| // Copyright 2021 The Tint Authors. | 
 | // | 
 | // Licensed under the Apache License, Version 2.0 (the "License"); | 
 | // you may not use this file except in compliance with the License. | 
 | // You may obtain a copy of the License at | 
 | // | 
 | //     http://www.apache.org/licenses/LICENSE-2.0 | 
 | // | 
 | // Unless required by applicable law or agreed to in writing, software | 
 | // distributed under the License is distributed on an "AS IS" BASIS, | 
 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 | // See the License for the specific language governing permissions and | 
 | // limitations under the License. | 
 |  | 
 | //////////////////////////////////////////////////////////////////////////////// | 
 | // WGSL intrinsic definition file                                             // | 
 | //                                                                            // | 
 | // This file is used to generate parts of the Tint IntrinsicTable, various    // | 
 | // enum definition files, as well as test .wgsl files.                        // | 
 | //////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | //////////////////////////////////////////////////////////////////////////////// | 
 | // Enumerators                                                                // | 
 | //////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | // https://gpuweb.github.io/gpuweb/wgsl/#storage-class | 
 | enum storage_class { | 
 |   function | 
 |   private | 
 |   workgroup | 
 |   uniform | 
 |   storage | 
 |   [[internal]] handle | 
 | } | 
 |  | 
 | // https://gpuweb.github.io/gpuweb/wgsl/#memory-access-mode | 
 | enum access { | 
 |   read | 
 |   write | 
 |   read_write | 
 | } | 
 |  | 
 | // https://gpuweb.github.io/gpuweb/wgsl/#texel-formats | 
 | enum texel_format { | 
 |   rgba8unorm | 
 |   rgba8snorm | 
 |   rgba8uint | 
 |   rgba8sint | 
 |   rgba16uint | 
 |   rgba16sint | 
 |   rgba16float | 
 |   r32uint | 
 |   r32sint | 
 |   r32float | 
 |   rg32uint | 
 |   rg32sint | 
 |   rg32float | 
 |   rgba32uint | 
 |   rgba32sint | 
 |   rgba32float | 
 | } | 
 |  | 
 | //////////////////////////////////////////////////////////////////////////////// | 
 | // WGSL primitive types                                                       // | 
 | //////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | // https://gpuweb.github.io/gpuweb/wgsl/#plain-types-section | 
 | type bool | 
 | type f32 | 
 | type i32 | 
 | type u32 | 
 | type vec2<T> | 
 | type vec3<T> | 
 | type vec4<T> | 
 | [[display("vec{N}<{T}>")]]     type vec<N: num, T> | 
 | [[display("mat{N}x{M}<{T}>")]] type mat<N: num, M: num, T> | 
 | type ptr<S: storage_class, T, A: access> | 
 | type atomic<T> | 
 | type array<T> | 
 | type sampler | 
 | type sampler_comparison | 
 | type texture_1d<T> | 
 | type texture_2d<T> | 
 | type texture_2d_array<T> | 
 | type texture_3d<T> | 
 | type texture_cube<T> | 
 | type texture_cube_array<T> | 
 | type texture_multisampled_2d<T> | 
 | type texture_depth_2d | 
 | type texture_depth_2d_array | 
 | type texture_depth_cube | 
 | type texture_depth_cube_array | 
 | type texture_depth_multisampled_2d | 
 | type texture_storage_1d<F: texel_format, A: access> | 
 | type texture_storage_2d<F: texel_format, A: access> | 
 | type texture_storage_2d_array<F: texel_format, A: access> | 
 | type texture_storage_3d<F: texel_format, A: access> | 
 | type texture_external | 
 |  | 
 | type _modf_result | 
 | [[display("_modf_result_vec{N}")]] type _modf_result_vec<N: num> | 
 | type _frexp_result | 
 | [[display("_frexp_result_vec{N}")]] type _frexp_result_vec<N: num> | 
 |  | 
 | //////////////////////////////////////////////////////////////////////////////// | 
 | // Type matchers                                                              // | 
 | //                                                                            // | 
 | // A type matcher that can match one or more types.                           // | 
 | //////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | match fiu32: f32 | i32 | u32 | 
 | match iu32: i32 | u32 | 
 | match scalar: f32 | i32 | u32 | bool | 
 |  | 
 | //////////////////////////////////////////////////////////////////////////////// | 
 | // Enum matchers                                                              // | 
 | //                                                                            // | 
 | // A number matcher that can match one or more enumerator values.             // | 
 | // All enumerator values listed in the match declaration need to be from the  // | 
 | // same enum.                                                                 // | 
 | //////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | // https://gpuweb.github.io/gpuweb/wgsl/#texel-formats | 
 | match f32_texel_format: | 
 |   rgba8unorm | rgba8snorm | rgba16float | r32float | rg32float | rgba32float | 
 | match i32_texel_format: | 
 |   rgba8sint | rgba16sint | r32sint | rg32sint | rgba32sint | 
 | match u32_texel_format: | 
 |   rgba8uint | rgba16uint | r32uint | rg32uint | rgba32uint | 
 |  | 
 | match write_only: write | 
 |  | 
 | match function_private_workgroup: function | private | workgroup | 
 | match workgroup_or_storage: workgroup | storage | 
 |  | 
 | //////////////////////////////////////////////////////////////////////////////// | 
 | // Intrinsic Functions                                                        // | 
 | //                                                                            // | 
 | // The intrinsic function declarations below declare all the built-in         // | 
 | // functions supported by the WGSL language. This intrinsic definition        // | 
 | // language supports simple static-type function declarations, as well as     // | 
 | // single overload declarations that can match a number of different          // | 
 | // argument types via the use of 'open-types' and 'open-numbers'.             // | 
 | //                                                                            // | 
 | // * Basic example:                                                           // | 
 | //                                                                            // | 
 | //    fn isInf(f32) -> bool                                                   // | 
 | //                                                                            // | 
 | //   Declares an overload of the function 'isInf' that accepts a single       // | 
 | //   parameter of type 'f32' and returns a 'bool'.                            // | 
 | //                                                                            // | 
 | // An 'open-type' can be thought as a template type that is determined by the // | 
 | // arguments to the intrinsic.                                                // | 
 | //                                                                            // | 
 | // * Open-type example without constraint:                                    // | 
 | //                                                                            // | 
 | //    fn arrayLength<T>(array<T>) -> u32                                      // | 
 | //                                                                            // | 
 | //    Declares an overload of the function 'arrayLength' that accepts a       // | 
 | //    single argument of an array type with no constraints on the array       // | 
 | //    element type. This overload will always return a value of the same type // | 
 | //    as its single argument.                                                 // | 
 | //                                                                            // | 
 | // * Open-type example with constraint:                                       // | 
 | //                                                                            // | 
 | //    fn abs<T: fiu32>(T) -> T                                                // | 
 | //                                                                            // | 
 | //    Declares an overload of the function 'abs' that accepts a single        // | 
 | //    argument of type 'f32', 'i32' or 'u32', which returns a value of the    // | 
 | //    same argument type.                                                     // | 
 | //                                                                            // | 
 | // Similarly an 'open-number' can be thought as a template number or          // | 
 | // enumerator that is determined by the arguments to the intrinsic.           // | 
 | //                                                                            // | 
 | // * Open-number example:                                                     // | 
 | //                                                                            // | 
 | //    fn dpdx<N: num>(vec<N, f32>) -> vec<N, f32>                             // | 
 | //                                                                            // | 
 | //    Declares an overload of the function 'dpdx' that accepts a single       // | 
 | //    argument of a variable-sized vector of 'f32', which returns a value of  // | 
 | //    the same argument type.                                                 // | 
 | //                                                                            // | 
 | //                                                                            // | 
 | // Matching algorithm:                                                        // | 
 | // -------------------                                                        // | 
 | //                                                                            // | 
 | // Prior to matching an overload, all open-types are undefined.               // | 
 | //                                                                            // | 
 | // Open-types become closed-types (pinned to a fixed type) on the first       // | 
 | // attempt to match an argument to that open-type.                            // | 
 | // Once open-types are closed, they remain that type for the rest of the      // | 
 | // overload evaluation.                                                       // | 
 | //                                                                            // | 
 | // To better understand, let's consider the following hypothetical overload   // | 
 | // declaration:                                                               // | 
 | //                                                                            // | 
 | //    fn foo<T: scalar>(T, T);                                                // | 
 | //                                                                            // | 
 | //    T           - is the open-type                                          // | 
 | //    scalar      - is a matcher for the types 'f32', 'i32', 'u32' or 'bool'  // | 
 | //                  (declared above)                                          // | 
 | //    <T: scalar> - declares the open-type T, with the constraint that T must // | 
 | //                  match one of 'f32', 'i32', 'u32' or 'bool'.               // | 
 | //                                                                            // | 
 | // The process for resolving this overload is as follows:                     // | 
 | //                                                                            // | 
 | //   (1) The overload resolver begins by attempting to match the argument     // | 
 | //       types from left to right.                                            // | 
 | //       The first parameter type is compared against the argument type.      // | 
 | //       As the open-type T has not been closed yet, T is closed as the type  // | 
 | //       of the first argument.                                               // | 
 | //       There's no verification that the T type is a scalar at this stage.   // | 
 | //   (2) The second parameter is then compared against the second argument.   // | 
 | //       As the open-type T is now closed, the argument type is compared      // | 
 | //       against the value of the closed-type of T. If the types match, then  // | 
 | //       the overload is still a candidate for matching, otherwise the        // | 
 | //       overload is no longer considered.                                    // | 
 | //   (3) If all the parameters matched, constraints on the open-types need    // | 
 | //       to be checked next. If the closed-type does not match the 'match'    // | 
 | //       constraint, then the overload is no longer considered.               // | 
 | //                                                                            // | 
 | // The algorithm for matching open-numbers is almost identical to open-types, // | 
 | // except of course, they match against integer numbers or enumerators        // | 
 | // instead of types.                                                          // | 
 | //                                                                            // | 
 | //                                                                            // | 
 | // * More examples:                                                           // | 
 | //                                                                            // | 
 | //   fn F()                                                                   // | 
 | //     - Function called F.                                                   // | 
 | //       No open types or numbers, no parameters, no return value             // | 
 | //                                                                            // | 
 | //   fn F() -> RETURN_TYPE                                                    // | 
 | //     - Function with RETURN_TYPE as the return type value                   // | 
 | //                                                                            // | 
 | //   fn F(f32, i32)                                                           // | 
 | //     - Two fixed-type, anonymous parameters                                 // | 
 | //                                                                            // | 
 | //   fn F(USAGE : f32)                                                        // | 
 | //     - Single parameter with name USAGE.                                    // | 
 | //       Note: Parameter names are used by Tint to infer parameter order for  // | 
 | //       some intrinsic functions                                             // | 
 | //                                                                            // | 
 | //   fn F<T>(T)                                                               // | 
 | //     - Single parameter of unconstrained open-type T (any type)             // | 
 | //                                                                            // | 
 | //   fn F<T: scalar>(T)                                                       // | 
 | //     - Single parameter of constrained open-type T (must be a scalar)       // | 
 | //                                                                            // | 
 | //   fn F<T: fiu32>(T) -> T                                                   // | 
 | //     - Single parameter of constrained open-type T (must be a one of fiu32) // | 
 | //       Return type matches parameter type                                   // | 
 | //                                                                            // | 
 | //   fn F<T, N: num>(vec<N, T>)                                               // | 
 | //     - Single parameter of vector type with open-number size N and element  // | 
 | //       open-type T                                                          // | 
 | //                                                                            // | 
 | //   fn F<A: access>(texture_storage_1d<f32_texel_format, A>)                 // | 
 | //     - Single parameter of texture_storage_1d type with open-number         // | 
 | //       access-control C, and of a texel format that is listed in            // | 
 | //       f32_texel_format                                                     // | 
 | //                                                                            // | 
 | //////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | // https://gpuweb.github.io/gpuweb/wgsl/#builtin-functions | 
 | fn abs<T: fiu32>(T) -> T | 
 | fn abs<N: num, T: fiu32>(vec<N, T>) -> vec<N, T> | 
 | fn acos(f32) -> f32 | 
 | fn acos<N: num>(vec<N, f32>) -> vec<N, f32> | 
 | fn all(bool) -> bool | 
 | fn all<N: num>(vec<N, bool>) -> bool | 
 | fn any(bool) -> bool | 
 | fn any<N: num>(vec<N, bool>) -> bool | 
 | fn arrayLength<T, A: access>(ptr<storage, array<T>, A>) -> u32 | 
 | fn asin(f32) -> f32 | 
 | fn asin<N: num>(vec<N, f32>) -> vec<N, f32> | 
 | fn atan(f32) -> f32 | 
 | fn atan<N: num>(vec<N, f32>) -> vec<N, f32> | 
 | fn atan2(f32, f32) -> f32 | 
 | fn atan2<N: num>(vec<N, f32>, vec<N, f32>) -> vec<N, f32> | 
 | fn ceil(f32) -> f32 | 
 | fn ceil<N: num>(vec<N, f32>) -> vec<N, f32> | 
 | fn clamp<T: fiu32>(T, T, T) -> T | 
 | fn clamp<N: num, T: fiu32>(vec<N, T>, vec<N, T>, vec<N, T>) -> vec<N, T> | 
 | fn cos(f32) -> f32 | 
 | fn cos<N: num>(vec<N, f32>) -> vec<N, f32> | 
 | fn cosh(f32) -> f32 | 
 | fn cosh<N: num>(vec<N, f32>) -> vec<N, f32> | 
 | fn countOneBits<T: iu32>(T) -> T | 
 | fn countOneBits<N: num, T: iu32>(vec<N, T>) -> vec<N, T> | 
 | fn cross(vec3<f32>, vec3<f32>) -> vec3<f32> | 
 | fn determinant<N: num>(mat<N, N, f32>) -> f32 | 
 | fn distance(f32, f32) -> f32 | 
 | fn distance<N: num>(vec<N, f32>, vec<N, f32>) -> f32 | 
 | fn dot<N: num, T: fiu32>(vec<N, T>, vec<N, T>) -> T | 
 | [[stage("fragment")]] fn dpdx(f32) -> f32 | 
 | [[stage("fragment")]] fn dpdx<N: num>(vec<N, f32>) -> vec<N, f32> | 
 | [[stage("fragment")]] fn dpdxCoarse(f32) -> f32 | 
 | [[stage("fragment")]] fn dpdxCoarse<N: num>(vec<N, f32>) -> vec<N, f32> | 
 | [[stage("fragment")]] fn dpdxFine(f32) -> f32 | 
 | [[stage("fragment")]] fn dpdxFine<N: num>(vec<N, f32>) -> vec<N, f32> | 
 | [[stage("fragment")]] fn dpdy(f32) -> f32 | 
 | [[stage("fragment")]] fn dpdy<N: num>(vec<N, f32>) -> vec<N, f32> | 
 | [[stage("fragment")]] fn dpdyCoarse(f32) -> f32 | 
 | [[stage("fragment")]] fn dpdyCoarse<N: num>(vec<N, f32>) -> vec<N, f32> | 
 | [[stage("fragment")]] fn dpdyFine(f32) -> f32 | 
 | [[stage("fragment")]] fn dpdyFine<N: num>(vec<N, f32>) -> vec<N, f32> | 
 | fn exp(f32) -> f32 | 
 | fn exp<N: num>(vec<N, f32>) -> vec<N, f32> | 
 | fn exp2(f32) -> f32 | 
 | fn exp2<N: num>(vec<N, f32>) -> vec<N, f32> | 
 | fn faceForward<N: num>(vec<N, f32>, vec<N, f32>, vec<N, f32>) -> vec<N, f32> | 
 | fn floor(f32) -> f32 | 
 | fn floor<N: num>(vec<N, f32>) -> vec<N, f32> | 
 | fn fma(f32, f32, f32) -> f32 | 
 | fn fma<N: num>(vec<N, f32>, vec<N, f32>, vec<N, f32>) -> vec<N, f32> | 
 | fn fract(f32) -> f32 | 
 | fn fract<N: num>(vec<N, f32>) -> vec<N, f32> | 
 | fn frexp(f32) -> _frexp_result | 
 | fn frexp<N: num>(vec<N, f32>) -> _frexp_result_vec<N> | 
 | [[stage("fragment")]] fn fwidth(f32) -> f32 | 
 | [[stage("fragment")]] fn fwidth<N: num>(vec<N, f32>) -> vec<N, f32> | 
 | [[stage("fragment")]] fn fwidthCoarse(f32) -> f32 | 
 | [[stage("fragment")]] fn fwidthCoarse<N: num>(vec<N, f32>) -> vec<N, f32> | 
 | [[stage("fragment")]] fn fwidthFine(f32) -> f32 | 
 | [[stage("fragment")]] fn fwidthFine<N: num>(vec<N, f32>) -> vec<N, f32> | 
 | [[deprecated]] fn ignore<T>(T) | 
 | fn inverseSqrt(f32) -> f32 | 
 | fn inverseSqrt<N: num>(vec<N, f32>) -> vec<N, f32> | 
 | fn isFinite(f32) -> bool | 
 | fn isFinite<N: num>(vec<N, f32>) -> vec<N, bool> | 
 | fn isInf(f32) -> bool | 
 | fn isInf<N: num>(vec<N, f32>) -> vec<N, bool> | 
 | fn isNan(f32) -> bool | 
 | fn isNan<N: num>(vec<N, f32>) -> vec<N, bool> | 
 | fn isNormal(f32) -> bool | 
 | fn isNormal<N: num>(vec<N, f32>) -> vec<N, bool> | 
 | fn ldexp(f32, i32) -> f32 | 
 | fn ldexp<N: num>(vec<N, f32>, vec<N, i32>) -> vec<N, f32> | 
 | fn length(f32) -> f32 | 
 | fn length<N: num>(vec<N, f32>) -> f32 | 
 | fn log(f32) -> f32 | 
 | fn log<N: num>(vec<N, f32>) -> vec<N, f32> | 
 | fn log2(f32) -> f32 | 
 | fn log2<N: num>(vec<N, f32>) -> vec<N, f32> | 
 | fn max<T: fiu32>(T, T) -> T | 
 | fn max<N: num, T: fiu32>(vec<N, T>, vec<N, T>) -> vec<N, T> | 
 | fn min<T: fiu32>(T, T) -> T | 
 | fn min<N: num, T: fiu32>(vec<N, T>, vec<N, T>) -> vec<N, T> | 
 | fn mix(f32, f32, f32) -> f32 | 
 | fn mix<N: num>(vec<N, f32>, vec<N, f32>, vec<N, f32>) -> vec<N, f32> | 
 | fn mix<N: num>(vec<N, f32>, vec<N, f32>, f32) -> vec<N, f32> | 
 | fn modf(f32) -> _modf_result | 
 | fn modf<N: num>(vec<N, f32>) -> _modf_result_vec<N> | 
 | fn normalize<N: num>(vec<N, f32>) -> vec<N, f32> | 
 | fn pack2x16float(vec2<f32>) -> u32 | 
 | fn pack2x16snorm(vec2<f32>) -> u32 | 
 | fn pack2x16unorm(vec2<f32>) -> u32 | 
 | fn pack4x8snorm(vec4<f32>) -> u32 | 
 | fn pack4x8unorm(vec4<f32>) -> u32 | 
 | fn pow(f32, f32) -> f32 | 
 | fn pow<N: num>(vec<N, f32>, vec<N, f32>) -> vec<N, f32> | 
 | fn reflect<N: num>(vec<N, f32>, vec<N, f32>) -> vec<N, f32> | 
 | fn refract<N: num>(vec<N, f32>, vec<N, f32>, f32) -> vec<N, f32> | 
 | fn reverseBits<T: iu32>(T) -> T | 
 | fn reverseBits<N: num, T: iu32>(vec<N, T>) -> vec<N, T> | 
 | fn round(f32) -> f32 | 
 | fn round<N: num>(vec<N, f32>) -> vec<N, f32> | 
 | fn select<T: scalar>(T, T, bool) -> T | 
 | fn select<T: scalar, N: num>(vec<N, T>, vec<N, T>, bool) -> vec<N, T> | 
 | fn select<N: num, T: scalar>(vec<N, T>, vec<N, T>, vec<N, bool>) -> vec<N, T> | 
 | fn sign(f32) -> f32 | 
 | fn sign<N: num>(vec<N, f32>) -> vec<N, f32> | 
 | fn sin(f32) -> f32 | 
 | fn sin<N: num>(vec<N, f32>) -> vec<N, f32> | 
 | fn sinh(f32) -> f32 | 
 | fn sinh<N: num>(vec<N, f32>) -> vec<N, f32> | 
 | fn smoothStep(f32, f32, f32) -> f32 | 
 | fn smoothStep<N: num>(vec<N, f32>, vec<N, f32>, vec<N, f32>) -> vec<N, f32> | 
 | fn sqrt(f32) -> f32 | 
 | fn sqrt<N: num>(vec<N, f32>) -> vec<N, f32> | 
 | fn step(f32, f32) -> f32 | 
 | fn step<N: num>(vec<N, f32>, vec<N, f32>) -> vec<N, f32> | 
 | [[stage("compute")]] fn storageBarrier() | 
 | fn tan(f32) -> f32 | 
 | fn tan<N: num>(vec<N, f32>) -> vec<N, f32> | 
 | fn tanh(f32) -> f32 | 
 | fn tanh<N: num>(vec<N, f32>) -> vec<N, f32> | 
 | fn transpose<M: num, N: num>(mat<M, N, f32>) -> mat<N, M, f32> | 
 | fn trunc(f32) -> f32 | 
 | fn trunc<N: num>(vec<N, f32>) -> vec<N, f32> | 
 | fn unpack2x16float(u32) -> vec2<f32> | 
 | fn unpack2x16snorm(u32) -> vec2<f32> | 
 | fn unpack2x16unorm(u32) -> vec2<f32> | 
 | fn unpack4x8snorm(u32) -> vec4<f32> | 
 | fn unpack4x8unorm(u32) -> vec4<f32> | 
 | [[stage("compute")]] fn workgroupBarrier() | 
 |  | 
 | fn textureDimensions<T: fiu32>(texture: texture_1d<T>) -> i32 | 
 | fn textureDimensions<T: fiu32>(texture: texture_1d<T>, level: i32) -> i32 | 
 | fn textureDimensions<T: fiu32>(texture: texture_2d<T>) -> vec2<i32> | 
 | fn textureDimensions<T: fiu32>(texture: texture_2d<T>, level: i32) -> vec2<i32> | 
 | fn textureDimensions<T: fiu32>(texture: texture_2d_array<T>) -> vec2<i32> | 
 | fn textureDimensions<T: fiu32>(texture: texture_2d_array<T>, level: i32) -> vec2<i32> | 
 | fn textureDimensions<T: fiu32>(texture: texture_3d<T>) -> vec3<i32> | 
 | fn textureDimensions<T: fiu32>(texture: texture_3d<T>, level: i32) -> vec3<i32> | 
 | fn textureDimensions<T: fiu32>(texture: texture_cube<T>) -> vec2<i32> | 
 | fn textureDimensions<T: fiu32>(texture: texture_cube<T>, level: i32) -> vec2<i32> | 
 | fn textureDimensions<T: fiu32>(texture: texture_cube_array<T>) -> vec2<i32> | 
 | fn textureDimensions<T: fiu32>(texture: texture_cube_array<T>, level: i32) -> vec2<i32> | 
 | fn textureDimensions<T: fiu32>(texture: texture_multisampled_2d<T>) -> vec2<i32> | 
 | fn textureDimensions(texture: texture_depth_2d) -> vec2<i32> | 
 | fn textureDimensions(texture: texture_depth_2d, level: i32) -> vec2<i32> | 
 | fn textureDimensions(texture: texture_depth_2d_array) -> vec2<i32> | 
 | fn textureDimensions(texture: texture_depth_2d_array, level: i32) -> vec2<i32> | 
 | fn textureDimensions(texture: texture_depth_cube) -> vec2<i32> | 
 | fn textureDimensions(texture: texture_depth_cube, level: i32) -> vec2<i32> | 
 | fn textureDimensions(texture: texture_depth_cube_array) -> vec2<i32> | 
 | fn textureDimensions(texture: texture_depth_cube_array, level: i32) -> vec2<i32> | 
 | fn textureDimensions(texture: texture_depth_multisampled_2d) -> vec2<i32> | 
 | fn textureDimensions<F: texel_format, A: write_only>(texture: texture_storage_1d<F, A>) -> i32 | 
 | fn textureDimensions<F: texel_format, A: write_only>(texture: texture_storage_2d<F, A>) -> vec2<i32> | 
 | fn textureDimensions<F: texel_format, A: write_only>(texture: texture_storage_2d_array<F, A>) -> vec2<i32> | 
 | fn textureDimensions<F: texel_format, A: write_only>(texture: texture_storage_3d<F, A>) -> vec3<i32> | 
 | fn textureDimensions(texture: texture_external) -> vec2<i32> | 
 | fn textureNumLayers<T: fiu32>(texture: texture_2d_array<T>) -> i32 | 
 | fn textureNumLayers<T: fiu32>(texture: texture_cube_array<T>) -> i32 | 
 | fn textureNumLayers(texture: texture_depth_2d_array) -> i32 | 
 | fn textureNumLayers(texture: texture_depth_cube_array) -> i32 | 
 | fn textureNumLayers<F: texel_format, A: write_only>(texture: texture_storage_2d_array<F, A>) -> i32 | 
 | fn textureNumLevels<T: fiu32>(texture: texture_1d<T>) -> i32 | 
 | fn textureNumLevels<T: fiu32>(texture: texture_2d<T>) -> i32 | 
 | fn textureNumLevels<T: fiu32>(texture: texture_2d_array<T>) -> i32 | 
 | fn textureNumLevels<T: fiu32>(texture: texture_3d<T>) -> i32 | 
 | fn textureNumLevels<T: fiu32>(texture: texture_cube<T>) -> i32 | 
 | fn textureNumLevels<T: fiu32>(texture: texture_cube_array<T>) -> i32 | 
 | fn textureNumLevels(texture: texture_depth_2d) -> i32 | 
 | fn textureNumLevels(texture: texture_depth_2d_array) -> i32 | 
 | fn textureNumLevels(texture: texture_depth_cube) -> i32 | 
 | fn textureNumLevels(texture: texture_depth_cube_array) -> i32 | 
 | fn textureNumSamples<T: fiu32>(texture: texture_multisampled_2d<T>) -> i32 | 
 | fn textureNumSamples(texture: texture_depth_multisampled_2d) -> i32 | 
 | [[stage("fragment")]] fn textureSample(texture: texture_1d<f32>, sampler: sampler, coords: f32) -> vec4<f32> | 
 | [[stage("fragment")]] fn textureSample(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>) -> vec4<f32> | 
 | [[stage("fragment")]] fn textureSample(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, offset: vec2<i32>) -> vec4<f32> | 
 | [[stage("fragment")]] fn textureSample(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: i32) -> vec4<f32> | 
 | [[stage("fragment")]] fn textureSample(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: i32, offset: vec2<i32>) -> vec4<f32> | 
 | [[stage("fragment")]] fn textureSample(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>) -> vec4<f32> | 
 | [[stage("fragment")]] fn textureSample(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, offset: vec3<i32>) -> vec4<f32> | 
 | [[stage("fragment")]] fn textureSample(texture: texture_cube<f32>, sampler: sampler, coords: vec3<f32>) -> vec4<f32> | 
 | [[stage("fragment")]] fn textureSample(texture: texture_cube_array<f32>, sampler: sampler, coords: vec3<f32>, array_index: i32) -> vec4<f32> | 
 | [[stage("fragment")]] fn textureSample(texture: texture_depth_2d, sampler: sampler, coords: vec2<f32>) -> f32 | 
 | [[stage("fragment")]] fn textureSample(texture: texture_depth_2d, sampler: sampler, coords: vec2<f32>, offset: vec2<i32>) -> f32 | 
 | [[stage("fragment")]] fn textureSample(texture: texture_depth_2d_array, sampler: sampler, coords: vec2<f32>, array_index: i32) -> f32 | 
 | [[stage("fragment")]] fn textureSample(texture: texture_depth_2d_array, sampler: sampler, coords: vec2<f32>, array_index: i32, offset: vec2<i32>) -> f32 | 
 | [[stage("fragment")]] fn textureSample(texture: texture_depth_cube, sampler: sampler, coords: vec3<f32>) -> f32 | 
 | [[stage("fragment")]] fn textureSample(texture: texture_depth_cube_array, sampler: sampler, coords: vec3<f32>, array_index: i32) -> f32 | 
 | [[stage("fragment")]] fn textureSampleBias(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, bias: f32) -> vec4<f32> | 
 | [[stage("fragment")]] fn textureSampleBias(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, bias: f32, offset: vec2<i32>) -> vec4<f32> | 
 | [[stage("fragment")]] fn textureSampleBias(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: i32, bias: f32) -> vec4<f32> | 
 | [[stage("fragment")]] fn textureSampleBias(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: i32, bias: f32, offset: vec2<i32>) -> vec4<f32> | 
 | [[stage("fragment")]] fn textureSampleBias(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, bias: f32) -> vec4<f32> | 
 | [[stage("fragment")]] fn textureSampleBias(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, bias: f32, offset: vec3<i32>) -> vec4<f32> | 
 | [[stage("fragment")]] fn textureSampleBias(texture: texture_cube<f32>, sampler: sampler, coords: vec3<f32>, bias: f32) -> vec4<f32> | 
 | [[stage("fragment")]] fn textureSampleBias(texture: texture_cube_array<f32>, sampler: sampler, coords: vec3<f32>, array_index: i32, bias: f32) -> vec4<f32> | 
 | [[stage("fragment")]] fn textureSampleCompare(texture: texture_depth_2d, sampler: sampler_comparison, coords: vec2<f32>, depth_ref: f32) -> f32 | 
 | [[stage("fragment")]] fn textureSampleCompare(texture: texture_depth_2d, sampler: sampler_comparison, coords: vec2<f32>, depth_ref: f32, offset: vec2<i32>) -> f32 | 
 | [[stage("fragment")]] fn textureSampleCompare(texture: texture_depth_2d_array, sampler: sampler_comparison, coords: vec2<f32>, array_index: i32, depth_ref: f32) -> f32 | 
 | [[stage("fragment")]] fn textureSampleCompare(texture: texture_depth_2d_array, sampler: sampler_comparison, coords: vec2<f32>, array_index: i32, depth_ref: f32, offset: vec2<i32>) -> f32 | 
 | [[stage("fragment")]] fn textureSampleCompare(texture: texture_depth_cube, sampler: sampler_comparison, coords: vec3<f32>, depth_ref: f32) -> f32 | 
 | [[stage("fragment")]] fn textureSampleCompare(texture: texture_depth_cube_array, sampler: sampler_comparison, coords: vec3<f32>, array_index: i32, depth_ref: f32) -> f32 | 
 | fn textureSampleCompareLevel(texture: texture_depth_2d, sampler: sampler_comparison, coords: vec2<f32>, depth_ref: f32) -> f32 | 
 | fn textureSampleCompareLevel(texture: texture_depth_2d, sampler: sampler_comparison, coords: vec2<f32>, depth_ref: f32, offset: vec2<i32>) -> f32 | 
 | fn textureSampleCompareLevel(texture: texture_depth_2d_array, sampler: sampler_comparison, coords: vec2<f32>, array_index: i32, depth_ref: f32) -> f32 | 
 | fn textureSampleCompareLevel(texture: texture_depth_2d_array, sampler: sampler_comparison, coords: vec2<f32>, array_index: i32, depth_ref: f32, offset: vec2<i32>) -> f32 | 
 | fn textureSampleCompareLevel(texture: texture_depth_cube, sampler: sampler_comparison, coords: vec3<f32>, depth_ref: f32) -> f32 | 
 | fn textureSampleCompareLevel(texture: texture_depth_cube_array, sampler: sampler_comparison, coords: vec3<f32>, array_index: i32, depth_ref: f32) -> f32 | 
 | fn textureSampleGrad(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, ddx: vec2<f32>, ddy: vec2<f32>) -> vec4<f32> | 
 | fn textureSampleGrad(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, ddx: vec2<f32>, ddy: vec2<f32>, offset: vec2<i32>) -> vec4<f32> | 
 | fn textureSampleGrad(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: i32, ddx: vec2<f32>, ddy: vec2<f32>) -> vec4<f32> | 
 | fn textureSampleGrad(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: i32, ddx: vec2<f32>, ddy: vec2<f32>, offset: vec2<i32>) -> vec4<f32> | 
 | fn textureSampleGrad(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, ddx: vec3<f32>, ddy: vec3<f32>) -> vec4<f32> | 
 | fn textureSampleGrad(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, ddx: vec3<f32>, ddy: vec3<f32>, offset: vec3<i32>) -> vec4<f32> | 
 | fn textureSampleGrad(texture: texture_cube<f32>, sampler: sampler, coords: vec3<f32>, ddx: vec3<f32>, ddy: vec3<f32>) -> vec4<f32> | 
 | fn textureSampleGrad(texture: texture_cube_array<f32>, sampler: sampler, coords: vec3<f32>, array_index: i32, ddx: vec3<f32>, ddy: vec3<f32>) -> vec4<f32> | 
 | fn textureSampleLevel(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, level: f32) -> vec4<f32> | 
 | fn textureSampleLevel(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, level: f32, offset: vec2<i32>) -> vec4<f32> | 
 | fn textureSampleLevel(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: i32, level: f32) -> vec4<f32> | 
 | fn textureSampleLevel(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: i32, level: f32, offset: vec2<i32>) -> vec4<f32> | 
 | fn textureSampleLevel(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, level: f32) -> vec4<f32> | 
 | fn textureSampleLevel(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, level: f32, offset: vec3<i32>) -> vec4<f32> | 
 | fn textureSampleLevel(texture: texture_cube<f32>, sampler: sampler, coords: vec3<f32>, level: f32) -> vec4<f32> | 
 | fn textureSampleLevel(texture: texture_cube_array<f32>, sampler: sampler, coords: vec3<f32>, array_index: i32, level: f32) -> vec4<f32> | 
 | fn textureSampleLevel(texture: texture_depth_2d, sampler: sampler, coords: vec2<f32>, level: i32) -> f32 | 
 | fn textureSampleLevel(texture: texture_depth_2d, sampler: sampler, coords: vec2<f32>, level: i32, offset: vec2<i32>) -> f32 | 
 | fn textureSampleLevel(texture: texture_depth_2d_array, sampler: sampler, coords: vec2<f32>, array_index: i32, level: i32) -> f32 | 
 | fn textureSampleLevel(texture: texture_depth_2d_array, sampler: sampler, coords: vec2<f32>, array_index: i32, level: i32, offset: vec2<i32>) -> f32 | 
 | fn textureSampleLevel(texture: texture_depth_cube, sampler: sampler, coords: vec3<f32>, level: i32) -> f32 | 
 | fn textureSampleLevel(texture: texture_depth_cube_array,sampler: sampler, coords: vec3<f32>, array_index: i32, level: i32) -> f32 | 
 | fn textureSampleLevel(texture: texture_external, sampler: sampler, coords: vec2<f32>) -> vec4<f32> | 
 | fn textureStore(texture: texture_storage_1d<f32_texel_format, write>, coords: i32, value: vec4<f32>) | 
 | fn textureStore(texture: texture_storage_2d<f32_texel_format, write>, coords: vec2<i32>, value: vec4<f32>) | 
 | fn textureStore(texture: texture_storage_2d_array<f32_texel_format, write>, coords: vec2<i32>, array_index: i32, value: vec4<f32>) | 
 | fn textureStore(texture: texture_storage_3d<f32_texel_format, write>, coords: vec3<i32>, value: vec4<f32>) | 
 | fn textureStore(texture: texture_storage_1d<i32_texel_format, write>, coords: i32, value: vec4<i32>) | 
 | fn textureStore(texture: texture_storage_2d<i32_texel_format, write>, coords: vec2<i32>, value: vec4<i32>) | 
 | fn textureStore(texture: texture_storage_2d_array<i32_texel_format, write>, coords: vec2<i32>, array_index: i32, value: vec4<i32>) | 
 | fn textureStore(texture: texture_storage_3d<i32_texel_format, write>, coords: vec3<i32>, value: vec4<i32>) | 
 | fn textureStore(texture: texture_storage_1d<u32_texel_format, write>, coords: i32, value: vec4<u32>) | 
 | fn textureStore(texture: texture_storage_2d<u32_texel_format, write>, coords: vec2<i32>, value: vec4<u32>) | 
 | fn textureStore(texture: texture_storage_2d_array<u32_texel_format, write>, coords: vec2<i32>, array_index: i32, value: vec4<u32>) | 
 | fn textureStore(texture: texture_storage_3d<u32_texel_format, write>, coords: vec3<i32>, value: vec4<u32>) | 
 | fn textureLoad<T: fiu32>(texture: texture_1d<T>, coords: i32, level: i32) -> vec4<T> | 
 | fn textureLoad<T: fiu32>(texture: texture_2d<T>, coords: vec2<i32>, level: i32) -> vec4<T> | 
 | fn textureLoad<T: fiu32>(texture: texture_2d_array<T>, coords: vec2<i32>, array_index: i32, level: i32) -> vec4<T> | 
 | fn textureLoad<T: fiu32>(texture: texture_3d<T>, coords: vec3<i32>, level: i32) -> vec4<T> | 
 | fn textureLoad<T: fiu32>(texture: texture_multisampled_2d<T>, coords: vec2<i32>, sample_index: i32) -> vec4<T> | 
 | fn textureLoad(texture: texture_depth_2d, coords: vec2<i32>, level: i32) -> f32 | 
 | fn textureLoad(texture: texture_depth_2d_array, coords: vec2<i32>, array_index: i32, level: i32) -> f32 | 
 | fn textureLoad(texture: texture_depth_multisampled_2d, coords: vec2<i32>, sample_index: i32) -> f32 | 
 | fn textureLoad(texture: texture_external, coords: vec2<i32>) -> vec4<f32> | 
 |  | 
 | [[stage("fragment", "compute")]] fn atomicLoad<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>) -> T | 
 | [[stage("fragment", "compute")]] fn atomicStore<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T) | 
 | [[stage("fragment", "compute")]] fn atomicAdd<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T) -> T | 
 | [[stage("fragment", "compute")]] fn atomicSub<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T) -> T | 
 | [[stage("fragment", "compute")]] fn atomicMax<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T) -> T | 
 | [[stage("fragment", "compute")]] fn atomicMin<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T) -> T | 
 | [[stage("fragment", "compute")]] fn atomicAnd<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T) -> T | 
 | [[stage("fragment", "compute")]] fn atomicOr<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T) -> T | 
 | [[stage("fragment", "compute")]] fn atomicXor<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T) -> T | 
 | [[stage("fragment", "compute")]] fn atomicExchange<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T) -> T | 
 | [[stage("fragment", "compute")]] fn atomicCompareExchangeWeak<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T, T) -> vec2<T> |