blob: 2fb8fc27446e39f104790639631c966d5fe9f00a [file] [log] [blame]
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/writer/msl/generator_impl.h"
#include <algorithm>
#include <iomanip>
#include <utility>
#include <vector>
#include "src/ast/bool_literal.h"
#include "src/ast/call_statement.h"
#include "src/ast/constant_id_decoration.h"
#include "src/ast/fallthrough_statement.h"
#include "src/ast/float_literal.h"
#include "src/ast/module.h"
#include "src/ast/sint_literal.h"
#include "src/ast/uint_literal.h"
#include "src/ast/variable_decl_statement.h"
#include "src/sem/array.h"
#include "src/sem/call.h"
#include "src/sem/function.h"
#include "src/sem/member_accessor_expression.h"
#include "src/sem/struct.h"
#include "src/sem/variable.h"
#include "src/type/access_control_type.h"
#include "src/type/alias_type.h"
#include "src/type/array_type.h"
#include "src/type/bool_type.h"
#include "src/type/depth_texture_type.h"
#include "src/type/f32_type.h"
#include "src/type/i32_type.h"
#include "src/type/matrix_type.h"
#include "src/type/multisampled_texture_type.h"
#include "src/type/pointer_type.h"
#include "src/type/sampled_texture_type.h"
#include "src/type/storage_texture_type.h"
#include "src/type/u32_type.h"
#include "src/type/vector_type.h"
#include "src/type/void_type.h"
#include "src/writer/float_to_string.h"
namespace tint {
namespace writer {
namespace msl {
namespace {
const char kInStructNameSuffix[] = "in";
const char kOutStructNameSuffix[] = "out";
const char kTintStructInVarPrefix[] = "_tint_in";
const char kTintStructOutVarPrefix[] = "_tint_out";
bool last_is_break_or_fallthrough(const ast::BlockStatement* stmts) {
if (stmts->empty()) {
return false;
}
return stmts->last()->Is<ast::BreakStatement>() ||
stmts->last()->Is<ast::FallthroughStatement>();
}
} // namespace
GeneratorImpl::GeneratorImpl(const Program* program)
: TextGenerator(), program_(program) {}
GeneratorImpl::~GeneratorImpl() = default;
bool GeneratorImpl::Generate() {
out_ << "#include <metal_stdlib>" << std::endl << std::endl;
out_ << "using namespace metal;" << std::endl;
for (auto* global : program_->AST().GlobalVariables()) {
auto* sem = program_->Sem().Get(global);
global_variables_.set(global->symbol(), sem);
}
for (auto* const ty : program_->AST().ConstructedTypes()) {
if (!EmitConstructedType(ty)) {
return false;
}
}
if (!program_->AST().ConstructedTypes().empty()) {
out_ << std::endl;
}
for (auto* var : program_->AST().GlobalVariables()) {
if (var->is_const()) {
if (!EmitProgramConstVariable(var)) {
return false;
}
} else {
auto* sem = program_->Sem().Get(var);
switch (sem->StorageClass()) {
case ast::StorageClass::kPrivate:
case ast::StorageClass::kWorkgroup:
TINT_UNIMPLEMENTED(diagnostics_)
<< "crbug.com/tint/726: module-scope private and workgroup "
"variables not yet implemented";
break;
default:
break; // Handled by another code path
}
}
}
// Make sure all entry point data is emitted before the entry point functions
for (auto* func : program_->AST().Functions()) {
if (!func->IsEntryPoint()) {
continue;
}
if (!EmitEntryPointData(func)) {
return false;
}
}
for (auto* func : program_->AST().Functions()) {
if (!EmitFunction(func)) {
return false;
}
}
for (auto* func : program_->AST().Functions()) {
if (!func->IsEntryPoint()) {
continue;
}
if (!EmitEntryPointFunction(func)) {
return false;
}
out_ << std::endl;
}
return true;
}
bool GeneratorImpl::EmitConstructedType(const sem::Type* ty) {
make_indent();
if (auto* alias = ty->As<sem::Alias>()) {
out_ << "typedef ";
if (!EmitType(alias->type(), "")) {
return false;
}
out_ << " " << program_->Symbols().NameFor(alias->symbol()) << ";"
<< std::endl;
} else if (auto* str = ty->As<sem::StructType>()) {
if (!EmitStructType(str)) {
return false;
}
} else {
diagnostics_.add_error("unknown alias type: " + ty->type_name());
return false;
}
return true;
}
bool GeneratorImpl::EmitArrayAccessor(ast::ArrayAccessorExpression* expr) {
if (!EmitExpression(expr->array())) {
return false;
}
out_ << "[";
if (!EmitExpression(expr->idx_expr())) {
return false;
}
out_ << "]";
return true;
}
bool GeneratorImpl::EmitBitcast(ast::BitcastExpression* expr) {
out_ << "as_type<";
if (!EmitType(expr->type(), "")) {
return false;
}
out_ << ">(";
if (!EmitExpression(expr->expr())) {
return false;
}
out_ << ")";
return true;
}
bool GeneratorImpl::EmitAssign(ast::AssignmentStatement* stmt) {
make_indent();
if (!EmitExpression(stmt->lhs())) {
return false;
}
out_ << " = ";
if (!EmitExpression(stmt->rhs())) {
return false;
}
out_ << ";" << std::endl;
return true;
}
bool GeneratorImpl::EmitBinary(ast::BinaryExpression* expr) {
out_ << "(";
if (!EmitExpression(expr->lhs())) {
return false;
}
out_ << " ";
switch (expr->op()) {
case ast::BinaryOp::kAnd:
out_ << "&";
break;
case ast::BinaryOp::kOr:
out_ << "|";
break;
case ast::BinaryOp::kXor:
out_ << "^";
break;
case ast::BinaryOp::kLogicalAnd:
out_ << "&&";
break;
case ast::BinaryOp::kLogicalOr:
out_ << "||";
break;
case ast::BinaryOp::kEqual:
out_ << "==";
break;
case ast::BinaryOp::kNotEqual:
out_ << "!=";
break;
case ast::BinaryOp::kLessThan:
out_ << "<";
break;
case ast::BinaryOp::kGreaterThan:
out_ << ">";
break;
case ast::BinaryOp::kLessThanEqual:
out_ << "<=";
break;
case ast::BinaryOp::kGreaterThanEqual:
out_ << ">=";
break;
case ast::BinaryOp::kShiftLeft:
out_ << "<<";
break;
case ast::BinaryOp::kShiftRight:
// TODO(dsinclair): MSL is based on C++14, and >> in C++14 has
// implementation-defined behaviour for negative LHS. We may have to
// generate extra code to implement WGSL-specified behaviour for negative
// LHS.
out_ << R"(>>)";
break;
case ast::BinaryOp::kAdd:
out_ << "+";
break;
case ast::BinaryOp::kSubtract:
out_ << "-";
break;
case ast::BinaryOp::kMultiply:
out_ << "*";
break;
case ast::BinaryOp::kDivide:
out_ << "/";
break;
case ast::BinaryOp::kModulo:
out_ << "%";
break;
case ast::BinaryOp::kNone:
diagnostics_.add_error("missing binary operation type");
return false;
}
out_ << " ";
if (!EmitExpression(expr->rhs())) {
return false;
}
out_ << ")";
return true;
}
bool GeneratorImpl::EmitBreak(ast::BreakStatement*) {
make_indent();
out_ << "break;" << std::endl;
return true;
}
std::string GeneratorImpl::current_ep_var_name(VarType type) {
std::string name = "";
switch (type) {
case VarType::kIn: {
auto in_it = ep_sym_to_in_data_.find(current_ep_sym_);
if (in_it != ep_sym_to_in_data_.end()) {
name = in_it->second.var_name;
}
break;
}
case VarType::kOut: {
auto out_it = ep_sym_to_out_data_.find(current_ep_sym_);
if (out_it != ep_sym_to_out_data_.end()) {
name = out_it->second.var_name;
}
break;
}
}
return name;
}
bool GeneratorImpl::EmitCall(ast::CallExpression* expr) {
auto* ident = expr->func()->As<ast::IdentifierExpression>();
if (ident == nullptr) {
diagnostics_.add_error("invalid function name");
return 0;
}
auto* call = program_->Sem().Get(expr);
if (auto* intrinsic = call->Target()->As<sem::Intrinsic>()) {
if (intrinsic->IsTexture()) {
return EmitTextureCall(expr, intrinsic);
}
if (intrinsic->Type() == sem::IntrinsicType::kPack2x16Float ||
intrinsic->Type() == sem::IntrinsicType::kUnpack2x16Float) {
make_indent();
if (intrinsic->Type() == sem::IntrinsicType::kPack2x16Float) {
out_ << "as_type<uint>(half2(";
} else {
out_ << "float2(as_type<half2>(";
}
if (!EmitExpression(expr->params()[0])) {
return false;
}
out_ << "))";
return true;
}
// TODO(crbug.com/tint/661): Combine sequential barriers to a single
// instruction.
if (intrinsic->Type() == sem::IntrinsicType::kStorageBarrier) {
make_indent();
out_ << "threadgroup_barrier(mem_flags::mem_device)";
return true;
}
if (intrinsic->Type() == sem::IntrinsicType::kWorkgroupBarrier) {
make_indent();
out_ << "threadgroup_barrier(mem_flags::mem_threadgroup)";
return true;
}
auto name = generate_builtin_name(intrinsic);
if (name.empty()) {
return false;
}
make_indent();
out_ << name << "(";
bool first = true;
const auto& params = expr->params();
for (auto* param : params) {
if (!first) {
out_ << ", ";
}
first = false;
if (!EmitExpression(param)) {
return false;
}
}
out_ << ")";
return true;
}
auto name = program_->Symbols().NameFor(ident->symbol());
auto caller_sym = ident->symbol();
auto it = ep_func_name_remapped_.find(current_ep_sym_.to_str() + "_" +
caller_sym.to_str());
if (it != ep_func_name_remapped_.end()) {
name = it->second;
}
auto* func = program_->AST().Functions().Find(ident->symbol());
if (func == nullptr) {
diagnostics_.add_error("Unable to find function: " +
program_->Symbols().NameFor(ident->symbol()));
return false;
}
out_ << name << "(";
bool first = true;
if (has_referenced_in_var_needing_struct(func)) {
auto var_name = current_ep_var_name(VarType::kIn);
if (!var_name.empty()) {
out_ << var_name;
first = false;
}
}
if (has_referenced_out_var_needing_struct(func)) {
auto var_name = current_ep_var_name(VarType::kOut);
if (!var_name.empty()) {
if (!first) {
out_ << ", ";
}
first = false;
out_ << var_name;
}
}
auto* func_sem = program_->Sem().Get(func);
for (const auto& data : func_sem->ReferencedBuiltinVariables()) {
auto* var = data.first;
if (var->StorageClass() != ast::StorageClass::kInput) {
continue;
}
if (!first) {
out_ << ", ";
}
first = false;
out_ << program_->Symbols().NameFor(var->Declaration()->symbol());
}
for (const auto& data : func_sem->ReferencedUniformVariables()) {
auto* var = data.first;
if (!first) {
out_ << ", ";
}
first = false;
out_ << program_->Symbols().NameFor(var->Declaration()->symbol());
}
for (const auto& data : func_sem->ReferencedStorageBufferVariables()) {
auto* var = data.first;
if (!first) {
out_ << ", ";
}
first = false;
out_ << program_->Symbols().NameFor(var->Declaration()->symbol());
}
const auto& params = expr->params();
for (auto* param : params) {
if (!first) {
out_ << ", ";
}
first = false;
if (!EmitExpression(param)) {
return false;
}
}
out_ << ")";
return true;
}
bool GeneratorImpl::EmitTextureCall(ast::CallExpression* expr,
const sem::Intrinsic* intrinsic) {
using Usage = sem::Parameter::Usage;
auto parameters = intrinsic->Parameters();
auto arguments = expr->params();
// Returns the argument with the given usage
auto arg = [&](Usage usage) {
int idx = sem::IndexOf(parameters, usage);
return (idx >= 0) ? arguments[idx] : nullptr;
};
auto* texture = arg(Usage::kTexture);
if (!texture) {
TINT_ICE(diagnostics_) << "missing texture arg";
return false;
}
auto* texture_type = TypeOf(texture)->UnwrapAll()->As<sem::Texture>();
switch (intrinsic->Type()) {
case sem::IntrinsicType::kTextureDimensions: {
std::vector<const char*> dims;
switch (texture_type->dim()) {
case sem::TextureDimension::kNone:
diagnostics_.add_error("texture dimension is kNone");
return false;
case sem::TextureDimension::k1d:
dims = {"width"};
break;
case sem::TextureDimension::k2d:
case sem::TextureDimension::k2dArray:
dims = {"width", "height"};
break;
case sem::TextureDimension::k3d:
dims = {"width", "height", "depth"};
break;
case sem::TextureDimension::kCube:
case sem::TextureDimension::kCubeArray:
// width == height == depth for cubes
// See https://github.com/gpuweb/gpuweb/issues/1345
dims = {"width", "height", "height"};
break;
}
auto get_dim = [&](const char* name) {
if (!EmitExpression(texture)) {
return false;
}
out_ << ".get_" << name << "(";
if (auto* level = arg(Usage::kLevel)) {
if (!EmitExpression(level)) {
return false;
}
}
out_ << ")";
return true;
};
if (dims.size() == 1) {
out_ << "int(";
get_dim(dims[0]);
out_ << ")";
} else {
EmitType(TypeOf(expr), "");
out_ << "(";
for (size_t i = 0; i < dims.size(); i++) {
if (i > 0) {
out_ << ", ";
}
get_dim(dims[i]);
}
out_ << ")";
}
return true;
}
case sem::IntrinsicType::kTextureNumLayers: {
out_ << "int(";
if (!EmitExpression(texture)) {
return false;
}
out_ << ".get_array_size())";
return true;
}
case sem::IntrinsicType::kTextureNumLevels: {
out_ << "int(";
if (!EmitExpression(texture)) {
return false;
}
out_ << ".get_num_mip_levels())";
return true;
}
case sem::IntrinsicType::kTextureNumSamples: {
out_ << "int(";
if (!EmitExpression(texture)) {
return false;
}
out_ << ".get_num_samples())";
return true;
}
default:
break;
}
if (!EmitExpression(texture))
return false;
bool lod_param_is_named = true;
switch (intrinsic->Type()) {
case sem::IntrinsicType::kTextureSample:
case sem::IntrinsicType::kTextureSampleBias:
case sem::IntrinsicType::kTextureSampleLevel:
case sem::IntrinsicType::kTextureSampleGrad:
out_ << ".sample(";
break;
case sem::IntrinsicType::kTextureSampleCompare:
out_ << ".sample_compare(";
break;
case sem::IntrinsicType::kTextureLoad:
out_ << ".read(";
lod_param_is_named = false;
break;
case sem::IntrinsicType::kTextureStore:
out_ << ".write(";
break;
default:
TINT_UNREACHABLE(diagnostics_)
<< "Unhandled texture intrinsic '" << intrinsic->str() << "'";
return false;
}
bool first_arg = true;
auto maybe_write_comma = [&] {
if (!first_arg) {
out_ << ", ";
}
first_arg = false;
};
for (auto usage :
{Usage::kValue, Usage::kSampler, Usage::kCoords, Usage::kArrayIndex,
Usage::kDepthRef, Usage::kSampleIndex}) {
if (auto* e = arg(usage)) {
maybe_write_comma();
if (!EmitExpression(e))
return false;
}
}
if (auto* bias = arg(Usage::kBias)) {
maybe_write_comma();
out_ << "bias(";
if (!EmitExpression(bias)) {
return false;
}
out_ << ")";
}
if (auto* level = arg(Usage::kLevel)) {
maybe_write_comma();
if (lod_param_is_named) {
out_ << "level(";
}
if (!EmitExpression(level)) {
return false;
}
if (lod_param_is_named) {
out_ << ")";
}
}
if (auto* ddx = arg(Usage::kDdx)) {
auto dim = texture_type->dim();
switch (dim) {
case sem::TextureDimension::k2d:
case sem::TextureDimension::k2dArray:
maybe_write_comma();
out_ << "gradient2d(";
break;
case sem::TextureDimension::k3d:
maybe_write_comma();
out_ << "gradient3d(";
break;
case sem::TextureDimension::kCube:
case sem::TextureDimension::kCubeArray:
maybe_write_comma();
out_ << "gradientcube(";
break;
default: {
std::stringstream err;
err << "MSL does not support gradients for " << dim << " textures";
diagnostics_.add_error(err.str());
return false;
}
}
if (!EmitExpression(ddx)) {
return false;
}
out_ << ", ";
if (!EmitExpression(arg(Usage::kDdy))) {
return false;
}
out_ << ")";
}
if (auto* offset = arg(Usage::kOffset)) {
maybe_write_comma();
if (!EmitExpression(offset)) {
return false;
}
}
out_ << ")";
return true;
}
std::string GeneratorImpl::generate_builtin_name(
const sem::Intrinsic* intrinsic) {
std::string out = "";
switch (intrinsic->Type()) {
case sem::IntrinsicType::kAcos:
case sem::IntrinsicType::kAll:
case sem::IntrinsicType::kAny:
case sem::IntrinsicType::kAsin:
case sem::IntrinsicType::kAtan:
case sem::IntrinsicType::kAtan2:
case sem::IntrinsicType::kCeil:
case sem::IntrinsicType::kCos:
case sem::IntrinsicType::kCosh:
case sem::IntrinsicType::kCross:
case sem::IntrinsicType::kDeterminant:
case sem::IntrinsicType::kDistance:
case sem::IntrinsicType::kDot:
case sem::IntrinsicType::kExp:
case sem::IntrinsicType::kExp2:
case sem::IntrinsicType::kFloor:
case sem::IntrinsicType::kFma:
case sem::IntrinsicType::kFract:
case sem::IntrinsicType::kLength:
case sem::IntrinsicType::kLdexp:
case sem::IntrinsicType::kLog:
case sem::IntrinsicType::kLog2:
case sem::IntrinsicType::kMix:
case sem::IntrinsicType::kNormalize:
case sem::IntrinsicType::kPow:
case sem::IntrinsicType::kReflect:
case sem::IntrinsicType::kSelect:
case sem::IntrinsicType::kSin:
case sem::IntrinsicType::kSinh:
case sem::IntrinsicType::kSqrt:
case sem::IntrinsicType::kStep:
case sem::IntrinsicType::kTan:
case sem::IntrinsicType::kTanh:
case sem::IntrinsicType::kTrunc:
case sem::IntrinsicType::kSign:
case sem::IntrinsicType::kClamp:
out += intrinsic->str();
break;
case sem::IntrinsicType::kAbs:
if (intrinsic->ReturnType()->is_float_scalar_or_vector()) {
out += "fabs";
} else {
out += "abs";
}
break;
case sem::IntrinsicType::kCountOneBits:
out += "popcount";
break;
case sem::IntrinsicType::kDpdx:
case sem::IntrinsicType::kDpdxCoarse:
case sem::IntrinsicType::kDpdxFine:
out += "dfdx";
break;
case sem::IntrinsicType::kDpdy:
case sem::IntrinsicType::kDpdyCoarse:
case sem::IntrinsicType::kDpdyFine:
out += "dfdy";
break;
case sem::IntrinsicType::kFwidth:
case sem::IntrinsicType::kFwidthCoarse:
case sem::IntrinsicType::kFwidthFine:
out += "fwidth";
break;
case sem::IntrinsicType::kIsFinite:
out += "isfinite";
break;
case sem::IntrinsicType::kIsInf:
out += "isinf";
break;
case sem::IntrinsicType::kIsNan:
out += "isnan";
break;
case sem::IntrinsicType::kIsNormal:
out += "isnormal";
break;
case sem::IntrinsicType::kMax:
if (intrinsic->ReturnType()->is_float_scalar_or_vector()) {
out += "fmax";
} else {
out += "max";
}
break;
case sem::IntrinsicType::kMin:
if (intrinsic->ReturnType()->is_float_scalar_or_vector()) {
out += "fmin";
} else {
out += "min";
}
break;
case sem::IntrinsicType::kFaceForward:
out += "faceforward";
break;
case sem::IntrinsicType::kPack4x8Snorm:
out += "pack_float_to_snorm4x8";
break;
case sem::IntrinsicType::kPack4x8Unorm:
out += "pack_float_to_unorm4x8";
break;
case sem::IntrinsicType::kPack2x16Snorm:
out += "pack_float_to_snorm2x16";
break;
case sem::IntrinsicType::kPack2x16Unorm:
out += "pack_float_to_unorm2x16";
break;
case sem::IntrinsicType::kReverseBits:
out += "reverse_bits";
break;
case sem::IntrinsicType::kRound:
out += "rint";
break;
case sem::IntrinsicType::kSmoothStep:
out += "smoothstep";
break;
case sem::IntrinsicType::kInverseSqrt:
out += "rsqrt";
break;
case sem::IntrinsicType::kUnpack4x8Snorm:
out += "unpack_snorm4x8_to_float";
break;
case sem::IntrinsicType::kUnpack4x8Unorm:
out += "unpack_unorm4x8_to_float";
break;
case sem::IntrinsicType::kUnpack2x16Snorm:
out += "unpack_snorm2x16_to_float";
break;
case sem::IntrinsicType::kUnpack2x16Unorm:
out += "unpack_unorm2x16_to_float";
break;
default:
diagnostics_.add_error("Unknown import method: " +
std::string(intrinsic->str()));
return "";
}
return out;
}
bool GeneratorImpl::EmitCase(ast::CaseStatement* stmt) {
make_indent();
if (stmt->IsDefault()) {
out_ << "default:";
} else {
bool first = true;
for (auto* selector : stmt->selectors()) {
if (!first) {
out_ << std::endl;
make_indent();
}
first = false;
out_ << "case ";
if (!EmitLiteral(selector)) {
return false;
}
out_ << ":";
}
}
out_ << " {" << std::endl;
increment_indent();
for (auto* s : *stmt->body()) {
if (!EmitStatement(s)) {
return false;
}
}
if (!last_is_break_or_fallthrough(stmt->body())) {
make_indent();
out_ << "break;" << std::endl;
}
decrement_indent();
make_indent();
out_ << "}" << std::endl;
return true;
}
bool GeneratorImpl::EmitConstructor(ast::ConstructorExpression* expr) {
if (auto* scalar = expr->As<ast::ScalarConstructorExpression>()) {
return EmitScalarConstructor(scalar);
}
return EmitTypeConstructor(expr->As<ast::TypeConstructorExpression>());
}
bool GeneratorImpl::EmitContinue(ast::ContinueStatement*) {
make_indent();
out_ << "continue;" << std::endl;
return true;
}
bool GeneratorImpl::EmitTypeConstructor(ast::TypeConstructorExpression* expr) {
if (expr->type()->IsAnyOf<sem::ArrayType, sem::StructType>()) {
out_ << "{";
} else {
if (!EmitType(expr->type(), "")) {
return false;
}
out_ << "(";
}
// If the type constructor is empty then we need to construct with the zero
// value for all components.
if (expr->values().empty()) {
if (!EmitZeroValue(expr->type())) {
return false;
}
} else {
bool first = true;
for (auto* e : expr->values()) {
if (!first) {
out_ << ", ";
}
first = false;
if (!EmitExpression(e)) {
return false;
}
}
}
if (expr->type()->IsAnyOf<sem::ArrayType, sem::StructType>()) {
out_ << "}";
} else {
out_ << ")";
}
return true;
}
bool GeneratorImpl::EmitZeroValue(sem::Type* type) {
if (type->Is<sem::Bool>()) {
out_ << "false";
} else if (type->Is<sem::F32>()) {
out_ << "0.0f";
} else if (type->Is<sem::I32>()) {
out_ << "0";
} else if (type->Is<sem::U32>()) {
out_ << "0u";
} else if (auto* vec = type->As<sem::Vector>()) {
return EmitZeroValue(vec->type());
} else if (auto* mat = type->As<sem::Matrix>()) {
return EmitZeroValue(mat->type());
} else if (auto* arr = type->As<sem::ArrayType>()) {
out_ << "{";
if (!EmitZeroValue(arr->type())) {
return false;
}
out_ << "}";
} else if (type->As<sem::StructType>()) {
out_ << "{}";
} else {
diagnostics_.add_error("Invalid type for zero emission: " +
type->type_name());
return false;
}
return true;
}
bool GeneratorImpl::EmitScalarConstructor(
ast::ScalarConstructorExpression* expr) {
return EmitLiteral(expr->literal());
}
bool GeneratorImpl::EmitLiteral(ast::Literal* lit) {
if (auto* l = lit->As<ast::BoolLiteral>()) {
out_ << (l->IsTrue() ? "true" : "false");
} else if (auto* fl = lit->As<ast::FloatLiteral>()) {
out_ << FloatToString(fl->value()) << "f";
} else if (auto* sl = lit->As<ast::SintLiteral>()) {
out_ << sl->value();
} else if (auto* ul = lit->As<ast::UintLiteral>()) {
out_ << ul->value() << "u";
} else {
diagnostics_.add_error("unknown literal type");
return false;
}
return true;
}
// TODO(crbug.com/tint/697): Remove this when we remove support for entry point
// params as module-scope globals.
bool GeneratorImpl::EmitEntryPointData(ast::Function* func) {
auto* func_sem = program_->Sem().Get(func);
std::vector<std::pair<const ast::Variable*, uint32_t>> in_locations;
std::vector<std::pair<const ast::Variable*, ast::Decoration*>> out_variables;
for (auto data : func_sem->ReferencedLocationVariables()) {
auto* var = data.first;
auto* deco = data.second;
if (var->StorageClass() == ast::StorageClass::kInput) {
in_locations.push_back({var->Declaration(), deco->value()});
} else if (var->StorageClass() == ast::StorageClass::kOutput) {
out_variables.push_back({var->Declaration(), deco});
}
}
for (auto data : func_sem->ReferencedBuiltinVariables()) {
auto* var = data.first;
auto* deco = data.second;
if (var->StorageClass() == ast::StorageClass::kOutput) {
out_variables.push_back({var->Declaration(), deco});
}
}
if (!in_locations.empty()) {
auto in_struct_name =
program_->Symbols().NameFor(func->symbol()) + "_" + kInStructNameSuffix;
auto* in_var_name = kTintStructInVarPrefix;
ep_sym_to_in_data_[func->symbol()] = {in_struct_name, in_var_name};
make_indent();
out_ << "struct " << in_struct_name << " {" << std::endl;
increment_indent();
for (auto& data : in_locations) {
auto* var = data.first;
uint32_t loc = data.second;
make_indent();
if (!EmitType(program_->Sem().Get(var)->Type(),
program_->Symbols().NameFor(var->symbol()))) {
return false;
}
out_ << " " << program_->Symbols().NameFor(var->symbol()) << " [[";
if (func->pipeline_stage() == ast::PipelineStage::kVertex) {
out_ << "attribute(" << loc << ")";
} else if (func->pipeline_stage() == ast::PipelineStage::kFragment) {
out_ << "user(locn" << loc << ")";
} else {
diagnostics_.add_error("invalid location variable for pipeline stage");
return false;
}
out_ << "]];" << std::endl;
}
decrement_indent();
make_indent();
out_ << "};" << std::endl << std::endl;
}
if (!out_variables.empty()) {
auto out_struct_name = program_->Symbols().NameFor(func->symbol()) + "_" +
kOutStructNameSuffix;
auto* out_var_name = kTintStructOutVarPrefix;
ep_sym_to_out_data_[func->symbol()] = {out_struct_name, out_var_name};
make_indent();
out_ << "struct " << out_struct_name << " {" << std::endl;
increment_indent();
for (auto& data : out_variables) {
auto* var = data.first;
auto* deco = data.second;
make_indent();
if (!EmitType(program_->Sem().Get(var)->Type(),
program_->Symbols().NameFor(var->symbol()))) {
return false;
}
out_ << " " << program_->Symbols().NameFor(var->symbol()) << " [[";
if (auto* location = deco->As<ast::LocationDecoration>()) {
auto loc = location->value();
if (func->pipeline_stage() == ast::PipelineStage::kVertex) {
out_ << "user(locn" << loc << ")";
} else if (func->pipeline_stage() == ast::PipelineStage::kFragment) {
out_ << "color(" << loc << ")";
} else {
diagnostics_.add_error(
"invalid location variable for pipeline stage");
return false;
}
} else if (auto* builtin = deco->As<ast::BuiltinDecoration>()) {
auto attr = builtin_to_attribute(builtin->value());
if (attr.empty()) {
diagnostics_.add_error("unsupported builtin");
return false;
}
out_ << attr;
} else {
diagnostics_.add_error(
"unsupported variable decoration for entry point output");
return false;
}
out_ << "]];" << std::endl;
}
decrement_indent();
make_indent();
out_ << "};" << std::endl << std::endl;
}
return true;
}
bool GeneratorImpl::EmitExpression(ast::Expression* expr) {
if (auto* a = expr->As<ast::ArrayAccessorExpression>()) {
return EmitArrayAccessor(a);
}
if (auto* b = expr->As<ast::BinaryExpression>()) {
return EmitBinary(b);
}
if (auto* b = expr->As<ast::BitcastExpression>()) {
return EmitBitcast(b);
}
if (auto* c = expr->As<ast::CallExpression>()) {
return EmitCall(c);
}
if (auto* c = expr->As<ast::ConstructorExpression>()) {
return EmitConstructor(c);
}
if (auto* i = expr->As<ast::IdentifierExpression>()) {
return EmitIdentifier(i);
}
if (auto* m = expr->As<ast::MemberAccessorExpression>()) {
return EmitMemberAccessor(m);
}
if (auto* u = expr->As<ast::UnaryOpExpression>()) {
return EmitUnaryOp(u);
}
diagnostics_.add_error("unknown expression type: " + program_->str(expr));
return false;
}
void GeneratorImpl::EmitStage(ast::PipelineStage stage) {
switch (stage) {
case ast::PipelineStage::kFragment:
out_ << "fragment";
break;
case ast::PipelineStage::kVertex:
out_ << "vertex";
break;
case ast::PipelineStage::kCompute:
out_ << "kernel";
break;
case ast::PipelineStage::kNone:
break;
}
return;
}
bool GeneratorImpl::has_referenced_in_var_needing_struct(ast::Function* func) {
auto* func_sem = program_->Sem().Get(func);
for (auto data : func_sem->ReferencedLocationVariables()) {
auto* var = data.first;
if (var->StorageClass() == ast::StorageClass::kInput) {
return true;
}
}
return false;
}
bool GeneratorImpl::has_referenced_out_var_needing_struct(ast::Function* func) {
auto* func_sem = program_->Sem().Get(func);
for (auto data : func_sem->ReferencedLocationVariables()) {
auto* var = data.first;
if (var->StorageClass() == ast::StorageClass::kOutput) {
return true;
}
}
for (auto data : func_sem->ReferencedBuiltinVariables()) {
auto* var = data.first;
if (var->StorageClass() == ast::StorageClass::kOutput) {
return true;
}
}
return false;
}
bool GeneratorImpl::has_referenced_var_needing_struct(ast::Function* func) {
return has_referenced_in_var_needing_struct(func) ||
has_referenced_out_var_needing_struct(func);
}
bool GeneratorImpl::EmitFunction(ast::Function* func) {
auto* func_sem = program_->Sem().Get(func);
make_indent();
// Entry points will be emitted later, skip for now.
if (func->IsEntryPoint()) {
return true;
}
// TODO(dsinclair): This could be smarter. If the input/outputs for multiple
// entry points are the same we could generate a single struct and then have
// this determine it's the same struct and just emit once.
bool emit_duplicate_functions = func_sem->AncestorEntryPoints().size() > 0 &&
has_referenced_var_needing_struct(func);
if (emit_duplicate_functions) {
for (const auto& ep_sym : func_sem->AncestorEntryPoints()) {
if (!EmitFunctionInternal(func, emit_duplicate_functions, ep_sym)) {
return false;
}
out_ << std::endl;
}
} else {
// Emit as non-duplicated
if (!EmitFunctionInternal(func, false, Symbol())) {
return false;
}
out_ << std::endl;
}
return true;
}
bool GeneratorImpl::EmitFunctionInternal(ast::Function* func,
bool emit_duplicate_functions,
Symbol ep_sym) {
auto* func_sem = program_->Sem().Get(func);
auto name = func->symbol().to_str();
if (!EmitType(func->return_type(), "")) {
return false;
}
out_ << " ";
if (emit_duplicate_functions) {
auto func_name = name;
auto ep_name = ep_sym.to_str();
name = program_->Symbols().NameFor(func->symbol()) + "_" +
program_->Symbols().NameFor(ep_sym);
ep_func_name_remapped_[ep_name + "_" + func_name] = name;
} else {
name = program_->Symbols().NameFor(func->symbol());
}
out_ << name << "(";
bool first = true;
// If we're emitting duplicate functions that means the function takes
// the stage_in or stage_out value from the entry point, emit them.
//
// We emit both of them if they're there regardless of if they're both used.
if (emit_duplicate_functions) {
auto in_it = ep_sym_to_in_data_.find(ep_sym);
if (in_it != ep_sym_to_in_data_.end()) {
out_ << "thread " << in_it->second.struct_name << "& "
<< in_it->second.var_name;
first = false;
}
auto out_it = ep_sym_to_out_data_.find(ep_sym);
if (out_it != ep_sym_to_out_data_.end()) {
if (!first) {
out_ << ", ";
}
out_ << "thread " << out_it->second.struct_name << "& "
<< out_it->second.var_name;
first = false;
}
}
for (const auto& data : func_sem->ReferencedBuiltinVariables()) {
auto* var = data.first;
if (var->StorageClass() != ast::StorageClass::kInput) {
continue;
}
if (!first) {
out_ << ", ";
}
first = false;
out_ << "thread ";
if (!EmitType(var->Type(), "")) {
return false;
}
out_ << "& " << program_->Symbols().NameFor(var->Declaration()->symbol());
}
for (const auto& data : func_sem->ReferencedUniformVariables()) {
auto* var = data.first;
if (!first) {
out_ << ", ";
}
first = false;
out_ << "constant ";
// TODO(dsinclair): Can arrays be uniform? If so, fix this ...
if (!EmitType(var->Type(), "")) {
return false;
}
out_ << "& " << program_->Symbols().NameFor(var->Declaration()->symbol());
}
for (const auto& data : func_sem->ReferencedStorageBufferVariables()) {
auto* var = data.first;
if (!first) {
out_ << ", ";
}
first = false;
auto* ac = var->Type()->As<sem::AccessControl>();
if (ac == nullptr) {
diagnostics_.add_error(
"invalid type for storage buffer, expected access control");
return false;
}
if (ac->IsReadOnly()) {
out_ << "const ";
}
out_ << "device ";
if (!EmitType(ac->type(), "")) {
return false;
}
out_ << "& " << program_->Symbols().NameFor(var->Declaration()->symbol());
}
for (auto* v : func->params()) {
if (!first) {
out_ << ", ";
}
first = false;
auto* type = program_->Sem().Get(v)->Type();
if (!EmitType(type, program_->Symbols().NameFor(v->symbol()))) {
return false;
}
// Array name is output as part of the type
if (!type->Is<sem::ArrayType>()) {
out_ << " " << program_->Symbols().NameFor(v->symbol());
}
}
out_ << ") ";
current_ep_sym_ = ep_sym;
if (!EmitBlockAndNewline(func->body())) {
return false;
}
current_ep_sym_ = Symbol();
return true;
}
std::string GeneratorImpl::builtin_to_attribute(ast::Builtin builtin) const {
switch (builtin) {
case ast::Builtin::kPosition:
return "position";
case ast::Builtin::kVertexIndex:
return "vertex_id";
case ast::Builtin::kInstanceIndex:
return "instance_id";
case ast::Builtin::kFrontFacing:
return "front_facing";
case ast::Builtin::kFragCoord:
return "position";
case ast::Builtin::kFragDepth:
return "depth(any)";
case ast::Builtin::kLocalInvocationId:
return "thread_position_in_threadgroup";
case ast::Builtin::kLocalInvocationIndex:
return "thread_index_in_threadgroup";
case ast::Builtin::kGlobalInvocationId:
return "thread_position_in_grid";
case ast::Builtin::kWorkgroupId:
return "threadgroup_position_in_grid";
case ast::Builtin::kSampleIndex:
return "sample_id";
case ast::Builtin::kSampleMask:
return "sample_mask";
case ast::Builtin::kSampleMaskIn:
return "sample_mask";
case ast::Builtin::kSampleMaskOut:
return "sample_mask";
default:
break;
}
return "";
}
bool GeneratorImpl::EmitEntryPointFunction(ast::Function* func) {
auto* func_sem = program_->Sem().Get(func);
make_indent();
current_ep_sym_ = func->symbol();
EmitStage(func->pipeline_stage());
out_ << " ";
// This is an entry point, the return type is the entry point output structure
// if one exists, or void otherwise.
auto out_data = ep_sym_to_out_data_.find(current_ep_sym_);
bool has_out_data = out_data != ep_sym_to_out_data_.end();
if (has_out_data) {
// TODO(crbug.com/tint/697): Remove this.
if (!func->return_type()->Is<sem::Void>()) {
TINT_ICE(diagnostics_) << "Mixing module-scope variables and return "
"types for shader outputs";
}
out_ << out_data->second.struct_name;
} else {
out_ << func->return_type()->FriendlyName(program_->Symbols());
}
out_ << " " << program_->Symbols().NameFor(func->symbol()) << "(";
bool first = true;
// TODO(crbug.com/tint/697): Remove this.
auto in_data = ep_sym_to_in_data_.find(current_ep_sym_);
if (in_data != ep_sym_to_in_data_.end()) {
out_ << in_data->second.struct_name << " " << in_data->second.var_name
<< " [[stage_in]]";
first = false;
}
// Emit entry point parameters.
for (auto* var : func->params()) {
if (!first) {
out_ << ", ";
}
first = false;
auto* type = program_->Sem().Get(var)->Type();
if (!EmitType(type, "")) {
return false;
}
out_ << " " << program_->Symbols().NameFor(var->symbol());
if (type->Is<sem::StructType>()) {
out_ << " [[stage_in]]";
} else {
auto& decos = var->decorations();
bool builtin_found = false;
for (auto* deco : decos) {
auto* builtin = deco->As<ast::BuiltinDecoration>();
if (!builtin) {
continue;
}
builtin_found = true;
auto attr = builtin_to_attribute(builtin->value());
if (attr.empty()) {
diagnostics_.add_error("unknown builtin");
return false;
}
out_ << " [[" << attr << "]]";
}
if (!builtin_found) {
TINT_ICE(diagnostics_) << "Unsupported entry point parameter";
}
}
}
// TODO(crbug.com/tint/697): Remove this.
for (auto data : func_sem->ReferencedBuiltinVariables()) {
auto* var = data.first;
if (var->StorageClass() != ast::StorageClass::kInput) {
continue;
}
if (!first) {
out_ << ", ";
}
first = false;
auto* builtin = data.second;
if (!EmitType(var->Type(), "")) {
return false;
}
auto attr = builtin_to_attribute(builtin->value());
if (attr.empty()) {
diagnostics_.add_error("unknown builtin");
return false;
}
out_ << " " << program_->Symbols().NameFor(var->Declaration()->symbol())
<< " [[" << attr << "]]";
}
for (auto data : func_sem->ReferencedUniformVariables()) {
if (!first) {
out_ << ", ";
}
first = false;
auto* var = data.first;
// TODO(dsinclair): We're using the binding to make up the buffer number but
// we should instead be using a provided mapping that uses both buffer and
// set. https://bugs.chromium.org/p/tint/issues/detail?id=104
auto* binding = data.second.binding;
if (binding == nullptr) {
diagnostics_.add_error(
"unable to find binding information for uniform: " +
program_->Symbols().NameFor(var->Declaration()->symbol()));
return false;
}
// auto* set = data.second.set;
out_ << "constant ";
// TODO(dsinclair): Can you have a uniform array? If so, this needs to be
// updated to handle arrays property.
if (!EmitType(var->Type(), "")) {
return false;
}
out_ << "& " << program_->Symbols().NameFor(var->Declaration()->symbol())
<< " [[buffer(" << binding->value() << ")]]";
}
for (auto data : func_sem->ReferencedStorageBufferVariables()) {
if (!first) {
out_ << ", ";
}
first = false;
auto* var = data.first;
// TODO(dsinclair): We're using the binding to make up the buffer number but
// we should instead be using a provided mapping that uses both buffer and
// set. https://bugs.chromium.org/p/tint/issues/detail?id=104
auto* binding = data.second.binding;
// auto* set = data.second.set;
auto* ac = var->Type()->As<sem::AccessControl>();
if (ac == nullptr) {
diagnostics_.add_error(
"invalid type for storage buffer, expected access control");
return false;
}
if (ac->IsReadOnly()) {
out_ << "const ";
}
out_ << "device ";
if (!EmitType(ac->type(), "")) {
return false;
}
out_ << "& " << program_->Symbols().NameFor(var->Declaration()->symbol())
<< " [[buffer(" << binding->value() << ")]]";
}
out_ << ") {" << std::endl;
increment_indent();
if (has_out_data) {
make_indent();
out_ << out_data->second.struct_name << " " << out_data->second.var_name
<< " = {};" << std::endl;
}
generating_entry_point_ = true;
for (auto* s : *func->body()) {
if (!EmitStatement(s)) {
return false;
}
}
auto* last_statement = func->get_last_statement();
if (last_statement == nullptr ||
!last_statement->Is<ast::ReturnStatement>()) {
ast::ReturnStatement ret(ProgramID{}, Source{});
if (!EmitStatement(&ret)) {
return false;
}
}
generating_entry_point_ = false;
decrement_indent();
make_indent();
out_ << "}" << std::endl;
current_ep_sym_ = Symbol();
return true;
}
bool GeneratorImpl::global_is_in_struct(const sem::Variable* var) const {
auto& decorations = var->Declaration()->decorations();
bool in_or_out_struct_has_location =
var != nullptr &&
ast::HasDecoration<ast::LocationDecoration>(decorations) &&
(var->StorageClass() == ast::StorageClass::kInput ||
var->StorageClass() == ast::StorageClass::kOutput);
bool in_struct_has_builtin =
var != nullptr &&
ast::HasDecoration<ast::BuiltinDecoration>(decorations) &&
var->StorageClass() == ast::StorageClass::kOutput;
return in_or_out_struct_has_location || in_struct_has_builtin;
}
bool GeneratorImpl::EmitIdentifier(ast::IdentifierExpression* expr) {
auto* ident = expr->As<ast::IdentifierExpression>();
const sem::Variable* var = nullptr;
if (global_variables_.get(ident->symbol(), &var)) {
if (global_is_in_struct(var)) {
auto var_type = var->StorageClass() == ast::StorageClass::kInput
? VarType::kIn
: VarType::kOut;
auto name = current_ep_var_name(var_type);
if (name.empty()) {
diagnostics_.add_error("unable to find entry point data for variable");
return false;
}
out_ << name << ".";
}
}
out_ << program_->Symbols().NameFor(ident->symbol());
return true;
}
bool GeneratorImpl::EmitLoop(ast::LoopStatement* stmt) {
loop_emission_counter_++;
std::string guard =
"tint_msl_is_first_" + std::to_string(loop_emission_counter_);
if (stmt->has_continuing()) {
make_indent();
// Continuing variables get their own scope.
out_ << "{" << std::endl;
increment_indent();
make_indent();
out_ << "bool " << guard << " = true;" << std::endl;
// A continuing block may use variables declared in the method body. As a
// first pass, if we have a continuing, we pull all declarations outside
// the for loop into the continuing scope. Then, the variable declarations
// will be turned into assignments.
for (auto* s : *(stmt->body())) {
if (auto* decl = s->As<ast::VariableDeclStatement>()) {
if (!EmitVariable(program_->Sem().Get(decl->variable()), true)) {
return false;
}
}
}
}
make_indent();
out_ << "for(;;) {" << std::endl;
increment_indent();
if (stmt->has_continuing()) {
make_indent();
out_ << "if (!" << guard << ") ";
if (!EmitBlockAndNewline(stmt->continuing())) {
return false;
}
make_indent();
out_ << guard << " = false;" << std::endl;
out_ << std::endl;
}
for (auto* s : *(stmt->body())) {
// If we have a continuing block we've already emitted the variable
// declaration before the loop, so treat it as an assignment.
auto* decl = s->As<ast::VariableDeclStatement>();
if (decl != nullptr && stmt->has_continuing()) {
make_indent();
auto* var = decl->variable();
out_ << program_->Symbols().NameFor(var->symbol()) << " = ";
if (var->constructor() != nullptr) {
if (!EmitExpression(var->constructor())) {
return false;
}
} else {
if (!EmitZeroValue(program_->Sem().Get(var)->Type())) {
return false;
}
}
out_ << ";" << std::endl;
continue;
}
if (!EmitStatement(s)) {
return false;
}
}
decrement_indent();
make_indent();
out_ << "}" << std::endl;
// Close the scope for any continuing variables.
if (stmt->has_continuing()) {
decrement_indent();
make_indent();
out_ << "}" << std::endl;
}
return true;
}
bool GeneratorImpl::EmitDiscard(ast::DiscardStatement*) {
make_indent();
// TODO(dsinclair): Verify this is correct when the discard semantics are
// defined for WGSL (https://github.com/gpuweb/gpuweb/issues/361)
out_ << "discard_fragment();" << std::endl;
return true;
}
bool GeneratorImpl::EmitElse(ast::ElseStatement* stmt) {
if (stmt->HasCondition()) {
out_ << " else if (";
if (!EmitExpression(stmt->condition())) {
return false;
}
out_ << ") ";
} else {
out_ << " else ";
}
return EmitBlock(stmt->body());
}
bool GeneratorImpl::EmitIf(ast::IfStatement* stmt) {
make_indent();
out_ << "if (";
if (!EmitExpression(stmt->condition())) {
return false;
}
out_ << ") ";
if (!EmitBlock(stmt->body())) {
return false;
}
for (auto* e : stmt->else_statements()) {
if (!EmitElse(e)) {
return false;
}
}
out_ << std::endl;
return true;
}
bool GeneratorImpl::EmitMemberAccessor(ast::MemberAccessorExpression* expr) {
if (!EmitExpression(expr->structure())) {
return false;
}
out_ << ".";
// Swizzles get written out directly
if (program_->Sem().Get(expr)->Is<sem::Swizzle>()) {
out_ << program_->Symbols().NameFor(expr->member()->symbol());
} else if (!EmitExpression(expr->member())) {
return false;
}
return true;
}
bool GeneratorImpl::EmitReturn(ast::ReturnStatement* stmt) {
make_indent();
out_ << "return";
// TODO(crbug.com/tint/697): Remove this conditional.
if (generating_entry_point_) {
auto out_data = ep_sym_to_out_data_.find(current_ep_sym_);
if (out_data != ep_sym_to_out_data_.end()) {
out_ << " " << out_data->second.var_name;
}
}
if (stmt->has_value()) {
out_ << " ";
if (!EmitExpression(stmt->value())) {
return false;
}
}
out_ << ";" << std::endl;
return true;
}
bool GeneratorImpl::EmitBlock(const ast::BlockStatement* stmt) {
out_ << "{" << std::endl;
increment_indent();
for (auto* s : *stmt) {
if (!EmitStatement(s)) {
return false;
}
}
decrement_indent();
make_indent();
out_ << "}";
return true;
}
bool GeneratorImpl::EmitBlockAndNewline(const ast::BlockStatement* stmt) {
const bool result = EmitBlock(stmt);
if (result) {
out_ << std::endl;
}
return result;
}
bool GeneratorImpl::EmitIndentedBlockAndNewline(ast::BlockStatement* stmt) {
make_indent();
const bool result = EmitBlock(stmt);
if (result) {
out_ << std::endl;
}
return result;
}
bool GeneratorImpl::EmitStatement(ast::Statement* stmt) {
if (auto* a = stmt->As<ast::AssignmentStatement>()) {
return EmitAssign(a);
}
if (auto* b = stmt->As<ast::BlockStatement>()) {
return EmitIndentedBlockAndNewline(b);
}
if (auto* b = stmt->As<ast::BreakStatement>()) {
return EmitBreak(b);
}
if (auto* c = stmt->As<ast::CallStatement>()) {
make_indent();
if (!EmitCall(c->expr())) {
return false;
}
out_ << ";" << std::endl;
return true;
}
if (auto* c = stmt->As<ast::ContinueStatement>()) {
return EmitContinue(c);
}
if (auto* d = stmt->As<ast::DiscardStatement>()) {
return EmitDiscard(d);
}
if (stmt->As<ast::FallthroughStatement>()) {
make_indent();
out_ << "/* fallthrough */" << std::endl;
return true;
}
if (auto* i = stmt->As<ast::IfStatement>()) {
return EmitIf(i);
}
if (auto* l = stmt->As<ast::LoopStatement>()) {
return EmitLoop(l);
}
if (auto* r = stmt->As<ast::ReturnStatement>()) {
return EmitReturn(r);
}
if (auto* s = stmt->As<ast::SwitchStatement>()) {
return EmitSwitch(s);
}
if (auto* v = stmt->As<ast::VariableDeclStatement>()) {
auto* var = program_->Sem().Get(v->variable());
return EmitVariable(var, false);
}
diagnostics_.add_error("unknown statement type: " + program_->str(stmt));
return false;
}
bool GeneratorImpl::EmitSwitch(ast::SwitchStatement* stmt) {
make_indent();
out_ << "switch(";
if (!EmitExpression(stmt->condition())) {
return false;
}
out_ << ") {" << std::endl;
increment_indent();
for (auto* s : stmt->body()) {
if (!EmitCase(s)) {
return false;
}
}
decrement_indent();
make_indent();
out_ << "}" << std::endl;
return true;
}
bool GeneratorImpl::EmitType(sem::Type* type, const std::string& name) {
std::string access_str = "";
if (auto* ac = type->As<sem::AccessControl>()) {
if (ac->access_control() == ast::AccessControl::kReadOnly) {
access_str = "read";
} else if (ac->access_control() == ast::AccessControl::kWriteOnly) {
access_str = "write";
} else {
diagnostics_.add_error("Invalid access control for storage texture");
return false;
}
type = ac->type();
}
if (auto* alias = type->As<sem::Alias>()) {
out_ << program_->Symbols().NameFor(alias->symbol());
} else if (auto* ary = type->As<sem::ArrayType>()) {
sem::Type* base_type = ary;
std::vector<uint32_t> sizes;
while (auto* arr = base_type->As<sem::ArrayType>()) {
if (arr->IsRuntimeArray()) {
sizes.push_back(1);
} else {
sizes.push_back(arr->size());
}
base_type = arr->type();
}
if (!EmitType(base_type, "")) {
return false;
}
if (!name.empty()) {
out_ << " " << name;
}
for (uint32_t size : sizes) {
out_ << "[" << size << "]";
}
} else if (type->Is<sem::Bool>()) {
out_ << "bool";
} else if (type->Is<sem::F32>()) {
out_ << "float";
} else if (type->Is<sem::I32>()) {
out_ << "int";
} else if (auto* mat = type->As<sem::Matrix>()) {
if (!EmitType(mat->type(), "")) {
return false;
}
out_ << mat->columns() << "x" << mat->rows();
} else if (auto* ptr = type->As<sem::Pointer>()) {
// TODO(dsinclair): Storage class?
if (!EmitType(ptr->type(), "")) {
return false;
}
out_ << "*";
} else if (type->Is<sem::Sampler>()) {
out_ << "sampler";
} else if (auto* str = type->As<sem::StructType>()) {
// The struct type emits as just the name. The declaration would be emitted
// as part of emitting the constructed types.
out_ << program_->Symbols().NameFor(str->symbol());
} else if (auto* tex = type->As<sem::Texture>()) {
if (tex->Is<sem::DepthTexture>()) {
out_ << "depth";
} else {
out_ << "texture";
}
switch (tex->dim()) {
case sem::TextureDimension::k1d:
out_ << "1d";
break;
case sem::TextureDimension::k2d:
out_ << "2d";
break;
case sem::TextureDimension::k2dArray:
out_ << "2d_array";
break;
case sem::TextureDimension::k3d:
out_ << "3d";
break;
case sem::TextureDimension::kCube:
out_ << "cube";
break;
case sem::TextureDimension::kCubeArray:
out_ << "cube_array";
break;
default:
diagnostics_.add_error("Invalid texture dimensions");
return false;
}
if (tex->Is<sem::MultisampledTexture>()) {
out_ << "_ms";
}
out_ << "<";
if (tex->Is<sem::DepthTexture>()) {
out_ << "float, access::sample";
} else if (auto* storage = tex->As<sem::StorageTexture>()) {
if (!EmitType(storage->type(), "")) {
return false;
}
out_ << ", access::" << access_str;
} else if (auto* ms = tex->As<sem::MultisampledTexture>()) {
if (!EmitType(ms->type(), "")) {
return false;
}
out_ << ", access::sample";
} else if (auto* sampled = tex->As<sem::SampledTexture>()) {
if (!EmitType(sampled->type(), "")) {
return false;
}
out_ << ", access::sample";
} else {
diagnostics_.add_error("invalid texture type");
return false;
}
out_ << ">";
} else if (type->Is<sem::U32>()) {
out_ << "uint";
} else if (auto* vec = type->As<sem::Vector>()) {
if (!EmitType(vec->type(), "")) {
return false;
}
out_ << vec->size();
} else if (type->Is<sem::Void>()) {
out_ << "void";
} else {
diagnostics_.add_error("unknown type in EmitType: " + type->type_name());
return false;
}
return true;
}
bool GeneratorImpl::EmitPackedType(sem::Type* type, const std::string& name) {
if (auto* alias = type->As<sem::Alias>()) {
return EmitPackedType(alias->type(), name);
}
if (auto* vec = type->As<sem::Vector>()) {
out_ << "packed_";
if (!EmitType(vec->type(), "")) {
return false;
}
out_ << vec->size();
return true;
}
return EmitType(type, name);
}
bool GeneratorImpl::EmitStructType(const sem::StructType* str) {
// TODO(dsinclair): Block decoration?
// if (str->impl()->decoration() != ast::Decoration::kNone) {
// }
out_ << "struct " << program_->Symbols().NameFor(str->symbol()) << " {"
<< std::endl;
auto* sem_str = program_->Sem().Get(str);
if (!sem_str) {
TINT_ICE(diagnostics_) << "struct missing semantic info";
return false;
}
bool is_host_shareable = sem_str->IsHostShareable();
// Emits a `/* 0xnnnn */` byte offset comment for a struct member.
auto add_byte_offset_comment = [&](uint32_t offset) {
std::ios_base::fmtflags saved_flag_state(out_.flags());
out_ << "/* 0x" << std::hex << std::setfill('0') << std::setw(4) << offset
<< " */ ";
out_.flags(saved_flag_state);
};
uint32_t pad_count = 0;
auto add_padding = [&](uint32_t size) {
std::string name;
do {
name = "tint_pad_" + std::to_string(pad_count++);
} while (sem_str->FindMember(program_->Symbols().Get(name)));
out_ << "int8_t " << name << "[" << size << "];" << std::endl;
};
increment_indent();
uint32_t msl_offset = 0;
for (auto* mem : str->impl()->members()) {
make_indent();
auto* sem_mem = program_->Sem().Get(mem);
if (!sem_mem) {
TINT_ICE(diagnostics_) << "struct member missing semantic info";
return false;
}
auto wgsl_offset = sem_mem->Offset();
if (is_host_shareable) {
if (wgsl_offset < msl_offset) {
// Unimplementable layout
TINT_ICE(diagnostics_)
<< "Structure member WGSL offset (" << wgsl_offset
<< ") is behind MSL offset (" << msl_offset << ")";
return false;
}
// Generate padding if required
if (auto padding = wgsl_offset - msl_offset) {
add_byte_offset_comment(msl_offset);
add_padding(padding);
msl_offset += padding;
make_indent();
}
add_byte_offset_comment(msl_offset);
if (!EmitPackedType(mem->type(),
program_->Symbols().NameFor(mem->symbol()))) {
return false;
}
} else {
if (!EmitType(mem->type(), program_->Symbols().NameFor(mem->symbol()))) {
return false;
}
}
auto* ty = mem->type()->UnwrapAliasIfNeeded();
// Array member name will be output with the type
if (!ty->Is<sem::ArrayType>()) {
out_ << " " << program_->Symbols().NameFor(mem->symbol());
}
// Emit decorations
for (auto* deco : mem->decorations()) {
if (auto* builtin = deco->As<ast::BuiltinDecoration>()) {
auto attr = builtin_to_attribute(builtin->value());
if (attr.empty()) {
diagnostics_.add_error("unknown builtin");
return false;
}
out_ << " [[" << attr << "]]";
} else if (auto* loc = deco->As<ast::LocationDecoration>()) {
auto& pipeline_stage_uses =
program_->Sem().Get(str)->PipelineStageUses();
if (pipeline_stage_uses.size() != 1) {
TINT_ICE(diagnostics_) << "invalid entry point IO struct uses";
}
if (pipeline_stage_uses.count(sem::PipelineStageUsage::kVertexInput)) {
out_ << " [[attribute(" + std::to_string(loc->value()) + ")]]";
} else if (pipeline_stage_uses.count(
sem::PipelineStageUsage::kVertexOutput)) {
out_ << " [[user(locn" + std::to_string(loc->value()) + ")]]";
} else if (pipeline_stage_uses.count(
sem::PipelineStageUsage::kFragmentInput)) {
out_ << " [[user(locn" + std::to_string(loc->value()) + ")]]";
} else if (pipeline_stage_uses.count(
sem::PipelineStageUsage::kFragmentOutput)) {
out_ << " [[color(" + std::to_string(loc->value()) + ")]]";
} else {
TINT_ICE(diagnostics_) << "invalid use of location decoration";
}
}
}
out_ << ";" << std::endl;
if (is_host_shareable) {
// Calculate new MSL offset
auto size_align = MslPackedTypeSizeAndAlign(ty);
if (msl_offset % size_align.align) {
TINT_ICE(diagnostics_) << "Misaligned MSL structure member "
<< ty->FriendlyName(program_->Symbols()) << " "
<< program_->Symbols().NameFor(mem->symbol());
return false;
}
msl_offset += size_align.size;
}
}
if (is_host_shareable && sem_str->Size() != msl_offset) {
make_indent();
add_byte_offset_comment(msl_offset);
add_padding(sem_str->Size() - msl_offset);
}
decrement_indent();
make_indent();
out_ << "};" << std::endl;
return true;
}
bool GeneratorImpl::EmitUnaryOp(ast::UnaryOpExpression* expr) {
switch (expr->op()) {
case ast::UnaryOp::kNot:
out_ << "!";
break;
case ast::UnaryOp::kNegation:
out_ << "-";
break;
}
out_ << "(";
if (!EmitExpression(expr->expr())) {
return false;
}
out_ << ")";
return true;
}
bool GeneratorImpl::EmitVariable(const sem::Variable* var,
bool skip_constructor) {
make_indent();
auto* decl = var->Declaration();
// TODO(dsinclair): Handle variable decorations
if (!decl->decorations().empty()) {
diagnostics_.add_error("Variable decorations are not handled yet");
return false;
}
if (decl->is_const()) {
out_ << "const ";
}
if (!EmitType(var->Type(), program_->Symbols().NameFor(decl->symbol()))) {
return false;
}
if (!var->Type()->Is<sem::ArrayType>()) {
out_ << " " << program_->Symbols().NameFor(decl->symbol());
}
if (!skip_constructor) {
out_ << " = ";
if (decl->constructor() != nullptr) {
if (!EmitExpression(decl->constructor())) {
return false;
}
} else if (var->StorageClass() == ast::StorageClass::kPrivate ||
var->StorageClass() == ast::StorageClass::kFunction ||
var->StorageClass() == ast::StorageClass::kNone ||
var->StorageClass() == ast::StorageClass::kOutput) {
if (!EmitZeroValue(var->Type())) {
return false;
}
}
}
out_ << ";" << std::endl;
return true;
}
bool GeneratorImpl::EmitProgramConstVariable(const ast::Variable* var) {
make_indent();
for (auto* d : var->decorations()) {
if (!d->Is<ast::ConstantIdDecoration>()) {
diagnostics_.add_error("Decorated const values not valid");
return false;
}
}
if (!var->is_const()) {
diagnostics_.add_error("Expected a const value");
return false;
}
out_ << "constant ";
auto* type = program_->Sem().Get(var)->Type();
if (!EmitType(type, program_->Symbols().NameFor(var->symbol()))) {
return false;
}
if (!type->Is<sem::ArrayType>()) {
out_ << " " << program_->Symbols().NameFor(var->symbol());
}
if (ast::HasDecoration<ast::ConstantIdDecoration>(var->decorations())) {
out_ << " [[function_constant(" << var->constant_id() << ")]]";
} else if (var->constructor() != nullptr) {
out_ << " = ";
if (!EmitExpression(var->constructor())) {
return false;
}
}
out_ << ";" << std::endl;
return true;
}
GeneratorImpl::SizeAndAlign GeneratorImpl::MslPackedTypeSizeAndAlign(
sem::Type* ty) {
ty = ty->UnwrapAliasIfNeeded();
if (ty->IsAnyOf<sem::U32, sem::I32, sem::F32>()) {
// https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
// 2.1 Scalar Data Types
return {4, 4};
}
if (auto* vec = ty->As<sem::Vector>()) {
// https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
// 2.2.3 Packed Vector Types
auto num_els = vec->size();
auto* el_ty = vec->type()->UnwrapAll();
if (el_ty->IsAnyOf<sem::U32, sem::I32, sem::F32>()) {
return SizeAndAlign{num_els * 4, 4};
}
}
if (auto* mat = ty->As<sem::Matrix>()) {
// https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
// 2.3 Matrix Data Types
auto cols = mat->columns();
auto rows = mat->rows();
auto* el_ty = mat->type()->UnwrapAll();
if (el_ty->IsAnyOf<sem::U32, sem::I32, sem::F32>()) {
static constexpr SizeAndAlign table[] = {
/* float2x2 */ {16, 8},
/* float2x3 */ {32, 16},
/* float2x4 */ {32, 16},
/* float3x2 */ {24, 8},
/* float3x3 */ {48, 16},
/* float3x4 */ {48, 16},
/* float4x2 */ {32, 8},
/* float4x3 */ {64, 16},
/* float4x4 */ {64, 16},
};
if (cols >= 2 && cols <= 4 && rows >= 2 && rows <= 4) {
return table[(3 * (cols - 2)) + (rows - 2)];
}
}
}
if (auto* arr = ty->As<sem::ArrayType>()) {
auto* sem = program_->Sem().Get(arr);
if (!sem) {
TINT_ICE(diagnostics_) << "Array missing semantic info";
return {};
}
auto el_size_align = MslPackedTypeSizeAndAlign(arr->type());
if (sem->Stride() != el_size_align.size) {
// TODO(crbug.com/tint/649): transform::Msl needs to replace these arrays
// with a new array type that has the element type padded to the required
// stride.
TINT_UNIMPLEMENTED(diagnostics_)
<< "Arrays with custom strides not yet implemented";
return {};
}
auto num_els = std::max<uint32_t>(arr->size(), 1);
return SizeAndAlign{el_size_align.size * num_els, el_size_align.align};
}
if (auto* str = ty->As<sem::StructType>()) {
// TODO(crbug.com/tint/650): There's an assumption here that MSL's default
// structure size and alignment matches WGSL's. We need to confirm this.
auto* sem = program_->Sem().Get(str);
if (!sem) {
TINT_ICE(diagnostics_) << "Array missing semantic info";
return {};
}
return SizeAndAlign{sem->Size(), sem->Align()};
}
TINT_UNREACHABLE(diagnostics_) << "Unhandled type " << ty->TypeInfo().name;
return {};
}
} // namespace msl
} // namespace writer
} // namespace tint