blob: b40d887a4cbca15c26cb4bb8b50b38c952e75b10 [file] [log] [blame]
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/tint/ast/alias.h"
#include "src/tint/ast/test_helper.h"
#include "src/tint/reader/wgsl/parser_impl_test_helper.h"
#include "src/tint/type/sampled_texture.h"
namespace tint::reader::wgsl {
namespace {
using namespace tint::number_suffixes; // NOLINT
TEST_F(ParserImplTest, TypeDecl_Invalid) {
auto p = parser("1234");
auto t = p->type_specifier();
EXPECT_EQ(t.errored, false);
EXPECT_EQ(t.matched, false);
EXPECT_EQ(t.value, nullptr);
EXPECT_FALSE(p->has_error());
}
TEST_F(ParserImplTest, TypeDecl_Identifier) {
auto p = parser("A");
auto t = p->type_specifier();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ast::CheckIdentifier(p->builder().Symbols(), t.value, "A");
EXPECT_EQ(t->expr->source.range, (Source::Range{{1u, 1u}, {1u, 2u}}));
}
TEST_F(ParserImplTest, TypeDecl_Bool) {
auto p = parser("bool");
auto t = p->type_specifier();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ast::CheckIdentifier(p->builder().Symbols(), t.value, "bool");
EXPECT_EQ(t.value->source.range, (Source::Range{{1u, 1u}, {1u, 5u}}));
}
TEST_F(ParserImplTest, TypeDecl_F16) {
auto p = parser("f16");
auto t = p->type_specifier();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ast::CheckIdentifier(p->builder().Symbols(), t.value, "f16");
EXPECT_EQ(t.value->source.range, (Source::Range{{1u, 1u}, {1u, 4u}}));
}
TEST_F(ParserImplTest, TypeDecl_F32) {
auto p = parser("f32");
auto t = p->type_specifier();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ast::CheckIdentifier(p->builder().Symbols(), t.value, "f32");
EXPECT_EQ(t.value->source.range, (Source::Range{{1u, 1u}, {1u, 4u}}));
}
TEST_F(ParserImplTest, TypeDecl_I32) {
auto p = parser("i32");
auto t = p->type_specifier();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ast::CheckIdentifier(p->builder().Symbols(), t.value, "i32");
EXPECT_EQ(t.value->source.range, (Source::Range{{1u, 1u}, {1u, 4u}}));
}
TEST_F(ParserImplTest, TypeDecl_U32) {
auto p = parser("u32");
auto t = p->type_specifier();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ast::CheckIdentifier(p->builder().Symbols(), t.value, "u32");
EXPECT_EQ(t.value->source.range, (Source::Range{{1u, 1u}, {1u, 4u}}));
}
struct VecData {
const char* input;
size_t count;
Source::Range range;
};
inline std::ostream& operator<<(std::ostream& out, VecData data) {
out << std::string(data.input);
return out;
}
class VecTest : public ParserImplTestWithParam<VecData> {};
TEST_P(VecTest, Parse) {
auto params = GetParam();
auto p = parser(params.input);
auto t = p->type_specifier();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
ast::CheckIdentifier(p->builder().Symbols(), t.value,
ast::Template("vec" + std::to_string(params.count), "f32"));
EXPECT_EQ(t.value->source.range, params.range);
}
INSTANTIATE_TEST_SUITE_P(ParserImplTest,
VecTest,
testing::Values(VecData{"vec2<f32>", 2, {{1u, 1u}, {1u, 10u}}},
VecData{"vec3<f32>", 3, {{1u, 1u}, {1u, 10u}}},
VecData{"vec4<f32>", 4, {{1u, 1u}, {1u, 10u}}}));
class VecMissingType : public ParserImplTestWithParam<VecData> {};
TEST_P(VecMissingType, Handles_Missing_Type) {
auto params = GetParam();
auto p = parser(params.input);
auto t = p->type_specifier();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:6: expected expression");
}
INSTANTIATE_TEST_SUITE_P(ParserImplTest,
VecMissingType,
testing::Values(VecData{"vec2<>", 2, {}},
VecData{"vec3<>", 3, {}},
VecData{"vec4<>", 4, {}}));
TEST_F(ParserImplTest, TypeDecl_Ptr) {
auto p = parser("ptr<function, f32>");
auto t = p->type_specifier();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
ast::CheckIdentifier(p->builder().Symbols(), t.value, ast::Template("ptr", "function", "f32"));
EXPECT_EQ(t.value->source.range, (Source::Range{{1u, 1u}, {1u, 19u}}));
}
TEST_F(ParserImplTest, TypeDecl_Ptr_WithAccess) {
auto p = parser("ptr<function, f32, read>");
auto t = p->type_specifier();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
ast::CheckIdentifier(p->builder().Symbols(), t.value,
ast::Template("ptr", "function", "f32", "read"));
EXPECT_EQ(t.value->source.range, (Source::Range{{1u, 1u}, {1u, 25u}}));
}
TEST_F(ParserImplTest, TypeDecl_Ptr_ToVec) {
auto p = parser("ptr<function, vec2<f32>>");
auto t = p->type_specifier();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
ast::CheckIdentifier(p->builder().Symbols(), t.value,
ast::Template("ptr", "function", ast::Template("vec2", "f32")));
EXPECT_EQ(t.value->source.range, (Source::Range{{1u, 1u}, {1u, 25}}));
}
TEST_F(ParserImplTest, TypeDecl_Ptr_MissingCommaAfterAddressSpace) {
auto p = parser("ptr<function f32>");
auto t = p->type_specifier();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:14: expected ',' for type template argument list");
}
TEST_F(ParserImplTest, TypeDecl_Ptr_MissingCommaAfterAccess) {
auto p = parser("ptr<function, f32 read>");
auto t = p->type_specifier();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:19: expected ',' for type template argument list");
}
TEST_F(ParserImplTest, TypeDecl_Ptr_MissingAddressSpace) {
auto p = parser("ptr<, f32>");
auto t = p->type_specifier();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), R"(1:5: expected expression)");
}
TEST_F(ParserImplTest, TypeDecl_Ptr_MissingParams) {
auto p = parser("ptr<>");
auto t = p->type_specifier();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), R"(1:5: expected expression)");
}
TEST_F(ParserImplTest, TypeDecl_Atomic) {
auto p = parser("atomic<f32>");
auto t = p->type_specifier();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
ast::CheckIdentifier(p->builder().Symbols(), t.value, ast::Template("atomic", "f32"));
EXPECT_EQ(t.value->source.range, (Source::Range{{1u, 1u}, {1u, 12u}}));
}
TEST_F(ParserImplTest, TypeDecl_Atomic_ToVec) {
auto p = parser("atomic<vec2<f32>>");
auto t = p->type_specifier();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
ast::CheckIdentifier(p->builder().Symbols(), t.value,
ast::Template("atomic", ast::Template("vec2", "f32")));
EXPECT_EQ(t.value->source.range, (Source::Range{{1u, 1u}, {1u, 18u}}));
}
TEST_F(ParserImplTest, TypeDecl_Atomic_MissingType) {
auto p = parser("atomic<>");
auto t = p->type_specifier();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:8: expected expression");
}
TEST_F(ParserImplTest, TypeDecl_Array_AbstractIntLiteralSize) {
auto p = parser("array<f32, 5>");
auto t = p->type_specifier();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
ast::CheckIdentifier(p->builder().Symbols(), t.value, ast::Template("array", "f32", 5_a));
}
TEST_F(ParserImplTest, TypeDecl_Array_SintLiteralSize) {
auto p = parser("array<f32, 5i>");
auto t = p->type_specifier();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
ast::CheckIdentifier(p->builder().Symbols(), t.value, ast::Template("array", "f32", 5_i));
}
TEST_F(ParserImplTest, TypeDecl_Array_UintLiteralSize) {
auto p = parser("array<f32, 5u>");
auto t = p->type_specifier();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
ast::CheckIdentifier(p->builder().Symbols(), t.value, ast::Template("array", "f32", 5_u));
}
TEST_F(ParserImplTest, TypeDecl_Array_ConstantSize) {
auto p = parser("array<f32, size>");
auto t = p->type_specifier();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
ast::CheckIdentifier(p->builder().Symbols(), t.value, ast::Template("array", "f32", "size"));
}
TEST_F(ParserImplTest, TypeDecl_Array_ExpressionSize) {
auto p = parser("array<f32, size + 2>");
auto t = p->type_specifier();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
auto name_for = [&](const Symbol& sym) { return p->builder().Symbols().NameFor(sym); };
auto* arr = t->expr->identifier->As<ast::TemplatedIdentifier>();
EXPECT_EQ(name_for(arr->symbol), "array");
EXPECT_TRUE(arr->attributes.IsEmpty());
ASSERT_EQ(arr->arguments.Length(), 2u);
auto* ty = As<ast::IdentifierExpression>(arr->arguments[0]);
ASSERT_NE(ty, nullptr);
EXPECT_EQ(name_for(ty->identifier->symbol), "f32");
auto* count = As<ast::BinaryExpression>(arr->arguments[1]);
ASSERT_NE(count, nullptr);
EXPECT_EQ(ast::BinaryOp::kAdd, count->op);
auto* count_lhs = As<ast::IdentifierExpression>(count->lhs);
ASSERT_NE(count_lhs, nullptr);
EXPECT_EQ(name_for(count_lhs->identifier->symbol), "size");
auto* count_rhs = As<ast::IntLiteralExpression>(count->rhs);
ASSERT_NE(count_rhs, nullptr);
EXPECT_EQ(count_rhs->value, static_cast<int64_t>(2));
}
TEST_F(ParserImplTest, TypeDecl_Array_Runtime) {
auto p = parser("array<u32>");
auto t = p->type_specifier();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
ast::CheckIdentifier(p->builder().Symbols(), t.value, ast::Template("array", "u32"));
EXPECT_EQ(t.value->source.range, (Source::Range{{1u, 1u}, {1u, 11u}}));
}
TEST_F(ParserImplTest, TypeDecl_Array_Runtime_Vec) {
auto p = parser("array<vec4<u32>>");
auto t = p->type_specifier();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
ast::CheckIdentifier(p->builder().Symbols(), t.value,
ast::Template("array", ast::Template("vec4", "u32")));
EXPECT_EQ(t.value->source.range, (Source::Range{{1u, 1u}, {1u, 17u}}));
}
TEST_F(ParserImplTest, TypeDecl_Array_BadSize) {
auto p = parser("array<f32, !>");
auto t = p->type_specifier();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:13: unable to parse right side of ! expression");
}
TEST_F(ParserImplTest, TypeDecl_Array_MissingComma) {
auto p = parser("array<f32 3>");
auto t = p->type_specifier();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:11: expected ',' for type template argument list");
}
struct MatrixData {
const char* input;
size_t columns;
size_t rows;
Source::Range range;
};
inline std::ostream& operator<<(std::ostream& out, MatrixData data) {
out << std::string(data.input);
return out;
}
class MatrixTest : public ParserImplTestWithParam<MatrixData> {};
TEST_P(MatrixTest, Parse) {
auto params = GetParam();
auto p = parser(params.input);
auto t = p->type_specifier();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ASSERT_FALSE(p->has_error());
std::string expected_name =
"mat" + std::to_string(GetParam().columns) + "x" + std::to_string(GetParam().rows);
ast::CheckIdentifier(p->builder().Symbols(), t.value, ast::Template(expected_name, "f32"));
EXPECT_EQ(t.value->source.range, params.range);
}
INSTANTIATE_TEST_SUITE_P(ParserImplTest,
MatrixTest,
testing::Values(MatrixData{"mat2x2<f32>", 2, 2, {{1u, 1u}, {1u, 12u}}},
MatrixData{"mat2x3<f32>", 2, 3, {{1u, 1u}, {1u, 12u}}},
MatrixData{"mat2x4<f32>", 2, 4, {{1u, 1u}, {1u, 12u}}},
MatrixData{"mat3x2<f32>", 3, 2, {{1u, 1u}, {1u, 12u}}},
MatrixData{"mat3x3<f32>", 3, 3, {{1u, 1u}, {1u, 12u}}},
MatrixData{"mat3x4<f32>", 3, 4, {{1u, 1u}, {1u, 12u}}},
MatrixData{"mat4x2<f32>", 4, 2, {{1u, 1u}, {1u, 12u}}},
MatrixData{"mat4x3<f32>", 4, 3, {{1u, 1u}, {1u, 12u}}},
MatrixData{"mat4x4<f32>", 4, 4, {{1u, 1u}, {1u, 12u}}}));
class MatrixMissingType : public ParserImplTestWithParam<MatrixData> {};
TEST_P(MatrixMissingType, Handles_Missing_Type) {
auto params = GetParam();
auto p = parser(params.input);
auto t = p->type_specifier();
EXPECT_TRUE(t.errored);
EXPECT_FALSE(t.matched);
ASSERT_EQ(t.value, nullptr);
ASSERT_TRUE(p->has_error());
ASSERT_EQ(p->error(), "1:8: expected expression");
}
INSTANTIATE_TEST_SUITE_P(ParserImplTest,
MatrixMissingType,
testing::Values(MatrixData{"mat2x2<>", 2, 2, {}},
MatrixData{"mat2x3<>", 2, 3, {}},
MatrixData{"mat2x4<>", 2, 4, {}},
MatrixData{"mat3x2<>", 3, 2, {}},
MatrixData{"mat3x3<>", 3, 3, {}},
MatrixData{"mat3x4<>", 3, 4, {}},
MatrixData{"mat4x2<>", 4, 2, {}},
MatrixData{"mat4x3<>", 4, 3, {}},
MatrixData{"mat4x4<>", 4, 4, {}}));
TEST_F(ParserImplTest, TypeDecl_Sampler) {
auto p = parser("sampler");
auto t = p->type_specifier();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr) << p->error();
ast::CheckIdentifier(p->builder().Symbols(), t.value, "sampler");
EXPECT_EQ(t.value->source.range, (Source::Range{{1u, 1u}, {1u, 8u}}));
}
TEST_F(ParserImplTest, TypeDecl_Texture) {
auto p = parser("texture_cube<f32>");
auto t = p->type_specifier();
EXPECT_TRUE(t.matched);
EXPECT_FALSE(t.errored);
ASSERT_NE(t.value, nullptr);
ast::CheckIdentifier(p->builder().Symbols(), t.value, ast::Template("texture_cube", "f32"));
EXPECT_EQ(t.value->source.range, (Source::Range{{1u, 1u}, {1u, 18u}}));
}
} // namespace
} // namespace tint::reader::wgsl