { |
| param.idx.level = param.count++; |
| } |
| break; |
| case ast::Intrinsic::kTextureNumLayers: |
| case ast::Intrinsic::kTextureNumLevels: |
| case ast::Intrinsic::kTextureNumSamples: |
| param.idx.texture = param.count++; |
| break; |
| case ast::Intrinsic::kTextureLoad: |
| param.idx.texture = param.count++; |
| param.idx.coords = param.count++; |
| if (is_array) { |
| param.idx.array_index = param.count++; |
| } |
| if (expr->params().size() > param.count) { |
| if (is_multisampled) { |
| param.idx.sample_index = param.count++; |
| } else { |
| param.idx.level = param.count++; |
| } |
| } |
| break; |
| case ast::Intrinsic::kTextureSample: |
| param.idx.texture = param.count++; |
| param.idx.sampler = param.count++; |
| param.idx.coords = param.count++; |
| if (is_array) { |
| param.idx.array_index = param.count++; |
| } |
| if (expr->params().size() > param.count) { |
| param.idx.offset = param.count++; |
| } |
| break; |
| case ast::Intrinsic::kTextureSampleBias: |
| param.idx.texture = param.count++; |
| param.idx.sampler = param.count++; |
| param.idx.coords = param.count++; |
| if (is_array) { |
| param.idx.array_index = param.count++; |
| } |
| param.idx.bias = param.count++; |
| if (expr->params().size() > param.count) { |
| param.idx.offset = param.count++; |
| } |
| break; |
| case ast::Intrinsic::kTextureSampleLevel: |
| param.idx.texture = param.count++; |
| param.idx.sampler = param.count++; |
| param.idx.coords = param.count++; |
| if (is_array) { |
| param.idx.array_index = param.count++; |
| } |
| param.idx.level = param.count++; |
| if (expr->params().size() > param.count) { |
| param.idx.offset = param.count++; |
| } |
| break; |
| case ast::Intrinsic::kTextureSampleCompare: |
| param.idx.texture = param.count++; |
| param.idx.sampler = param.count++; |
| param.idx.coords = param.count++; |
| if (is_array) { |
| param.idx.array_index = param.count++; |
| } |
| param.idx.depth_ref = param.count++; |
| if (expr->params().size() > param.count) { |
| param.idx.offset = param.count++; |
| } |
| break; |
| case ast::Intrinsic::kTextureSampleGrad: |
| param.idx.texture = param.count++; |
| param.idx.sampler = param.count++; |
| param.idx.coords = param.count++; |
| if (is_array) { |
| param.idx.array_index = param.count++; |
| } |
| param.idx.ddx = param.count++; |
| param.idx.ddy = param.count++; |
| if (expr->params().size() > param.count) { |
| param.idx.offset = param.count++; |
| } |
| break; |
| case ast::Intrinsic::kTextureStore: |
| param.idx.texture = param.count++; |
| param.idx.coords = param.count++; |
| if (is_array) { |
| param.idx.array_index = param.count++; |
| } |
| param.idx.value = param.count++; |
| break; |
| default: |
| set_error(expr->source(), |
| "Internal compiler error: Unreachable intrinsic " + |
| std::to_string(static_cast<int>(ident->intrinsic()))); |
| return false; |
| } |
| |
| if (expr->params().size() != param.count) { |
| set_error(expr->source(), |
| "incorrect number of parameters for " + |
| program_->Symbols().NameFor(ident->symbol()) + ", got " + |
| std::to_string(expr->params().size()) + " and expected " + |
| std::to_string(param.count)); |
| return false; |
| } |
| |
| ident->set_intrinsic_signature( |
| std::make_unique<ast::intrinsic::TextureSignature>(param)); |
| |
| // Set the function return type |
| type::Type* return_type = nullptr; |
| switch (ident->intrinsic()) { |
| case ast::Intrinsic::kTextureDimensions: { |
| auto* i32 = program_->create<type::I32>(); |
| switch (texture->dim()) { |
| default: |
| set_error(expr->source(), "invalid texture dimensions"); |
| break; |
| case type::TextureDimension::k1d: |
| case type::TextureDimension::k1dArray: |
| return_type = i32; |
| break; |
| case type::TextureDimension::k2d: |
| case type::TextureDimension::k2dArray: |
| return_type = program_->create<type::Vector>(i32, 2); |
| break; |
| case type::TextureDimension::k3d: |
| case type::TextureDimension::kCube: |
| case type::TextureDimension::kCubeArray: |
| return_type = program_->create<type::Vector>(i32, 3); |
| break; |
| } |
| break; |
| } |
| case ast::Intrinsic::kTextureNumLayers: |
| case ast::Intrinsic::kTextureNumLevels: |
| case ast::Intrinsic::kTextureNumSamples: |
| return_type = program_->create<type::I32>(); |
| break; |
| case ast::Intrinsic::kTextureStore: |
| return_type = program_->create<type::Void>(); |
| break; |
| default: { |
| if (texture->Is<type::DepthTexture>()) { |
| return_type = program_->create<type::F32>(); |
| } else { |
| type::Type* type = nullptr; |
| if (auto* storage = texture->As<type::StorageTexture>()) { |
| type = storage->type(); |
| } else if (auto* sampled = texture->As<type::SampledTexture>()) { |
| type = sampled->type(); |
| } else if (auto* msampled = |
| texture->As<type::MultisampledTexture>()) { |
| type = msampled->type(); |
| } else { |
| set_error(expr->source(), |
| "unknown texture type for texture sampling"); |
| return false; |
| } |
| return_type = program_->create<type::Vector>(type, 4); |
| } |
| } |
| } |
| expr->func()->set_result_type(return_type); |
| |
| return true; |
| } |
| if (ident->intrinsic() == ast::Intrinsic::kDot) { |
| expr->func()->set_result_type(program_->create<type::F32>()); |
| return true; |
| } |
| if (ident->intrinsic() == ast::Intrinsic::kSelect) { |
| if (expr->params().size() != 3) { |
| set_error(expr->source(), |
| "incorrect number of parameters for " + |
| program_->Symbols().NameFor(ident->symbol()) + |
| " expected 3 got " + std::to_string(expr->params().size())); |
| return false; |
| } |
| |
| // The result type must be the same as the type of the parameter. |
| auto* param_type = expr->params()[0]->result_type()->UnwrapPtrIfNeeded(); |
| expr->func()->set_result_type(param_type); |
| return true; |
| } |
| |
| const IntrinsicData* data = nullptr; |
| for (uint32_t i = 0; i < kIntrinsicDataCount; ++i) { |
| if (ident->intrinsic() == kIntrinsicData[i].intrinsic) { |
| data = &kIntrinsicData[i]; |
| break; |
| } |
| } |
| if (data == nullptr) { |
| error_ = "unable to find intrinsic " + |
| program_->Symbols().NameFor(ident->symbol()); |
| return false; |
| } |
| |
| if (expr->params().size() != data->param_count) { |
| set_error(expr->source(), "incorrect number of parameters for " + |
| program_->Symbols().NameFor(ident->symbol()) + |
| ". Expected " + |
| std::to_string(data->param_count) + " got " + |
| std::to_string(expr->params().size())); |
| return false; |
| } |
| |
| std::vector<type::Type*> result_types; |
| for (uint32_t i = 0; i < data->param_count; ++i) { |
| result_types.push_back( |
| expr->params()[i]->result_type()->UnwrapPtrIfNeeded()); |
| |
| switch (data->data_type) { |
| case IntrinsicDataType::kFloatOrIntScalarOrVector: |
| if (!result_types.back()->is_float_scalar_or_vector() && |
| !result_types.back()->is_integer_scalar_or_vector()) { |
| set_error(expr->source(), |
| "incorrect type for " + |
| program_->Symbols().NameFor(ident->symbol()) + ". " + |
| "Requires float or int, scalar or vector values"); |
| return false; |
| } |
| break; |
| case IntrinsicDataType::kFloatScalarOrVector: |
| if (!result_types.back()->is_float_scalar_or_vector()) { |
| set_error(expr->source(), |
| "incorrect type for " + |
| program_->Symbols().NameFor(ident->symbol()) + ". " + |
| "Requires float scalar or float vector values"); |
| return false; |
| } |
| |
| break; |
| case IntrinsicDataType::kIntScalarOrVector: |
| if (!result_types.back()->is_integer_scalar_or_vector()) { |
| set_error(expr->source(), |
| "incorrect type for " + |
| program_->Symbols().NameFor(ident->symbol()) + ". " + |
| "Requires integer scalar or integer vector values"); |
| return false; |
| } |
| break; |
| case IntrinsicDataType::kFloatVector: |
| if (!result_types.back()->is_float_vector()) { |
| set_error(expr->source(), |
| "incorrect type for " + |
| program_->Symbols().NameFor(ident->symbol()) + ". " + |
| "Requires float vector values"); |
| return false; |
| } |
| if (data->vector_size > 0 && |
| result_types.back()->As<type::Vector>()->size() != |
| data->vector_size) { |
| set_error(expr->source(), |
| "incorrect vector size for " + |
| program_->Symbols().NameFor(ident->symbol()) + ". " + |
| "Requires " + std::to_string(data->vector_size) + |
| " elements"); |
| return false; |
| } |
| break; |
| case IntrinsicDataType::kMatrix: |
| if (!result_types.back()->Is<type::Matrix>()) { |
| set_error(expr->source(), |
| "incorrect type for " + |
| program_->Symbols().NameFor(ident->symbol()) + |
| ". Requires matrix value"); |
| return false; |
| } |
| break; |
| } |
| } |
| |
| // Verify all the parameter types match |
| for (size_t i = 1; i < data->param_count; ++i) { |
| if (result_types[0] != result_types[i]) { |
| set_error(expr->source(), |
| "mismatched parameter types for " + |
| program_->Symbols().NameFor(ident->symbol())); |
| return false; |
| } |
| } |
| |
| // Handle functions which aways return the type, even if a vector is |
| // provided. |
| if (ident->intrinsic() == ast::Intrinsic::kLength || |
| ident->intrinsic() == ast::Intrinsic::kDistance) { |
| expr->func()->set_result_type( |
| result_types[0]->is_float_scalar() |
| ? result_types[0] |
| : result_types[0]->As<type::Vector>()->type()); |
| return true; |
| } |
| // The determinant returns the component type of the columns |
| if (ident->intrinsic() == ast::Intrinsic::kDeterminant) { |
| expr->func()->set_result_type(result_types[0]->As<type::Matrix>()->type()); |
| return true; |
| } |
| expr->func()->set_result_type(result_types[0]); |
| return true; |
| } |
| |
| bool TypeDeterminer::DetermineConstructor(ast::ConstructorExpression* expr) { |
| if (auto* ty = expr->As<ast::TypeConstructorExpression>()) { |
| for (auto* value : ty->values()) { |
| if (!DetermineResultType(value)) { |
| return false; |
| } |
| } |
| expr->set_result_type(ty->type()); |
| } else { |
| expr->set_result_type( |
| expr->As<ast::ScalarConstructorExpression>()->literal()->type()); |
| } |
| return true; |
| } |
| |
| bool TypeDeterminer::DetermineIdentifier(ast::IdentifierExpression* expr) { |
| auto symbol = expr->symbol(); |
| ast::Variable* var; |
| if (variable_stack_.get(symbol, &var)) { |
| // A constant is the type, but a variable is always a pointer so synthesize |
| // the pointer around the variable type. |
| if (var->is_const()) { |
| expr->set_result_type(var->type()); |
| } else if (var->type()->Is<type::Pointer>()) { |
| expr->set_result_type(var->type()); |
| } else { |
| expr->set_result_type( |
| program_->create<type::Pointer>(var->type(), var->storage_class())); |
| } |
| |
| set_referenced_from_function_if_needed(var, true); |
| return true; |
| } |
| |
| auto iter = symbol_to_function_.find(symbol); |
| if (iter != symbol_to_function_.end()) { |
| expr->set_result_type(iter->second->return_type()); |
| return true; |
| } |
| |
| if (!SetIntrinsicIfNeeded(expr)) { |
| set_error(expr->source(), |
| "v-0006: identifier must be declared before use: " + |
| program_->Symbols().NameFor(symbol)); |
| return false; |
| } |
| return true; |
| } |
| |
| bool TypeDeterminer::SetIntrinsicIfNeeded(ast::IdentifierExpression* ident) { |
| auto name = program_->Symbols().NameFor(ident->symbol()); |
| if (name == "abs") { |
| ident->set_intrinsic(ast::Intrinsic::kAbs); |
| } else if (name == "acos") { |
| ident->set_intrinsic(ast::Intrinsic::kAcos); |
| } else if (name == "all") { |
| ident->set_intrinsic(ast::Intrinsic::kAll); |
| } else if (name == "any") { |
| ident->set_intrinsic(ast::Intrinsic::kAny); |
| } else if (name == "arrayLength") { |
| ident->set_intrinsic(ast::Intrinsic::kArrayLength); |
| } else if (name == "asin") { |
| ident->set_intrinsic(ast::Intrinsic::kAsin); |
| } else if (name == "atan") { |
| ident->set_intrinsic(ast::Intrinsic::kAtan); |
| } else if (name == "atan2") { |
| ident->set_intrinsic(ast::Intrinsic::kAtan2); |
| } else if (name == "ceil") { |
| ident->set_intrinsic(ast::Intrinsic::kCeil); |
| } else if (name == "clamp") { |
| ident->set_intrinsic(ast::Intrinsic::kClamp); |
| } else if (name == "cos") { |
| ident->set_intrinsic(ast::Intrinsic::kCos); |
| } else if (name == "cosh") { |
| ident->set_intrinsic(ast::Intrinsic::kCosh); |
| } else if (name == "countOneBits") { |
| ident->set_intrinsic(ast::Intrinsic::kCountOneBits); |
| } else if (name == "cross") { |
| ident->set_intrinsic(ast::Intrinsic::kCross); |
| } else if (name == "determinant") { |
| ident->set_intrinsic(ast::Intrinsic::kDeterminant); |
| } else if (name == "distance") { |
| ident->set_intrinsic(ast::Intrinsic::kDistance); |
| } else if (name == "dot") { |
| ident->set_intrinsic(ast::Intrinsic::kDot); |
| } else if (name == "dpdx") { |
| ident->set_intrinsic(ast::Intrinsic::kDpdx); |
| } else if (name == "dpdxCoarse") { |
| ident->set_intrinsic(ast::Intrinsic::kDpdxCoarse); |
| } else if (name == "dpdxFine") { |
| ident->set_intrinsic(ast::Intrinsic::kDpdxFine); |
| } else if (name == "dpdy") { |
| ident->set_intrinsic(ast::Intrinsic::kDpdy); |
| } else if (name == "dpdyCoarse") { |
| ident->set_intrinsic(ast::Intrinsic::kDpdyCoarse); |
| } else if (name == "dpdyFine") { |
| ident->set_intrinsic(ast::Intrinsic::kDpdyFine); |
| } else if (name == "exp") { |
| ident->set_intrinsic(ast::Intrinsic::kExp); |
| } else if (name == "exp2") { |
| ident->set_intrinsic(ast::Intrinsic::kExp2); |
| } else if (name == "faceForward") { |
| ident->set_intrinsic(ast::Intrinsic::kFaceForward); |
| } else if (name == "floor") { |
| ident->set_intrinsic(ast::Intrinsic::kFloor); |
| } else if (name == "fma") { |
| ident->set_intrinsic(ast::Intrinsic::kFma); |
| } else if (name == "fract") { |
| ident->set_intrinsic(ast::Intrinsic::kFract); |
| } else if (name == "frexp") { |
| ident->set_intrinsic(ast::Intrinsic::kFrexp); |
| } else if (name == "fwidth") { |
| ident->set_intrinsic(ast::Intrinsic::kFwidth); |
| } else if (name == "fwidthCoarse") { |
| ident->set_intrinsic(ast::Intrinsic::kFwidthCoarse); |
| } else if (name == "fwidthFine") { |
| ident->set_intrinsic(ast::Intrinsic::kFwidthFine); |
| } else if (name == "inverseSqrt") { |
| ident->set_intrinsic(ast::Intrinsic::kInverseSqrt); |
| } else if (name == "isFinite") { |
| ident->set_intrinsic(ast::Intrinsic::kIsFinite); |
| } else if (name == "isInf") { |
| ident->set_intrinsic(ast::Intrinsic::kIsInf); |
| } else if (name == "isNan") { |
| ident->set_intrinsic(ast::Intrinsic::kIsNan); |
| } else if (name == "isNormal") { |
| ident->set_intrinsic(ast::Intrinsic::kIsNormal); |
| } else if (name == "ldexp") { |
| ident->set_intrinsic(ast::Intrinsic::kLdexp); |
| } else if (name == "length") { |
| ident->set_intrinsic(ast::Intrinsic::kLength); |
| } else if (name == "log") { |
| ident->set_intrinsic(ast::Intrinsic::kLog); |
| } else if (name == "log2") { |
| ident->set_intrinsic(ast::Intrinsic::kLog2); |
| } else if (name == "max") { |
| ident->set_intrinsic(ast::Intrinsic::kMax); |
| } else if (name == "min") { |
| ident->set_intrinsic(ast::Intrinsic::kMin); |
| } else if (name == "mix") { |
| ident->set_intrinsic(ast::Intrinsic::kMix); |
| } else if (name == "modf") { |
| ident->set_intrinsic(ast::Intrinsic::kModf); |
| } else if (name == "normalize") { |
| ident->set_intrinsic(ast::Intrinsic::kNormalize); |
| } else if (name == "pow") { |
| ident->set_intrinsic(ast::Intrinsic::kPow); |
| } else if (name == "reflect") { |
| ident->set_intrinsic(ast::Intrinsic::kReflect); |
| } else if (name == "reverseBits") { |
| ident->set_intrinsic(ast::Intrinsic::kReverseBits); |
| } else if (name == "round") { |
| ident->set_intrinsic(ast::Intrinsic::kRound); |
| } else if (name == "select") { |
| ident->set_intrinsic(ast::Intrinsic::kSelect); |
| } else if (name == "sign") { |
| ident->set_intrinsic(ast::Intrinsic::kSign); |
| } else if (name == "sin") { |
| ident->set_intrinsic(ast::Intrinsic::kSin); |
| } else if (name == "sinh") { |
| ident->set_intrinsic(ast::Intrinsic::kSinh); |
| } else if (name == "smoothStep") { |
| ident->set_intrinsic(ast::Intrinsic::kSmoothStep); |
| } else if (name == "sqrt") { |
| ident->set_intrinsic(ast::Intrinsic::kSqrt); |
| } else if (name == "step") { |
| ident->set_intrinsic(ast::Intrinsic::kStep); |
| } else if (name == "tan") { |
| ident->set_intrinsic(ast::Intrinsic::kTan); |
| } else if (name == "tanh") { |
| ident->set_intrinsic(ast::Intrinsic::kTanh); |
| } else if (name == "textureDimensions") { |
| ident->set_intrinsic(ast::Intrinsic::kTextureDimensions); |
| } else if (name == "textureNumLayers") { |
| ident->set_intrinsic(ast::Intrinsic::kTextureNumLayers); |
| } else if (name == "textureNumLevels") { |
| ident->set_intrinsic(ast::Intrinsic::kTextureNumLevels); |
| } else if (name == "textureNumSamples") { |
| ident->set_intrinsic(ast::Intrinsic::kTextureNumSamples); |
| } else if (name == "textureLoad") { |
| ident->set_intrinsic(ast::Intrinsic::kTextureLoad); |
| } else if (name == "textureStore") { |
| ident->set_intrinsic(ast::Intrinsic::kTextureStore); |
| } else if (name == "textureSample") { |
| ident->set_intrinsic(ast::Intrinsic::kTextureSample); |
| } else if (name == "textureSampleBias") { |
| ident->set_intrinsic(ast::Intrinsic::kTextureSampleBias); |
| } else if (name == "textureSampleCompare") { |
| ident->set_intrinsic(ast::Intrinsic::kTextureSampleCompare); |
| } else if (name == "textureSampleGrad") { |
| ident->set_intrinsic(ast::Intrinsic::kTextureSampleGrad); |
| } else if (name == "textureSampleLevel") { |
| ident->set_intrinsic(ast::Intrinsic::kTextureSampleLevel); |
| } else if (name == "trunc") { |
| ident->set_intrinsic(ast::Intrinsic::kTrunc); |
| } else { |
| return false; |
| } |
| return true; |
| } |
| |
| bool TypeDeterminer::DetermineMemberAccessor( |
| ast::MemberAccessorExpression* expr) { |
| if (!DetermineResultType(expr->structure())) { |
| return false; |
| } |
| |
| auto* res = expr->structure()->result_type(); |
| auto* data_type = res->UnwrapPtrIfNeeded()->UnwrapIfNeeded(); |
| |
| type::Type* ret = nullptr; |
| if (auto* ty = data_type->As<type::Struct>()) { |
| auto* strct = ty->impl(); |
| auto symbol = expr->member()->symbol(); |
| |
| for (auto* member : strct->members()) { |
| if (member->symbol() == symbol) { |
| ret = member->type(); |
| break; |
| } |
| } |
| |
| if (ret == nullptr) { |
| set_error(expr->source(), "struct member " + |
| program_->Symbols().NameFor(symbol) + |
| " not found"); |
| return false; |
| } |
| |
| // If we're extracting from a pointer, we return a pointer. |
| if (auto* ptr = res->As<type::Pointer>()) { |
| ret = program_->create<type::Pointer>(ret, ptr->storage_class()); |
| } |
| } else if (auto* vec = data_type->As<type::Vector>()) { |
| // TODO(dsinclair): Swizzle, record into the identifier experesion |
| |
| auto size = program_->Symbols().NameFor(expr->member()->symbol()).size(); |
| if (size == 1) { |
| // A single element swizzle is just the type of the vector. |
| ret = vec->type(); |
| // If we're extracting from a pointer, we return a pointer. |
| if (auto* ptr = res->As<type::Pointer>()) { |
| ret = program_->create<type::Pointer>(ret, ptr->storage_class()); |
| } |
| } else { |
| // The vector will have a number of components equal to the length of the |
| // swizzle. This assumes the validator will check that the swizzle |
| // is correct. |
| ret = program_->create<type::Vector>(vec->type(), |
| static_cast<uint32_t>(size)); |
| } |
| } else { |
| set_error( |
| expr->source(), |
| "v-0007: invalid use of member accessor on a non-vector/non-struct " + |
| data_type->type_name()); |
| return false; |
| } |
| |
| expr->set_result_type(ret); |
| |
| return true; |
| } |
| |
| bool TypeDeterminer::DetermineBinary(ast::BinaryExpression* expr) { |
| if (!DetermineResultType(expr->lhs()) || !DetermineResultType(expr->rhs())) { |
| return false; |
| } |
| |
| // Result type matches first parameter type |
| if (expr->IsAnd() || expr->IsOr() || expr->IsXor() || expr->IsShiftLeft() || |
| expr->IsShiftRight() || expr->IsAdd() || expr->IsSubtract() || |
| expr->IsDivide() || expr->IsModulo()) { |
| expr->set_result_type(expr->lhs()->result_type()->UnwrapPtrIfNeeded()); |
| return true; |
| } |
| // Result type is a scalar or vector of boolean type |
| if (expr->IsLogicalAnd() || expr->IsLogicalOr() || expr->IsEqual() || |
| expr->IsNotEqual() || expr->IsLessThan() || expr->IsGreaterThan() || |
| expr->IsLessThanEqual() || expr->IsGreaterThanEqual()) { |
| auto* bool_type = program_->create<type::Bool>(); |
| auto* param_type = expr->lhs()->result_type()->UnwrapPtrIfNeeded(); |
| if (auto* vec = param_type->As<type::Vector>()) { |
| expr->set_result_type( |
| program_->create<type::Vector>(bool_type, vec->size())); |
| } else { |
| expr->set_result_type(bool_type); |
| } |
| return true; |
| } |
| if (expr->IsMultiply()) { |
| auto* lhs_type = expr->lhs()->result_type()->UnwrapPtrIfNeeded(); |
| auto* rhs_type = expr->rhs()->result_type()->UnwrapPtrIfNeeded(); |
| |
| // Note, the ordering here matters. The later checks depend on the prior |
| // checks having been done. |
| auto* lhs_mat = lhs_type->As<type::Matrix>(); |
| auto* rhs_mat = rhs_type->As<type::Matrix>(); |
| auto* lhs_vec = lhs_type->As<type::Vector>(); |
| auto* rhs_vec = rhs_type->As<type::Vector>(); |
| if (lhs_mat && rhs_mat) { |
| expr->set_result_type(program_->create<type::Matrix>( |
| lhs_mat->type(), lhs_mat->rows(), rhs_mat->columns())); |
| } else if (lhs_mat && rhs_vec) { |
| expr->set_result_type( |
| program_->create<type::Vector>(lhs_mat->type(), lhs_mat->rows())); |
| } else if (lhs_vec && rhs_mat) { |
| expr->set_result_type( |
| program_->create<type::Vector>(rhs_mat->type(), rhs_mat->columns())); |
| } else if (lhs_mat) { |
| // matrix * scalar |
| expr->set_result_type(lhs_type); |
| } else if (rhs_mat) { |
| // scalar * matrix |
| expr->set_result_type(rhs_type); |
| } else if (lhs_vec && rhs_vec) { |
| expr->set_result_type(lhs_type); |
| } else if (lhs_vec) { |
| // Vector * scalar |
| expr->set_result_type(lhs_type); |
| } else if (rhs_vec) { |
| // Scalar * vector |
| expr->set_result_type(rhs_type); |
| } else { |
| // Scalar * Scalar |
| expr->set_result_type(lhs_type); |
| } |
| |
| return true; |
| } |
| |
| set_error(expr->source(), "Unknown binary expression"); |
| return false; |
| } |
| |
| bool TypeDeterminer::DetermineUnaryOp(ast::UnaryOpExpression* expr) { |
| // Result type matches the parameter type. |
| if (!DetermineResultType(expr->expr())) { |
| return false; |
| } |
| expr->set_result_type(expr->expr()->result_type()->UnwrapPtrIfNeeded()); |
| return true; |
| } |
| |
| bool TypeDeterminer::DetermineStorageTextureSubtype(type::StorageTexture* tex) { |
| if (tex->type() != nullptr) { |
| return true; |
| } |
| |
| switch (tex->image_format()) { |
| case type::ImageFormat::kR8Uint: |
| case type::ImageFormat::kR16Uint: |
| case type::ImageFormat::kRg8Uint: |
| case type::ImageFormat::kR32Uint: |
| case type::ImageFormat::kRg16Uint: |
| case type::ImageFormat::kRgba8Uint: |
| case type::ImageFormat::kRg32Uint: |
| case type::ImageFormat::kRgba16Uint: |
| case type::ImageFormat::kRgba32Uint: { |
| tex->set_type(program_->create<type::U32>()); |
| return true; |
| } |
| |
| case type::ImageFormat::kR8Sint: |
| case type::ImageFormat::kR16Sint: |
| case type::ImageFormat::kRg8Sint: |
| case type::ImageFormat::kR32Sint: |
| case type::ImageFormat::kRg16Sint: |
| case type::ImageFormat::kRgba8Sint: |
| case type::ImageFormat::kRg32Sint: |
| case type::ImageFormat::kRgba16Sint: |
| case type::ImageFormat::kRgba32Sint: { |
| tex->set_type(program_->create<type::I32>()); |
| return true; |
| } |
| |
| case type::ImageFormat::kR8Unorm: |
| case type::ImageFormat::kRg8Unorm: |
| case type::ImageFormat::kRgba8Unorm: |
| case type::ImageFormat::kRgba8UnormSrgb: |
| case type::ImageFormat::kBgra8Unorm: |
| case type::ImageFormat::kBgra8UnormSrgb: |
| case type::ImageFormat::kRgb10A2Unorm: |
| case type::ImageFormat::kR8Snorm: |
| case type::ImageFormat::kRg8Snorm: |
| case type::ImageFormat::kRgba8Snorm: |
| case type::ImageFormat::kR16Float: |
| case type::ImageFormat::kR32Float: |
| case type::ImageFormat::kRg16Float: |
| case type::ImageFormat::kRg11B10Float: |
| case type::ImageFormat::kRg32Float: |
| case type::ImageFormat::kRgba16Float: |
| case type::ImageFormat::kRgba32Float: { |
| tex->set_type(program_->create<type::F32>()); |
| return true; |
| } |
| |
| case type::ImageFormat::kNone: |
| break; |
| } |
| |
| return false; |
| } |
| |
| } // namespace tint |