blob: 019423eb7339fcba3ee107a0fad057bdfb2e868d [file] [log] [blame]
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/validator/validator_impl.h"
#include <cassert>
#include <unordered_set>
#include <utility>
#include "src/ast/call_statement.h"
#include "src/ast/fallthrough_statement.h"
#include "src/ast/function.h"
#include "src/ast/int_literal.h"
#include "src/ast/module.h"
#include "src/ast/sint_literal.h"
#include "src/ast/stage_decoration.h"
#include "src/ast/struct.h"
#include "src/ast/switch_statement.h"
#include "src/ast/uint_literal.h"
#include "src/ast/variable_decl_statement.h"
#include "src/semantic/call.h"
#include "src/semantic/expression.h"
#include "src/semantic/intrinsic.h"
#include "src/semantic/variable.h"
#include "src/type/alias_type.h"
#include "src/type/array_type.h"
#include "src/type/bool_type.h"
#include "src/type/f32_type.h"
#include "src/type/i32_type.h"
#include "src/type/matrix_type.h"
#include "src/type/pointer_type.h"
#include "src/type/struct_type.h"
#include "src/type/u32_type.h"
#include "src/type/vector_type.h"
#include "src/type/void_type.h"
namespace tint {
namespace {
using IntrinsicType = semantic::IntrinsicType;
enum class IntrinsicDataType {
kMixed,
kFloatOrIntScalarOrVector,
kFloatScalarOrVector,
kIntScalarOrVector,
kFloatVector,
kFloatScalar,
kMatrix,
kBoolVector,
kBoolScalar,
kBoolScalarOrVector,
};
struct IntrinsicData {
IntrinsicType intrinsic;
uint32_t param_count;
IntrinsicDataType data_type;
uint32_t vector_size;
bool all_types_match;
};
// Note, this isn't all the intrinsics. Some are handled specially before
// we get to the generic code. See the ValidateCallExpr code below.
constexpr const IntrinsicData kIntrinsicData[] = {
{IntrinsicType::kAbs, 1, IntrinsicDataType::kFloatOrIntScalarOrVector, 0,
true},
{IntrinsicType::kAcos, 1, IntrinsicDataType::kFloatScalarOrVector, 0, true},
{IntrinsicType::kAll, 1, IntrinsicDataType::kBoolVector, 0, false},
{IntrinsicType::kAny, 1, IntrinsicDataType::kBoolVector, 0, false},
{IntrinsicType::kArrayLength, 1, IntrinsicDataType::kMixed, 0, false},
{IntrinsicType::kAsin, 1, IntrinsicDataType::kFloatScalarOrVector, 0, true},
{IntrinsicType::kAtan, 1, IntrinsicDataType::kFloatScalarOrVector, 0, true},
{IntrinsicType::kAtan2, 2, IntrinsicDataType::kFloatScalarOrVector, 0,
true},
{IntrinsicType::kCeil, 1, IntrinsicDataType::kFloatScalarOrVector, 0, true},
{IntrinsicType::kClamp, 3, IntrinsicDataType::kFloatOrIntScalarOrVector, 0,
true},
{IntrinsicType::kCos, 1, IntrinsicDataType::kFloatScalarOrVector, 0, true},
{IntrinsicType::kCosh, 1, IntrinsicDataType::kFloatScalarOrVector, 0, true},
{IntrinsicType::kCountOneBits, 1, IntrinsicDataType::kIntScalarOrVector, 0,
true},
{IntrinsicType::kCross, 2, IntrinsicDataType::kFloatVector, 3, true},
{IntrinsicType::kDeterminant, 1, IntrinsicDataType::kMatrix, 0, false},
{IntrinsicType::kDistance, 2, IntrinsicDataType::kFloatScalarOrVector, 0,
false},
{IntrinsicType::kDot, 2, IntrinsicDataType::kFloatVector, 0, false},
{IntrinsicType::kDpdx, 1, IntrinsicDataType::kFloatScalarOrVector, 0, true},
{IntrinsicType::kDpdxCoarse, 1, IntrinsicDataType::kFloatScalarOrVector, 0,
true},
{IntrinsicType::kDpdxFine, 1, IntrinsicDataType::kFloatScalarOrVector, 0,
true},
{IntrinsicType::kDpdy, 1, IntrinsicDataType::kFloatScalarOrVector, 0, true},
{IntrinsicType::kDpdyCoarse, 1, IntrinsicDataType::kFloatScalarOrVector, 0,
true},
{IntrinsicType::kDpdyFine, 1, IntrinsicDataType::kFloatScalarOrVector, 0,
true},
{IntrinsicType::kExp, 1, IntrinsicDataType::kFloatScalarOrVector, 0, true},
{IntrinsicType::kExp2, 1, IntrinsicDataType::kFloatScalarOrVector, 0, true},
{IntrinsicType::kFaceForward, 3, IntrinsicDataType::kFloatScalarOrVector, 0,
true},
{IntrinsicType::kFloor, 1, IntrinsicDataType::kFloatScalarOrVector, 0,
true},
{IntrinsicType::kFma, 3, IntrinsicDataType::kFloatScalarOrVector, 0, true},
{IntrinsicType::kFract, 1, IntrinsicDataType::kFloatScalarOrVector, 0,
true},
{IntrinsicType::kFrexp, 2, IntrinsicDataType::kMixed, 0, false},
{IntrinsicType::kFwidth, 1, IntrinsicDataType::kFloatScalarOrVector, 0,
true},
{IntrinsicType::kFwidthCoarse, 1, IntrinsicDataType::kFloatScalarOrVector,
0, true},
{IntrinsicType::kFwidthFine, 1, IntrinsicDataType::kFloatScalarOrVector, 0,
true},
{IntrinsicType::kInverseSqrt, 1, IntrinsicDataType::kFloatScalarOrVector, 0,
true},
{IntrinsicType::kLdexp, 2, IntrinsicDataType::kFloatScalarOrVector, 0,
true},
{IntrinsicType::kLength, 1, IntrinsicDataType::kFloatScalarOrVector, 0,
false},
{IntrinsicType::kLog, 1, IntrinsicDataType::kFloatScalarOrVector, 0, true},
{IntrinsicType::kLog2, 1, IntrinsicDataType::kFloatScalarOrVector, 0, true},
{IntrinsicType::kMax, 2, IntrinsicDataType::kFloatOrIntScalarOrVector, 0,
true},
{IntrinsicType::kMin, 2, IntrinsicDataType::kFloatOrIntScalarOrVector, 0,
true},
{IntrinsicType::kMix, 3, IntrinsicDataType::kFloatScalarOrVector, 0, true},
{IntrinsicType::kModf, 2, IntrinsicDataType::kFloatScalarOrVector, 0, true},
{IntrinsicType::kNormalize, 1, IntrinsicDataType::kFloatVector, 0, true},
{IntrinsicType::kPack4x8Snorm, 1, IntrinsicDataType::kFloatVector, 4,
false},
{IntrinsicType::kPack4x8Unorm, 1, IntrinsicDataType::kFloatVector, 4,
false},
{IntrinsicType::kPack2x16Snorm, 1, IntrinsicDataType::kFloatVector, 2,
false},
{IntrinsicType::kPack2x16Unorm, 1, IntrinsicDataType::kFloatVector, 2,
false},
{IntrinsicType::kPack2x16Float, 1, IntrinsicDataType::kFloatVector, 2,
false},
{IntrinsicType::kPow, 2, IntrinsicDataType::kFloatScalarOrVector, 0, true},
{IntrinsicType::kReflect, 2, IntrinsicDataType::kFloatScalarOrVector, 0,
true},
{IntrinsicType::kReverseBits, 1, IntrinsicDataType::kIntScalarOrVector, 0,
true},
{IntrinsicType::kRound, 1, IntrinsicDataType::kFloatScalarOrVector, 0,
true},
{IntrinsicType::kSelect, 3, IntrinsicDataType::kMixed, 0, false},
{IntrinsicType::kSign, 1, IntrinsicDataType::kFloatScalarOrVector, 0, true},
{IntrinsicType::kSin, 1, IntrinsicDataType::kFloatScalarOrVector, 0, true},
{IntrinsicType::kSinh, 1, IntrinsicDataType::kFloatScalarOrVector, 0, true},
{IntrinsicType::kSmoothStep, 3, IntrinsicDataType::kFloatScalarOrVector, 0,
true},
{IntrinsicType::kSqrt, 1, IntrinsicDataType::kFloatScalarOrVector, 0, true},
{IntrinsicType::kStep, 2, IntrinsicDataType::kFloatScalarOrVector, 0, true},
{IntrinsicType::kTan, 1, IntrinsicDataType::kFloatScalarOrVector, 0, true},
{IntrinsicType::kTanh, 1, IntrinsicDataType::kFloatScalarOrVector, 0, true},
{IntrinsicType::kTrunc, 1, IntrinsicDataType::kFloatScalarOrVector, 0,
true},
};
constexpr const uint32_t kIntrinsicDataCount =
sizeof(kIntrinsicData) / sizeof(IntrinsicData);
bool IsValidType(type::Type* type,
const Source& source,
const std::string& name,
const IntrinsicDataType& data_type,
uint32_t vector_size,
ValidatorImpl* impl) {
type = type->UnwrapPtrIfNeeded();
switch (data_type) {
case IntrinsicDataType::kFloatOrIntScalarOrVector:
if (!type->is_float_scalar_or_vector() &&
!type->is_integer_scalar_or_vector()) {
impl->add_error(source,
"incorrect type for " + name +
". Requires int or float, scalar or vector value");
return false;
}
break;
case IntrinsicDataType::kFloatScalarOrVector:
if (!type->is_float_scalar_or_vector()) {
impl->add_error(source, "incorrect type for " + name +
". Requires float scalar or vector value");
return false;
}
break;
case IntrinsicDataType::kIntScalarOrVector:
if (!type->is_integer_scalar_or_vector()) {
impl->add_error(source, "incorrect type for " + name +
". Requires int scalar or vector value");
return false;
}
break;
case IntrinsicDataType::kFloatVector:
if (!type->is_float_vector()) {
impl->add_error(source, "incorrect type for " + name +
". Requires float vector value");
return false;
}
if (vector_size > 0 && vector_size != type->As<type::Vector>()->size()) {
impl->add_error(source, "incorrect vector size for " + name +
". Requires " +
std::to_string(vector_size) + " elements");
return false;
}
break;
case IntrinsicDataType::kFloatScalar:
if (!type->Is<type::F32>()) {
impl->add_error(source, "incorrect type for " + name +
". Requires float scalar value");
return false;
}
break;
case IntrinsicDataType::kMatrix:
if (!type->Is<type::Matrix>()) {
impl->add_error(
source, "incorrect type for " + name + ". Requires matrix value");
return false;
}
break;
case IntrinsicDataType::kBoolVector:
if (!type->is_bool_vector()) {
impl->add_error(source, "incorrect type for " + name +
". Requires bool vector value");
return false;
}
if (vector_size > 0 && vector_size != type->As<type::Vector>()->size()) {
impl->add_error(source, "incorrect vector size for " + name +
". Requires " +
std::to_string(vector_size) + " elements");
return false;
}
break;
case IntrinsicDataType::kBoolScalar:
if (!type->Is<type::Bool>()) {
impl->add_error(source, "incorrect type for " + name +
". Requires bool scalar value");
return false;
}
break;
case IntrinsicDataType::kBoolScalarOrVector:
if (!type->is_bool_scalar_or_vector()) {
impl->add_error(source, "incorrect type for " + name +
". Requires bool scalar or vector value");
return false;
}
break;
default:
break;
}
return true;
}
} // namespace
ValidatorImpl::ValidatorImpl(const Program* program) : program_(program) {}
ValidatorImpl::~ValidatorImpl() = default;
void ValidatorImpl::add_error(const Source& src,
const char* code,
const std::string& msg) {
diag::Diagnostic diag;
diag.severity = diag::Severity::Error;
diag.source = src;
diag.message = msg;
diag.code = code;
diags_.add(std::move(diag));
}
void ValidatorImpl::add_error(const Source& src, const std::string& msg) {
diags_.add_error(msg, src);
}
bool ValidatorImpl::Validate() {
function_stack_.push_scope();
if (!ValidateGlobalVariables(program_->AST().GlobalVariables())) {
return false;
}
if (!ValidateConstructedTypes(program_->AST().ConstructedTypes())) {
return false;
}
if (!ValidateFunctions(program_->AST().Functions())) {
return false;
}
if (!ValidateEntryPoint(program_->AST().Functions())) {
return false;
}
function_stack_.pop_scope();
return true;
}
bool ValidatorImpl::ValidateConstructedTypes(
const std::vector<type::Type*>& constructed_types) {
for (auto* const ct : constructed_types) {
if (auto* st = ct->As<type::Struct>()) {
for (auto* member : st->impl()->members()) {
if (auto* r = member->type()->UnwrapAll()->As<type::Array>()) {
if (r->IsRuntimeArray()) {
if (member != st->impl()->members().back()) {
add_error(member->source(), "v-0015",
"runtime arrays may only appear as the last member of "
"a struct");
return false;
}
if (!st->IsBlockDecorated()) {
add_error(member->source(), "v-0015",
"a struct containing a runtime-sized array "
"requires the [[block]] attribute: '" +
program_->Symbols().NameFor(st->symbol()) + "'");
return false;
}
}
}
}
}
}
return true;
}
bool ValidatorImpl::ValidateGlobalVariables(
const ast::VariableList& global_vars) {
for (auto* var : global_vars) {
auto* sem = program_->Sem().Get(var);
if (!sem) {
add_error(var->source(), "no semantic information for variable '" +
program_->Symbols().NameFor(var->symbol()) +
"'");
return false;
}
if (variable_stack_.has(var->symbol())) {
add_error(var->source(), "v-0011",
"redeclared global identifier '" +
program_->Symbols().NameFor(var->symbol()) + "'");
return false;
}
if (!var->is_const() && sem->StorageClass() == ast::StorageClass::kNone) {
add_error(var->source(), "v-0022",
"global variables must have a storage class");
return false;
}
if (var->is_const() && !(sem->StorageClass() == ast::StorageClass::kNone)) {
add_error(var->source(), "v-global01",
"global constants shouldn't have a storage class");
return false;
}
variable_stack_.set_global(var->symbol(), var);
}
return true;
}
bool ValidatorImpl::ValidateFunctions(const ast::FunctionList& funcs) {
for (auto* func : funcs) {
if (function_stack_.has(func->symbol())) {
add_error(func->source(), "v-0016",
"function names must be unique '" +
program_->Symbols().NameFor(func->symbol()) + "'");
return false;
}
function_stack_.set(func->symbol(), func);
current_function_ = func;
if (!ValidateFunction(func)) {
return false;
}
current_function_ = nullptr;
}
return true;
}
bool ValidatorImpl::ValidateEntryPoint(const ast::FunctionList& funcs) {
auto shader_is_present = false;
for (auto* func : funcs) {
if (func->IsEntryPoint()) {
shader_is_present = true;
if (!func->params().empty()) {
add_error(func->source(), "v-0023",
"Entry point function must accept no parameters: '" +
program_->Symbols().NameFor(func->symbol()) + "'");
return false;
}
if (!func->return_type()->Is<type::Void>()) {
add_error(func->source(), "v-0024",
"Entry point function must return void: '" +
program_->Symbols().NameFor(func->symbol()) + "'");
return false;
}
auto stage_deco_count = 0;
for (auto* deco : func->decorations()) {
if (deco->Is<ast::StageDecoration>()) {
stage_deco_count++;
}
}
if (stage_deco_count > 1) {
add_error(func->source(), "v-0020",
"only one stage decoration permitted per entry point");
return false;
}
}
}
if (!shader_is_present) {
add_error(Source{}, "v-0003",
"At least one of vertex, fragment or compute shader must "
"be present");
return false;
}
return true;
}
bool ValidatorImpl::ValidateFunction(const ast::Function* func) {
variable_stack_.push_scope();
for (auto* param : func->params()) {
variable_stack_.set(param->symbol(), param);
if (!ValidateParameter(param)) {
return false;
}
}
if (!ValidateStatements(func->body())) {
return false;
}
variable_stack_.pop_scope();
if (!current_function_->return_type()->Is<type::Void>()) {
if (!func->get_last_statement() ||
!func->get_last_statement()->Is<ast::ReturnStatement>()) {
add_error(func->source(), "v-0002",
"non-void function must end with a return statement");
return false;
}
}
return true;
}
bool ValidatorImpl::ValidateParameter(const ast::Variable* param) {
if (auto* r = param->type()->UnwrapAll()->As<type::Array>()) {
if (r->IsRuntimeArray()) {
add_error(
param->source(), "v-0015",
"runtime arrays may only appear as the last member of a struct");
return false;
}
}
return true;
}
bool ValidatorImpl::ValidateReturnStatement(const ast::ReturnStatement* ret) {
// TODO(sarahM0): update this when this issue resolves:
// https://github.com/gpuweb/gpuweb/issues/996
type::Type* func_type = current_function_->return_type();
type::Void void_type;
auto* ret_type = ret->has_value()
? program_->Sem().Get(ret->value())->Type()->UnwrapAll()
: &void_type;
if (func_type->type_name() != ret_type->type_name()) {
add_error(ret->source(), "v-000y",
"return statement type must match its function return "
"type, returned '" +
ret_type->type_name() + "', expected '" +
func_type->type_name() + "'");
return false;
}
return true;
}
bool ValidatorImpl::ValidateStatements(const ast::BlockStatement* block) {
if (!block) {
return false;
}
bool is_valid = true;
variable_stack_.push_scope();
for (auto* stmt : *block) {
if (!ValidateStatement(stmt)) {
is_valid = false;
break;
}
}
variable_stack_.pop_scope();
return is_valid;
}
bool ValidatorImpl::ValidateDeclStatement(
const ast::VariableDeclStatement* decl) {
auto symbol = decl->variable()->symbol();
bool is_global = false;
if (variable_stack_.get(symbol, nullptr, &is_global)) {
const char* error_code = "v-0014";
if (is_global) {
error_code = "v-0013";
}
add_error(
decl->source(), error_code,
"redeclared identifier '" + program_->Symbols().NameFor(symbol) + "'");
return false;
}
// TODO(dneto): Check type compatibility of the initializer.
// - if it's non-constant, then is storable or can be dereferenced to be
// storable.
// - types match or the RHS can be dereferenced to equal the LHS type.
variable_stack_.set(symbol, decl->variable());
if (auto* arr = decl->variable()->type()->UnwrapAll()->As<type::Array>()) {
if (arr->IsRuntimeArray()) {
add_error(
decl->source(), "v-0015",
"runtime arrays may only appear as the last member of a struct");
return false;
}
}
return true;
}
bool ValidatorImpl::ValidateStatement(const ast::Statement* stmt) {
if (!stmt) {
return false;
}
if (auto* v = stmt->As<ast::VariableDeclStatement>()) {
bool constructor_valid =
v->variable()->has_constructor()
? ValidateExpression(v->variable()->constructor())
: true;
return constructor_valid && ValidateDeclStatement(v);
}
if (auto* a = stmt->As<ast::AssignmentStatement>()) {
return ValidateAssign(a);
}
if (auto* r = stmt->As<ast::ReturnStatement>()) {
return ValidateReturnStatement(r);
}
if (auto* c = stmt->As<ast::CallStatement>()) {
return ValidateCallExpr(c->expr());
}
if (auto* s = stmt->As<ast::SwitchStatement>()) {
return ValidateSwitch(s);
}
if (auto* c = stmt->As<ast::CaseStatement>()) {
return ValidateCase(c);
}
if (auto* b = stmt->As<ast::BlockStatement>()) {
return ValidateStatements(b);
}
return true;
}
bool ValidatorImpl::ValidateSwitch(const ast::SwitchStatement* s) {
if (!ValidateExpression(s->condition())) {
return false;
}
auto* cond_type = program_->Sem().Get(s->condition())->Type()->UnwrapAll();
if (!cond_type->is_integer_scalar()) {
add_error(s->condition()->source(), "v-0025",
"switch statement selector expression must be of a "
"scalar integer type");
return false;
}
int default_counter = 0;
std::unordered_set<int32_t> selector_set;
for (auto* case_stmt : s->body()) {
if (!ValidateStatement(case_stmt)) {
return false;
}
if (case_stmt->IsDefault()) {
default_counter++;
}
for (auto* selector : case_stmt->selectors()) {
if (cond_type != selector->type()) {
add_error(case_stmt->source(), "v-0026",
"the case selector values must have the same "
"type as the selector expression.");
return false;
}
auto v =
static_cast<int32_t>(selector->type()->Is<type::U32>()
? selector->As<ast::UintLiteral>()->value()
: selector->As<ast::SintLiteral>()->value());
if (selector_set.count(v)) {
add_error(case_stmt->source(), "v-0027",
"a literal value must not appear more than once in "
"the case selectors for a switch statement: '" +
program_->str(selector) + "'");
return false;
}
selector_set.emplace(v);
}
}
if (default_counter != 1) {
add_error(s->source(), "v-0008",
"switch statement must have exactly one default clause");
return false;
}
auto* last_clause = s->body().back();
auto* last_stmt_of_last_clause =
last_clause->As<ast::CaseStatement>()->body()->last();
if (last_stmt_of_last_clause &&
last_stmt_of_last_clause->Is<ast::FallthroughStatement>()) {
add_error(last_stmt_of_last_clause->source(), "v-0028",
"a fallthrough statement must not appear as "
"the last statement in last clause of a switch");
return false;
}
return true;
}
bool ValidatorImpl::ValidateCase(const ast::CaseStatement* c) {
if (!ValidateStatement(c->body())) {
return false;
}
return true;
}
bool ValidatorImpl::ValidateCallExpr(const ast::CallExpression* expr) {
if (!expr) {
// TODO(sarahM0): Here and other Validate.*: figure out whether return
// false or true
return false;
}
auto* call = program_->Sem().Get(expr);
if (call == nullptr) {
add_error(expr->source(), "CallExpression is missing semantic information");
return false;
}
if (auto* intrinsic = call->Target()->As<semantic::Intrinsic>()) {
const IntrinsicData* data = nullptr;
for (uint32_t i = 0; i < kIntrinsicDataCount; ++i) {
if (intrinsic->Type() == kIntrinsicData[i].intrinsic) {
data = &kIntrinsicData[i];
break;
}
}
if (data != nullptr) {
std::string builtin = intrinsic->str();
if (expr->params().size() != data->param_count) {
add_error(expr->source(),
"incorrect number of parameters for " + builtin +
" expected " + std::to_string(data->param_count) +
" got " + std::to_string(expr->params().size()));
return false;
}
if (data->all_types_match) {
// Check that the type is an acceptable one.
if (!IsValidType(program_->TypeOf(expr), expr->source(), builtin,
data->data_type, data->vector_size, this)) {
return false;
}
// Check that all params match the result type.
for (uint32_t i = 0; i < data->param_count; ++i) {
if (program_->TypeOf(expr)->UnwrapPtrIfNeeded() !=
program_->TypeOf(expr->params()[i])->UnwrapPtrIfNeeded()) {
add_error(expr->params()[i]->source(),
"expected parameter " + std::to_string(i) +
"'s unwrapped type to match result type for " +
builtin);
return false;
}
}
} else {
if (data->data_type != IntrinsicDataType::kMixed) {
auto* p0 = expr->params()[0];
if (!IsValidType(program_->TypeOf(p0), p0->source(), builtin,
data->data_type, data->vector_size, this)) {
return false;
}
// Check that parameters are valid types.
for (uint32_t i = 1; i < expr->params().size(); ++i) {
if (program_->TypeOf(p0)->UnwrapPtrIfNeeded() !=
program_->TypeOf(expr->params()[i])->UnwrapPtrIfNeeded()) {
add_error(expr->source(),
"parameter " + std::to_string(i) +
"'s unwrapped type must match parameter 0's type");
return false;
}
}
} else {
// Special cases.
if (data->intrinsic == IntrinsicType::kFrexp) {
auto* p0 = expr->params()[0];
auto* p1 = expr->params()[1];
auto* t0 = program_->TypeOf(p0)->UnwrapPtrIfNeeded();
auto* t1 = program_->TypeOf(p1)->UnwrapPtrIfNeeded();
if (!IsValidType(t0, p0->source(), builtin,
IntrinsicDataType::kFloatScalarOrVector, 0,
this)) {
return false;
}
if (!IsValidType(t1, p1->source(), builtin,
IntrinsicDataType::kIntScalarOrVector, 0, this)) {
return false;
}
if (t0->is_scalar()) {
if (!t1->is_scalar()) {
add_error(
expr->source(),
"incorrect types for " + builtin +
". Parameters must be matched scalars or vectors");
return false;
}
} else {
if (t1->is_integer_scalar()) {
add_error(
expr->source(),
"incorrect types for " + builtin +
". Parameters must be matched scalars or vectors");
return false;
}
const auto* v0 = t0->As<type::Vector>();
const auto* v1 = t1->As<type::Vector>();
if (v0->size() != v1->size()) {
add_error(expr->source(),
"incorrect types for " + builtin +
". Parameter vector sizes must match");
return false;
}
}
}
if (data->intrinsic == IntrinsicType::kSelect) {
auto* type = program_->TypeOf(expr);
auto* t0 = program_->TypeOf(expr->params()[0])->UnwrapPtrIfNeeded();
auto* t1 = program_->TypeOf(expr->params()[1])->UnwrapPtrIfNeeded();
auto* t2 = program_->TypeOf(expr->params()[2])->UnwrapPtrIfNeeded();
if (!type->is_scalar() && !type->Is<type::Vector>()) {
add_error(expr->source(),
"incorrect type for " + builtin +
". Requires bool, int or float scalar or vector");
return false;
}
if (type != t0 || type != t1) {
add_error(expr->source(),
"incorrect type for " + builtin +
". Value parameter types must match result type");
return false;
}
if (!t2->is_bool_scalar_or_vector()) {
add_error(expr->params()[2]->source(),
"incorrect type for " + builtin +
". Selector must be a bool scalar or vector value");
return false;
}
if (type->Is<type::Vector>()) {
auto size = type->As<type::Vector>()->size();
if (t2->is_scalar() || size != t2->As<type::Vector>()->size()) {
add_error(expr->params()[2]->source(),
"incorrect type for " + builtin +
". Selector must be a vector with the same "
"number of elements as the result type");
return false;
}
} else {
if (!t2->is_scalar()) {
add_error(expr->params()[2]->source(),
"incorrect type for " + builtin +
". Selector must be a bool scalar to match "
"scalar result type");
return false;
}
}
}
if (data->intrinsic == IntrinsicType::kArrayLength) {
if (!program_->TypeOf(expr)->UnwrapPtrIfNeeded()->Is<type::U32>()) {
add_error(
expr->source(),
"incorrect type for " + builtin +
". Result type must be an unsigned int scalar value");
return false;
}
auto* p0 = program_->TypeOf(expr->params()[0])->UnwrapPtrIfNeeded();
if (!p0->Is<type::Array>() ||
!p0->As<type::Array>()->IsRuntimeArray()) {
add_error(expr->params()[0]->source(),
"incorrect type for " + builtin +
". Input must be a runtime array");
return false;
}
}
}
// Result types don't match parameter types.
if (data->intrinsic == IntrinsicType::kAll ||
data->intrinsic == IntrinsicType::kAny) {
if (!IsValidType(program_->TypeOf(expr), expr->source(), builtin,
IntrinsicDataType::kBoolScalar, 0, this)) {
return false;
}
}
if (data->intrinsic == IntrinsicType::kDot) {
if (!IsValidType(program_->TypeOf(expr), expr->source(), builtin,
IntrinsicDataType::kFloatScalar, 0, this)) {
return false;
}
}
if (semantic::IsDataPackingIntrinsic(data->intrinsic)) {
if (!program_->TypeOf(expr)->Is<type::U32>()) {
add_error(expr->source(),
"incorrect type for " + builtin +
". Result type must be an unsigned int scalar");
return false;
}
}
if (data->intrinsic == IntrinsicType::kLength ||
data->intrinsic == IntrinsicType::kDistance ||
data->intrinsic == IntrinsicType::kDeterminant) {
if (!IsValidType(program_->TypeOf(expr), expr->source(), builtin,
IntrinsicDataType::kFloatScalar, 0, this)) {
return false;
}
}
// Must be a square matrix.
if (data->intrinsic == IntrinsicType::kDeterminant) {
const auto* matrix =
program_->TypeOf(expr->params()[0])->As<type::Matrix>();
if (matrix->rows() != matrix->columns()) {
add_error(
expr->params()[0]->source(),
"incorrect type for " + builtin + ". Requires a square matrix");
return false;
}
}
}
// Last parameter must be a pointer.
if (data->intrinsic == IntrinsicType::kFrexp ||
data->intrinsic == IntrinsicType::kModf) {
auto* last_param = expr->params()[data->param_count - 1];
if (!program_->TypeOf(last_param)->Is<type::Pointer>()) {
add_error(last_param->source(), "incorrect type for " + builtin +
". Requires pointer value");
return false;
}
}
}
return true;
}
if (auto* ident = expr->func()->As<ast::IdentifierExpression>()) {
auto symbol = ident->symbol();
if (!function_stack_.has(symbol)) {
add_error(expr->source(), "v-0005",
"function must be declared before use: '" +
program_->Symbols().NameFor(symbol) + "'");
return false;
}
if (symbol == current_function_->symbol()) {
add_error(expr->source(), "v-0004",
"recursion is not allowed: '" +
program_->Symbols().NameFor(symbol) + "'");
return false;
}
} else {
add_error(expr->source(), "Invalid function call expression");
return false;
}
return true;
}
bool ValidatorImpl::ValidateBadAssignmentToIdentifier(
const ast::AssignmentStatement* assign) {
auto* ident = assign->lhs()->As<ast::IdentifierExpression>();
if (!ident) {
// It wasn't an identifier in the first place.
return true;
}
ast::Variable* var;
if (variable_stack_.get(ident->symbol(), &var)) {
// Give a nicer message if the LHS of the assignment is a const identifier.
// It's likely to be a common programmer error.
if (var->is_const()) {
add_error(assign->source(), "v-0021",
"cannot re-assign a constant: '" +
program_->Symbols().NameFor(ident->symbol()) + "'");
return false;
}
} else {
// The identifier is not defined. This should already have been caught
// when validating the subexpression.
add_error(ident->source(), "v-0006",
"'" + program_->Symbols().NameFor(ident->symbol()) +
"' is not declared");
return false;
}
return true;
}
bool ValidatorImpl::ValidateAssign(const ast::AssignmentStatement* assign) {
if (!assign) {
return false;
}
auto* lhs = assign->lhs();
auto* rhs = assign->rhs();
if (!ValidateExpression(lhs)) {
return false;
}
if (!ValidateExpression(rhs)) {
return false;
}
// Pointers are not storable in WGSL, but the right-hand side must be
// storable. The raw right-hand side might be a pointer value which must be
// loaded (dereferenced) to provide the value to be stored.
auto* rhs_result_type = program_->Sem().Get(rhs)->Type()->UnwrapAll();
if (!IsStorable(rhs_result_type)) {
add_error(assign->source(), "v-000x",
"invalid assignment: right-hand-side is not storable: " +
program_->Sem().Get(rhs)->Type()->type_name());
return false;
}
auto* lhs_result_type = program_->Sem().Get(lhs)->Type()->UnwrapIfNeeded();
if (auto* lhs_reference_type = As<type::Pointer>(lhs_result_type)) {
auto* lhs_store_type = lhs_reference_type->type()->UnwrapIfNeeded();
if (lhs_store_type != rhs_result_type) {
add_error(assign->source(), "v-000x",
"invalid assignment: can't assign value of type '" +
rhs_result_type->type_name() + "' to '" +
lhs_store_type->type_name() + "'");
return false;
}
} else {
if (!ValidateBadAssignmentToIdentifier(assign)) {
return false;
}
// Issue a generic error.
add_error(
assign->source(), "v-000x",
"invalid assignment: left-hand-side does not reference storage: " +
program_->Sem().Get(lhs)->Type()->type_name());
return false;
}
return true;
}
bool ValidatorImpl::ValidateExpression(const ast::Expression* expr) {
if (!expr) {
return false;
}
if (auto* i = expr->As<ast::IdentifierExpression>()) {
return ValidateIdentifier(i);
}
if (auto* c = expr->As<ast::CallExpression>()) {
return ValidateCallExpr(c);
}
return true;
}
bool ValidatorImpl::ValidateIdentifier(const ast::IdentifierExpression* ident) {
ast::Variable* var;
if (!variable_stack_.get(ident->symbol(), &var)) {
add_error(ident->source(), "v-0006",
"'" + program_->Symbols().NameFor(ident->symbol()) +
"' is not declared");
return false;
}
return true;
}
bool ValidatorImpl::IsStorable(type::Type* type) {
if (type == nullptr) {
return false;
}
if (type->is_scalar() || type->Is<type::Vector>() ||
type->Is<type::Matrix>()) {
return true;
}
if (type::Array* array_type = type->As<type::Array>()) {
return IsStorable(array_type->type());
}
if (type::Struct* struct_type = type->As<type::Struct>()) {
for (const auto* member : struct_type->impl()->members()) {
if (!IsStorable(member->type())) {
return false;
}
}
return true;
}
if (type::Alias* alias_type = type->As<type::Alias>()) {
return IsStorable(alias_type->type());
}
return false;
}
} // namespace tint