| // Copyright 2020 The Tint Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "src/type_determiner.h" |
| |
| #include <memory> |
| #include <vector> |
| |
| #include "src/ast/array_accessor_expression.h" |
| #include "src/ast/assignment_statement.h" |
| #include "src/ast/binary_expression.h" |
| #include "src/ast/bitcast_expression.h" |
| #include "src/ast/block_statement.h" |
| #include "src/ast/break_statement.h" |
| #include "src/ast/call_expression.h" |
| #include "src/ast/call_statement.h" |
| #include "src/ast/case_statement.h" |
| #include "src/ast/continue_statement.h" |
| #include "src/ast/else_statement.h" |
| #include "src/ast/identifier_expression.h" |
| #include "src/ast/if_statement.h" |
| #include "src/ast/intrinsic.h" |
| #include "src/ast/loop_statement.h" |
| #include "src/ast/member_accessor_expression.h" |
| #include "src/ast/return_statement.h" |
| #include "src/ast/scalar_constructor_expression.h" |
| #include "src/ast/switch_statement.h" |
| #include "src/ast/type/array_type.h" |
| #include "src/ast/type/bool_type.h" |
| #include "src/ast/type/f32_type.h" |
| #include "src/ast/type/i32_type.h" |
| #include "src/ast/type/matrix_type.h" |
| #include "src/ast/type/multisampled_texture_type.h" |
| #include "src/ast/type/pointer_type.h" |
| #include "src/ast/type/sampled_texture_type.h" |
| #include "src/ast/type/storage_texture_type.h" |
| #include "src/ast/type/struct_type.h" |
| #include "src/ast/type/texture_type.h" |
| #include "src/ast/type/u32_type.h" |
| #include "src/ast/type/vector_type.h" |
| #include "src/ast/type_constructor_expression.h" |
| #include "src/ast/unary_op_expression.h" |
| #include "src/ast/variable_decl_statement.h" |
| |
| namespace tint { |
| |
| TypeDeterminer::TypeDeterminer(Context* ctx, ast::Module* mod) |
| : ctx_(*ctx), mod_(mod) {} |
| |
| TypeDeterminer::~TypeDeterminer() = default; |
| |
| void TypeDeterminer::set_error(const Source& src, const std::string& msg) { |
| error_ = ""; |
| if (src.range.begin.line > 0) { |
| error_ += std::to_string(src.range.begin.line) + ":" + |
| std::to_string(src.range.begin.column) + ": "; |
| } |
| error_ += msg; |
| } |
| |
| void TypeDeterminer::set_referenced_from_function_if_needed( |
| ast::Variable* var) { |
| if (current_function_ == nullptr) { |
| return; |
| } |
| if (var->storage_class() == ast::StorageClass::kNone || |
| var->storage_class() == ast::StorageClass::kFunction) { |
| return; |
| } |
| |
| current_function_->add_referenced_module_variable(var); |
| } |
| |
| bool TypeDeterminer::Determine() { |
| for (auto& iter : ctx_.type_mgr().types()) { |
| auto& type = iter.second; |
| if (!type->IsTexture() || !type->AsTexture()->IsStorage()) { |
| continue; |
| } |
| if (!DetermineStorageTextureSubtype(type->AsTexture()->AsStorage())) { |
| set_error(Source{}, "unable to determine storage texture subtype for: " + |
| type->type_name()); |
| return false; |
| } |
| } |
| |
| for (auto* var : mod_->global_variables()) { |
| variable_stack_.set_global(var->name(), var); |
| |
| if (var->has_constructor()) { |
| if (!DetermineResultType(var->constructor())) { |
| return false; |
| } |
| } |
| } |
| |
| if (!DetermineFunctions(mod_->functions())) { |
| return false; |
| } |
| |
| // Walk over the caller to callee information and update functions with which |
| // entry points call those functions. |
| for (auto* func : mod_->functions()) { |
| if (!func->IsEntryPoint()) { |
| continue; |
| } |
| for (const auto& callee : caller_to_callee_[func->name()]) { |
| set_entry_points(callee, func->name()); |
| } |
| } |
| |
| return true; |
| } |
| |
| void TypeDeterminer::set_entry_points(const std::string& fn_name, |
| const std::string& ep_name) { |
| name_to_function_[fn_name]->add_ancestor_entry_point(ep_name); |
| |
| for (const auto& callee : caller_to_callee_[fn_name]) { |
| set_entry_points(callee, ep_name); |
| } |
| } |
| |
| bool TypeDeterminer::DetermineFunctions(const ast::FunctionList& funcs) { |
| for (auto* func : funcs) { |
| if (!DetermineFunction(func)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool TypeDeterminer::DetermineFunction(ast::Function* func) { |
| name_to_function_[func->name()] = func; |
| |
| current_function_ = func; |
| |
| variable_stack_.push_scope(); |
| for (auto* param : func->params()) { |
| variable_stack_.set(param->name(), param); |
| } |
| |
| if (!DetermineStatements(func->body())) { |
| return false; |
| } |
| variable_stack_.pop_scope(); |
| |
| current_function_ = nullptr; |
| |
| return true; |
| } |
| |
| bool TypeDeterminer::DetermineStatements(const ast::BlockStatement* stmts) { |
| for (auto* stmt : *stmts) { |
| if (!DetermineVariableStorageClass(stmt)) { |
| return false; |
| } |
| |
| if (!DetermineResultType(stmt)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool TypeDeterminer::DetermineVariableStorageClass(ast::Statement* stmt) { |
| if (!stmt->IsVariableDecl()) { |
| return true; |
| } |
| |
| auto* var = stmt->AsVariableDecl()->variable(); |
| // Nothing to do for const |
| if (var->is_const()) { |
| return true; |
| } |
| |
| if (var->storage_class() == ast::StorageClass::kFunction) { |
| return true; |
| } |
| |
| if (var->storage_class() != ast::StorageClass::kNone) { |
| set_error(stmt->source(), |
| "function variable has a non-function storage class"); |
| return false; |
| } |
| |
| var->set_storage_class(ast::StorageClass::kFunction); |
| return true; |
| } |
| |
| bool TypeDeterminer::DetermineResultType(ast::Statement* stmt) { |
| if (stmt->IsAssign()) { |
| auto* a = stmt->AsAssign(); |
| return DetermineResultType(a->lhs()) && DetermineResultType(a->rhs()); |
| } |
| if (stmt->IsBlock()) { |
| return DetermineStatements(stmt->AsBlock()); |
| } |
| if (stmt->IsBreak()) { |
| return true; |
| } |
| if (stmt->IsCall()) { |
| return DetermineResultType(stmt->AsCall()->expr()); |
| } |
| if (stmt->IsCase()) { |
| auto* c = stmt->AsCase(); |
| return DetermineStatements(c->body()); |
| } |
| if (stmt->IsContinue()) { |
| return true; |
| } |
| if (stmt->IsDiscard()) { |
| return true; |
| } |
| if (stmt->IsElse()) { |
| auto* e = stmt->AsElse(); |
| return DetermineResultType(e->condition()) && |
| DetermineStatements(e->body()); |
| } |
| if (stmt->IsFallthrough()) { |
| return true; |
| } |
| if (stmt->IsIf()) { |
| auto* i = stmt->AsIf(); |
| if (!DetermineResultType(i->condition()) || |
| !DetermineStatements(i->body())) { |
| return false; |
| } |
| |
| for (auto* else_stmt : i->else_statements()) { |
| if (!DetermineResultType(else_stmt)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| if (stmt->IsLoop()) { |
| auto* l = stmt->AsLoop(); |
| return DetermineStatements(l->body()) && |
| DetermineStatements(l->continuing()); |
| } |
| if (stmt->IsReturn()) { |
| auto* r = stmt->AsReturn(); |
| return DetermineResultType(r->value()); |
| } |
| if (stmt->IsSwitch()) { |
| auto* s = stmt->AsSwitch(); |
| if (!DetermineResultType(s->condition())) { |
| return false; |
| } |
| for (auto* case_stmt : s->body()) { |
| if (!DetermineResultType(case_stmt)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| if (stmt->IsVariableDecl()) { |
| auto* v = stmt->AsVariableDecl(); |
| variable_stack_.set(v->variable()->name(), v->variable()); |
| return DetermineResultType(v->variable()->constructor()); |
| } |
| |
| set_error(stmt->source(), |
| "unknown statement type for type determination: " + stmt->str()); |
| return false; |
| } |
| |
| bool TypeDeterminer::DetermineResultType(const ast::ExpressionList& list) { |
| for (auto* expr : list) { |
| if (!DetermineResultType(expr)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool TypeDeterminer::DetermineResultType(ast::Expression* expr) { |
| // This is blindly called above, so in some cases the expression won't exist. |
| if (!expr) { |
| return true; |
| } |
| |
| if (expr->IsArrayAccessor()) { |
| return DetermineArrayAccessor(expr->AsArrayAccessor()); |
| } |
| if (expr->IsBinary()) { |
| return DetermineBinary(expr->AsBinary()); |
| } |
| if (expr->IsBitcast()) { |
| return DetermineBitcast(expr->AsBitcast()); |
| } |
| if (expr->IsCall()) { |
| return DetermineCall(expr->AsCall()); |
| } |
| if (expr->IsConstructor()) { |
| return DetermineConstructor(expr->AsConstructor()); |
| } |
| if (expr->IsIdentifier()) { |
| return DetermineIdentifier(expr->AsIdentifier()); |
| } |
| if (expr->IsMemberAccessor()) { |
| return DetermineMemberAccessor(expr->AsMemberAccessor()); |
| } |
| if (expr->IsUnaryOp()) { |
| return DetermineUnaryOp(expr->AsUnaryOp()); |
| } |
| |
| set_error(expr->source(), "unknown expression for type determination"); |
| return false; |
| } |
| |
| bool TypeDeterminer::DetermineArrayAccessor( |
| ast::ArrayAccessorExpression* expr) { |
| if (!DetermineResultType(expr->array())) { |
| return false; |
| } |
| if (!DetermineResultType(expr->idx_expr())) { |
| return false; |
| } |
| |
| auto* res = expr->array()->result_type(); |
| auto* parent_type = res->UnwrapAll(); |
| ast::type::Type* ret = nullptr; |
| if (parent_type->IsArray()) { |
| ret = parent_type->AsArray()->type(); |
| } else if (parent_type->IsVector()) { |
| ret = parent_type->AsVector()->type(); |
| } else if (parent_type->IsMatrix()) { |
| auto* m = parent_type->AsMatrix(); |
| ret = ctx_.type_mgr().Get( |
| std::make_unique<ast::type::VectorType>(m->type(), m->rows())); |
| } else { |
| set_error(expr->source(), "invalid parent type (" + |
| parent_type->type_name() + |
| ") in array accessor"); |
| return false; |
| } |
| |
| // If we're extracting from a pointer, we return a pointer. |
| if (res->IsPointer()) { |
| ret = ctx_.type_mgr().Get(std::make_unique<ast::type::PointerType>( |
| ret, res->AsPointer()->storage_class())); |
| } else if (parent_type->IsArray() && |
| !parent_type->AsArray()->type()->is_scalar()) { |
| // If we extract a non-scalar from an array then we also get a pointer. We |
| // will generate a Function storage class variable to store this |
| // into. |
| ret = ctx_.type_mgr().Get(std::make_unique<ast::type::PointerType>( |
| ret, ast::StorageClass::kFunction)); |
| } |
| expr->set_result_type(ret); |
| |
| return true; |
| } |
| |
| bool TypeDeterminer::DetermineBitcast(ast::BitcastExpression* expr) { |
| if (!DetermineResultType(expr->expr())) { |
| return false; |
| } |
| expr->set_result_type(expr->type()); |
| return true; |
| } |
| |
| bool TypeDeterminer::DetermineCall(ast::CallExpression* expr) { |
| if (!DetermineResultType(expr->func())) { |
| return false; |
| } |
| if (!DetermineResultType(expr->params())) { |
| return false; |
| } |
| |
| // The expression has to be an identifier as you can't store function pointers |
| // but, if it isn't we'll just use the normal result determination to be on |
| // the safe side. |
| if (expr->func()->IsIdentifier()) { |
| auto* ident = expr->func()->AsIdentifier(); |
| |
| if (ident->IsIntrinsic()) { |
| if (!DetermineIntrinsic(ident, expr)) { |
| return false; |
| } |
| } else { |
| if (current_function_) { |
| caller_to_callee_[current_function_->name()].push_back(ident->name()); |
| |
| auto* callee_func = mod_->FindFunctionByName(ident->name()); |
| if (callee_func == nullptr) { |
| set_error(expr->source(), |
| "unable to find called function: " + ident->name()); |
| return false; |
| } |
| |
| // We inherit any referenced variables from the callee. |
| for (auto* var : callee_func->referenced_module_variables()) { |
| set_referenced_from_function_if_needed(var); |
| } |
| } |
| |
| // An identifier with a single name is a function call, not an import |
| // lookup which we can handle with the regular identifier lookup. |
| if (!DetermineResultType(ident)) { |
| return false; |
| } |
| } |
| } else { |
| if (!DetermineResultType(expr->func())) { |
| return false; |
| } |
| } |
| |
| if (!expr->func()->result_type()) { |
| auto func_name = expr->func()->AsIdentifier()->name(); |
| set_error( |
| expr->source(), |
| "v-0005: function must be declared before use: '" + func_name + "'"); |
| return false; |
| } |
| |
| expr->set_result_type(expr->func()->result_type()); |
| return true; |
| } |
| |
| namespace { |
| |
| enum class IntrinsicDataType { |
| kFloatOrIntScalarOrVector, |
| kFloatScalarOrVector, |
| kIntScalarOrVector, |
| kFloatVector, |
| kMatrix, |
| }; |
| struct IntrinsicData { |
| ast::Intrinsic intrinsic; |
| uint8_t param_count; |
| IntrinsicDataType data_type; |
| uint8_t vector_size; |
| }; |
| |
| // Note, this isn't all the intrinsics. Some are handled specially before |
| // we get to the generic code. See the DetermineIntrinsic code below. |
| constexpr const IntrinsicData kIntrinsicData[] = { |
| {ast::Intrinsic::kAbs, 1, IntrinsicDataType::kFloatOrIntScalarOrVector, 0}, |
| {ast::Intrinsic::kAcos, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kAsin, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kAtan, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kAtan2, 2, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kCeil, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kClamp, 3, IntrinsicDataType::kFloatOrIntScalarOrVector, |
| 0}, |
| {ast::Intrinsic::kCos, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kCosh, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kCountOneBits, 1, IntrinsicDataType::kIntScalarOrVector, |
| 0}, |
| {ast::Intrinsic::kCross, 2, IntrinsicDataType::kFloatVector, 3}, |
| {ast::Intrinsic::kDeterminant, 1, IntrinsicDataType::kMatrix, 0}, |
| {ast::Intrinsic::kDistance, 2, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kExp, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kExp2, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kFaceForward, 3, IntrinsicDataType::kFloatScalarOrVector, |
| 0}, |
| {ast::Intrinsic::kFloor, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kFma, 3, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kFract, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kFrexp, 2, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kInverseSqrt, 1, IntrinsicDataType::kFloatScalarOrVector, |
| 0}, |
| {ast::Intrinsic::kLdexp, 2, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kLength, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kLog, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kLog2, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kMax, 2, IntrinsicDataType::kFloatOrIntScalarOrVector, 0}, |
| {ast::Intrinsic::kMin, 2, IntrinsicDataType::kFloatOrIntScalarOrVector, 0}, |
| {ast::Intrinsic::kMix, 3, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kModf, 2, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kNormalize, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kPow, 2, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kReflect, 2, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kReverseBits, 1, IntrinsicDataType::kIntScalarOrVector, 0}, |
| {ast::Intrinsic::kRound, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kSign, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kSin, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kSinh, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kSmoothStep, 3, IntrinsicDataType::kFloatScalarOrVector, |
| 0}, |
| {ast::Intrinsic::kSqrt, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kStep, 2, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kTan, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kTanh, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| {ast::Intrinsic::kTrunc, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, |
| }; |
| |
| constexpr const uint32_t kIntrinsicDataCount = |
| sizeof(kIntrinsicData) / sizeof(IntrinsicData); |
| |
| } // namespace |
| |
| bool TypeDeterminer::DetermineIntrinsic(ast::IdentifierExpression* ident, |
| ast::CallExpression* expr) { |
| if (ast::intrinsic::IsDerivative(ident->intrinsic())) { |
| if (expr->params().size() != 1) { |
| set_error(expr->source(), |
| "incorrect number of parameters for " + ident->name()); |
| return false; |
| } |
| |
| // The result type must be the same as the type of the parameter. |
| auto* param_type = expr->params()[0]->result_type()->UnwrapPtrIfNeeded(); |
| expr->func()->set_result_type(param_type); |
| return true; |
| } |
| if (ident->intrinsic() == ast::Intrinsic::kAny || |
| ident->intrinsic() == ast::Intrinsic::kAll) { |
| expr->func()->set_result_type( |
| ctx_.type_mgr().Get(std::make_unique<ast::type::BoolType>())); |
| return true; |
| } |
| if (ident->intrinsic() == ast::Intrinsic::kArrayLength) { |
| expr->func()->set_result_type( |
| ctx_.type_mgr().Get(std::make_unique<ast::type::U32Type>())); |
| return true; |
| } |
| if (ast::intrinsic::IsFloatClassificationIntrinsic(ident->intrinsic())) { |
| if (expr->params().size() != 1) { |
| set_error(expr->source(), |
| "incorrect number of parameters for " + ident->name()); |
| return false; |
| } |
| |
| auto* bool_type = |
| ctx_.type_mgr().Get(std::make_unique<ast::type::BoolType>()); |
| |
| auto* param_type = expr->params()[0]->result_type()->UnwrapPtrIfNeeded(); |
| if (param_type->IsVector()) { |
| expr->func()->set_result_type( |
| ctx_.type_mgr().Get(std::make_unique<ast::type::VectorType>( |
| bool_type, param_type->AsVector()->size()))); |
| } else { |
| expr->func()->set_result_type(bool_type); |
| } |
| return true; |
| } |
| if (ast::intrinsic::IsTextureIntrinsic(ident->intrinsic())) { |
| // TODO(dsinclair): Remove the LOD param from textureLoad on storage |
| // textures when https://github.com/gpuweb/gpuweb/pull/1032 gets merged. |
| uint32_t num_of_params = |
| (ident->intrinsic() == ast::Intrinsic::kTextureLoad || |
| ident->intrinsic() == ast::Intrinsic::kTextureSample) |
| ? 3 |
| : 4; |
| if (expr->params().size() != num_of_params) { |
| set_error(expr->source(), |
| "incorrect number of parameters for " + ident->name() + |
| ", got " + std::to_string(expr->params().size()) + |
| " and expected " + std::to_string(num_of_params)); |
| return false; |
| } |
| |
| if (ident->intrinsic() == ast::Intrinsic::kTextureSampleCompare) { |
| expr->func()->set_result_type( |
| ctx_.type_mgr().Get(std::make_unique<ast::type::F32Type>())); |
| return true; |
| } |
| |
| auto* texture_param = expr->params()[0]; |
| if (!texture_param->result_type()->UnwrapPtrIfNeeded()->IsTexture()) { |
| set_error(expr->source(), "invalid first argument for " + ident->name()); |
| return false; |
| } |
| ast::type::TextureType* texture = |
| texture_param->result_type()->UnwrapPtrIfNeeded()->AsTexture(); |
| |
| if (!texture->IsStorage() && |
| !(texture->IsSampled() || texture->IsMultisampled())) { |
| set_error(expr->source(), "invalid texture for " + ident->name()); |
| return false; |
| } |
| |
| ast::type::Type* type = nullptr; |
| if (texture->IsStorage()) { |
| type = texture->AsStorage()->type(); |
| } else if (texture->IsSampled()) { |
| type = texture->AsSampled()->type(); |
| } else if (texture->IsMultisampled()) { |
| type = texture->AsMultisampled()->type(); |
| } else { |
| set_error(expr->source(), "unknown texture type for texture sampling"); |
| return false; |
| } |
| expr->func()->set_result_type( |
| ctx_.type_mgr().Get(std::make_unique<ast::type::VectorType>(type, 4))); |
| return true; |
| } |
| if (ident->intrinsic() == ast::Intrinsic::kDot) { |
| expr->func()->set_result_type( |
| ctx_.type_mgr().Get(std::make_unique<ast::type::F32Type>())); |
| return true; |
| } |
| if (ident->intrinsic() == ast::Intrinsic::kOuterProduct) { |
| if (expr->params().size() != 2) { |
| set_error(expr->source(), |
| "incorrect number of parameters for " + ident->name()); |
| return false; |
| } |
| |
| auto* param0_type = expr->params()[0]->result_type()->UnwrapPtrIfNeeded(); |
| auto* param1_type = expr->params()[1]->result_type()->UnwrapPtrIfNeeded(); |
| if (!param0_type->IsVector() || !param1_type->IsVector()) { |
| set_error(expr->source(), "invalid parameter type for " + ident->name()); |
| return false; |
| } |
| |
| expr->func()->set_result_type( |
| ctx_.type_mgr().Get(std::make_unique<ast::type::MatrixType>( |
| ctx_.type_mgr().Get(std::make_unique<ast::type::F32Type>()), |
| param0_type->AsVector()->size(), param1_type->AsVector()->size()))); |
| return true; |
| } |
| if (ident->intrinsic() == ast::Intrinsic::kSelect) { |
| if (expr->params().size() != 3) { |
| set_error(expr->source(), "incorrect number of parameters for " + |
| ident->name() + " expected 3 got " + |
| std::to_string(expr->params().size())); |
| return false; |
| } |
| |
| // The result type must be the same as the type of the parameter. |
| auto* param_type = expr->params()[0]->result_type()->UnwrapPtrIfNeeded(); |
| expr->func()->set_result_type(param_type); |
| return true; |
| } |
| |
| const IntrinsicData* data = nullptr; |
| for (uint32_t i = 0; i < kIntrinsicDataCount; ++i) { |
| if (ident->intrinsic() == kIntrinsicData[i].intrinsic) { |
| data = &kIntrinsicData[i]; |
| break; |
| } |
| } |
| if (data == nullptr) { |
| error_ = "unable to find intrinsic " + ident->name(); |
| return false; |
| } |
| |
| if (expr->params().size() != data->param_count) { |
| set_error(expr->source(), "incorrect number of parameters for " + |
| ident->name() + ". Expected " + |
| std::to_string(data->param_count) + " got " + |
| std::to_string(expr->params().size())); |
| return false; |
| } |
| |
| std::vector<ast::type::Type*> result_types; |
| for (uint32_t i = 0; i < data->param_count; ++i) { |
| result_types.push_back( |
| expr->params()[i]->result_type()->UnwrapPtrIfNeeded()); |
| |
| switch (data->data_type) { |
| case IntrinsicDataType::kFloatOrIntScalarOrVector: |
| if (!result_types.back()->is_float_scalar_or_vector() && |
| !result_types.back()->is_integer_scalar_or_vector()) { |
| set_error(expr->source(), |
| "incorrect type for " + ident->name() + ". " + |
| "Requires float or int, scalar or vector values"); |
| return false; |
| } |
| break; |
| case IntrinsicDataType::kFloatScalarOrVector: |
| if (!result_types.back()->is_float_scalar_or_vector()) { |
| set_error(expr->source(), |
| "incorrect type for " + ident->name() + ". " + |
| "Requires float scalar or float vector values"); |
| return false; |
| } |
| |
| break; |
| case IntrinsicDataType::kIntScalarOrVector: |
| if (!result_types.back()->is_integer_scalar_or_vector()) { |
| set_error(expr->source(), |
| "incorrect type for " + ident->name() + ". " + |
| "Requires integer scalar or integer vector values"); |
| return false; |
| } |
| break; |
| case IntrinsicDataType::kFloatVector: |
| if (!result_types.back()->is_float_vector()) { |
| set_error(expr->source(), "incorrect type for " + ident->name() + |
| ". " + "Requires float vector values"); |
| return false; |
| } |
| if (data->vector_size > 0 && |
| result_types.back()->AsVector()->size() != data->vector_size) { |
| set_error(expr->source(), "incorrect vector size for " + |
| ident->name() + ". " + "Requires " + |
| std::to_string(data->vector_size) + |
| " elements"); |
| return false; |
| } |
| break; |
| case IntrinsicDataType::kMatrix: |
| if (!result_types.back()->IsMatrix()) { |
| set_error(expr->source(), "incorrect type for " + ident->name() + |
| ". Requires matrix value"); |
| return false; |
| } |
| break; |
| } |
| } |
| |
| // Verify all the parameter types match |
| for (size_t i = 1; i < data->param_count; ++i) { |
| if (result_types[0] != result_types[i]) { |
| set_error(expr->source(), |
| "mismatched parameter types for " + ident->name()); |
| return false; |
| } |
| } |
| |
| // Handle functions which aways return the type, even if a vector is |
| // provided. |
| if (ident->intrinsic() == ast::Intrinsic::kLength || |
| ident->intrinsic() == ast::Intrinsic::kDistance) { |
| expr->func()->set_result_type(result_types[0]->is_float_scalar() |
| ? result_types[0] |
| : result_types[0]->AsVector()->type()); |
| return true; |
| } |
| // The determinant returns the component type of the columns |
| if (ident->intrinsic() == ast::Intrinsic::kDeterminant) { |
| expr->func()->set_result_type(result_types[0]->AsMatrix()->type()); |
| return true; |
| } |
| expr->func()->set_result_type(result_types[0]); |
| return true; |
| } |
| |
| bool TypeDeterminer::DetermineConstructor(ast::ConstructorExpression* expr) { |
| if (expr->IsTypeConstructor()) { |
| auto* ty = expr->AsTypeConstructor(); |
| for (auto* value : ty->values()) { |
| if (!DetermineResultType(value)) { |
| return false; |
| } |
| } |
| expr->set_result_type(ty->type()); |
| } else { |
| expr->set_result_type(expr->AsScalarConstructor()->literal()->type()); |
| } |
| return true; |
| } |
| |
| bool TypeDeterminer::DetermineIdentifier(ast::IdentifierExpression* expr) { |
| auto name = expr->name(); |
| ast::Variable* var; |
| if (variable_stack_.get(name, &var)) { |
| // A constant is the type, but a variable is always a pointer so synthesize |
| // the pointer around the variable type. |
| if (var->is_const()) { |
| expr->set_result_type(var->type()); |
| } else if (var->type()->IsPointer()) { |
| expr->set_result_type(var->type()); |
| } else { |
| expr->set_result_type( |
| ctx_.type_mgr().Get(std::make_unique<ast::type::PointerType>( |
| var->type(), var->storage_class()))); |
| } |
| |
| set_referenced_from_function_if_needed(var); |
| return true; |
| } |
| |
| auto iter = name_to_function_.find(name); |
| if (iter != name_to_function_.end()) { |
| expr->set_result_type(iter->second->return_type()); |
| return true; |
| } |
| |
| if (!SetIntrinsicIfNeeded(expr)) { |
| set_error(expr->source(), |
| "v-0006: identifier must be declared before use: " + name); |
| return false; |
| } |
| return true; |
| } |
| |
| bool TypeDeterminer::SetIntrinsicIfNeeded(ast::IdentifierExpression* ident) { |
| if (ident->name() == "abs") { |
| ident->set_intrinsic(ast::Intrinsic::kAbs); |
| } else if (ident->name() == "acos") { |
| ident->set_intrinsic(ast::Intrinsic::kAcos); |
| } else if (ident->name() == "all") { |
| ident->set_intrinsic(ast::Intrinsic::kAll); |
| } else if (ident->name() == "any") { |
| ident->set_intrinsic(ast::Intrinsic::kAny); |
| } else if (ident->name() == "arrayLength") { |
| ident->set_intrinsic(ast::Intrinsic::kArrayLength); |
| } else if (ident->name() == "asin") { |
| ident->set_intrinsic(ast::Intrinsic::kAsin); |
| } else if (ident->name() == "atan") { |
| ident->set_intrinsic(ast::Intrinsic::kAtan); |
| } else if (ident->name() == "atan2") { |
| ident->set_intrinsic(ast::Intrinsic::kAtan2); |
| } else if (ident->name() == "ceil") { |
| ident->set_intrinsic(ast::Intrinsic::kCeil); |
| } else if (ident->name() == "clamp") { |
| ident->set_intrinsic(ast::Intrinsic::kClamp); |
| } else if (ident->name() == "cos") { |
| ident->set_intrinsic(ast::Intrinsic::kCos); |
| } else if (ident->name() == "cosh") { |
| ident->set_intrinsic(ast::Intrinsic::kCosh); |
| } else if (ident->name() == "countOneBits") { |
| ident->set_intrinsic(ast::Intrinsic::kCountOneBits); |
| } else if (ident->name() == "cross") { |
| ident->set_intrinsic(ast::Intrinsic::kCross); |
| } else if (ident->name() == "determinant") { |
| ident->set_intrinsic(ast::Intrinsic::kDeterminant); |
| } else if (ident->name() == "distance") { |
| ident->set_intrinsic(ast::Intrinsic::kDistance); |
| } else if (ident->name() == "dot") { |
| ident->set_intrinsic(ast::Intrinsic::kDot); |
| } else if (ident->name() == "dpdx") { |
| ident->set_intrinsic(ast::Intrinsic::kDpdx); |
| } else if (ident->name() == "dpdxCoarse") { |
| ident->set_intrinsic(ast::Intrinsic::kDpdxCoarse); |
| } else if (ident->name() == "dpdxFine") { |
| ident->set_intrinsic(ast::Intrinsic::kDpdxFine); |
| } else if (ident->name() == "dpdy") { |
| ident->set_intrinsic(ast::Intrinsic::kDpdy); |
| } else if (ident->name() == "dpdyCoarse") { |
| ident->set_intrinsic(ast::Intrinsic::kDpdyCoarse); |
| } else if (ident->name() == "dpdyFine") { |
| ident->set_intrinsic(ast::Intrinsic::kDpdyFine); |
| } else if (ident->name() == "exp") { |
| ident->set_intrinsic(ast::Intrinsic::kExp); |
| } else if (ident->name() == "exp2") { |
| ident->set_intrinsic(ast::Intrinsic::kExp2); |
| } else if (ident->name() == "faceForward") { |
| ident->set_intrinsic(ast::Intrinsic::kFaceForward); |
| } else if (ident->name() == "floor") { |
| ident->set_intrinsic(ast::Intrinsic::kFloor); |
| } else if (ident->name() == "fma") { |
| ident->set_intrinsic(ast::Intrinsic::kFma); |
| } else if (ident->name() == "fract") { |
| ident->set_intrinsic(ast::Intrinsic::kFract); |
| } else if (ident->name() == "frexp") { |
| ident->set_intrinsic(ast::Intrinsic::kFrexp); |
| } else if (ident->name() == "fwidth") { |
| ident->set_intrinsic(ast::Intrinsic::kFwidth); |
| } else if (ident->name() == "fwidthCoarse") { |
| ident->set_intrinsic(ast::Intrinsic::kFwidthCoarse); |
| } else if (ident->name() == "fwidthFine") { |
| ident->set_intrinsic(ast::Intrinsic::kFwidthFine); |
| } else if (ident->name() == "inverseSqrt") { |
| ident->set_intrinsic(ast::Intrinsic::kInverseSqrt); |
| } else if (ident->name() == "isFinite") { |
| ident->set_intrinsic(ast::Intrinsic::kIsFinite); |
| } else if (ident->name() == "isInf") { |
| ident->set_intrinsic(ast::Intrinsic::kIsInf); |
| } else if (ident->name() == "isNan") { |
| ident->set_intrinsic(ast::Intrinsic::kIsNan); |
| } else if (ident->name() == "isNormal") { |
| ident->set_intrinsic(ast::Intrinsic::kIsNormal); |
| } else if (ident->name() == "ldexp") { |
| ident->set_intrinsic(ast::Intrinsic::kLdexp); |
| } else if (ident->name() == "length") { |
| ident->set_intrinsic(ast::Intrinsic::kLength); |
| } else if (ident->name() == "log") { |
| ident->set_intrinsic(ast::Intrinsic::kLog); |
| } else if (ident->name() == "log2") { |
| ident->set_intrinsic(ast::Intrinsic::kLog2); |
| } else if (ident->name() == "max") { |
| ident->set_intrinsic(ast::Intrinsic::kMax); |
| } else if (ident->name() == "min") { |
| ident->set_intrinsic(ast::Intrinsic::kMin); |
| } else if (ident->name() == "mix") { |
| ident->set_intrinsic(ast::Intrinsic::kMix); |
| } else if (ident->name() == "modf") { |
| ident->set_intrinsic(ast::Intrinsic::kModf); |
| } else if (ident->name() == "normalize") { |
| ident->set_intrinsic(ast::Intrinsic::kNormalize); |
| } else if (ident->name() == "outerProduct") { |
| ident->set_intrinsic(ast::Intrinsic::kOuterProduct); |
| } else if (ident->name() == "pow") { |
| ident->set_intrinsic(ast::Intrinsic::kPow); |
| } else if (ident->name() == "reflect") { |
| ident->set_intrinsic(ast::Intrinsic::kReflect); |
| } else if (ident->name() == "reverseBits") { |
| ident->set_intrinsic(ast::Intrinsic::kReverseBits); |
| } else if (ident->name() == "round") { |
| ident->set_intrinsic(ast::Intrinsic::kRound); |
| } else if (ident->name() == "select") { |
| ident->set_intrinsic(ast::Intrinsic::kSelect); |
| } else if (ident->name() == "sign") { |
| ident->set_intrinsic(ast::Intrinsic::kSign); |
| } else if (ident->name() == "sin") { |
| ident->set_intrinsic(ast::Intrinsic::kSin); |
| } else if (ident->name() == "sinh") { |
| ident->set_intrinsic(ast::Intrinsic::kSinh); |
| } else if (ident->name() == "smoothStep") { |
| ident->set_intrinsic(ast::Intrinsic::kSmoothStep); |
| } else if (ident->name() == "sqrt") { |
| ident->set_intrinsic(ast::Intrinsic::kSqrt); |
| } else if (ident->name() == "step") { |
| ident->set_intrinsic(ast::Intrinsic::kStep); |
| } else if (ident->name() == "tan") { |
| ident->set_intrinsic(ast::Intrinsic::kTan); |
| } else if (ident->name() == "tanh") { |
| ident->set_intrinsic(ast::Intrinsic::kTanh); |
| } else if (ident->name() == "textureLoad") { |
| ident->set_intrinsic(ast::Intrinsic::kTextureLoad); |
| } else if (ident->name() == "textureSample") { |
| ident->set_intrinsic(ast::Intrinsic::kTextureSample); |
| } else if (ident->name() == "textureSampleBias") { |
| ident->set_intrinsic(ast::Intrinsic::kTextureSampleBias); |
| } else if (ident->name() == "textureSampleCompare") { |
| ident->set_intrinsic(ast::Intrinsic::kTextureSampleCompare); |
| } else if (ident->name() == "textureSampleLevel") { |
| ident->set_intrinsic(ast::Intrinsic::kTextureSampleLevel); |
| } else if (ident->name() == "trunc") { |
| ident->set_intrinsic(ast::Intrinsic::kTrunc); |
| } else { |
| return false; |
| } |
| return true; |
| } |
| |
| bool TypeDeterminer::DetermineMemberAccessor( |
| ast::MemberAccessorExpression* expr) { |
| if (!DetermineResultType(expr->structure())) { |
| return false; |
| } |
| |
| auto* res = expr->structure()->result_type(); |
| auto* data_type = res->UnwrapPtrIfNeeded()->UnwrapIfNeeded(); |
| |
| ast::type::Type* ret = nullptr; |
| if (data_type->IsStruct()) { |
| auto* strct = data_type->AsStruct()->impl(); |
| auto name = expr->member()->name(); |
| |
| for (auto* member : strct->members()) { |
| if (member->name() == name) { |
| ret = member->type(); |
| break; |
| } |
| } |
| |
| if (ret == nullptr) { |
| set_error(expr->source(), "struct member " + name + " not found"); |
| return false; |
| } |
| |
| // If we're extracting from a pointer, we return a pointer. |
| if (res->IsPointer()) { |
| ret = ctx_.type_mgr().Get(std::make_unique<ast::type::PointerType>( |
| ret, res->AsPointer()->storage_class())); |
| } |
| } else if (data_type->IsVector()) { |
| auto* vec = data_type->AsVector(); |
| |
| auto size = expr->member()->name().size(); |
| if (size == 1) { |
| // A single element swizzle is just the type of the vector. |
| ret = vec->type(); |
| // If we're extracting from a pointer, we return a pointer. |
| if (res->IsPointer()) { |
| ret = ctx_.type_mgr().Get(std::make_unique<ast::type::PointerType>( |
| ret, res->AsPointer()->storage_class())); |
| } |
| } else { |
| // The vector will have a number of components equal to the length of the |
| // swizzle. This assumes the validator will check that the swizzle |
| // is correct. |
| ret = ctx_.type_mgr().Get( |
| std::make_unique<ast::type::VectorType>(vec->type(), size)); |
| } |
| } else { |
| set_error( |
| expr->source(), |
| "v-0007: invalid use of member accessor on a non-vector/non-struct " + |
| data_type->type_name()); |
| return false; |
| } |
| |
| expr->set_result_type(ret); |
| |
| return true; |
| } |
| |
| bool TypeDeterminer::DetermineBinary(ast::BinaryExpression* expr) { |
| if (!DetermineResultType(expr->lhs()) || !DetermineResultType(expr->rhs())) { |
| return false; |
| } |
| |
| // Result type matches first parameter type |
| if (expr->IsAnd() || expr->IsOr() || expr->IsXor() || expr->IsShiftLeft() || |
| expr->IsShiftRight() || expr->IsAdd() || expr->IsSubtract() || |
| expr->IsDivide() || expr->IsModulo()) { |
| expr->set_result_type(expr->lhs()->result_type()->UnwrapPtrIfNeeded()); |
| return true; |
| } |
| // Result type is a scalar or vector of boolean type |
| if (expr->IsLogicalAnd() || expr->IsLogicalOr() || expr->IsEqual() || |
| expr->IsNotEqual() || expr->IsLessThan() || expr->IsGreaterThan() || |
| expr->IsLessThanEqual() || expr->IsGreaterThanEqual()) { |
| auto* bool_type = |
| ctx_.type_mgr().Get(std::make_unique<ast::type::BoolType>()); |
| auto* param_type = expr->lhs()->result_type()->UnwrapPtrIfNeeded(); |
| if (param_type->IsVector()) { |
| expr->set_result_type( |
| ctx_.type_mgr().Get(std::make_unique<ast::type::VectorType>( |
| bool_type, param_type->AsVector()->size()))); |
| } else { |
| expr->set_result_type(bool_type); |
| } |
| return true; |
| } |
| if (expr->IsMultiply()) { |
| auto* lhs_type = expr->lhs()->result_type()->UnwrapPtrIfNeeded(); |
| auto* rhs_type = expr->rhs()->result_type()->UnwrapPtrIfNeeded(); |
| |
| // Note, the ordering here matters. The later checks depend on the prior |
| // checks having been done. |
| if (lhs_type->IsMatrix() && rhs_type->IsMatrix()) { |
| expr->set_result_type( |
| ctx_.type_mgr().Get(std::make_unique<ast::type::MatrixType>( |
| lhs_type->AsMatrix()->type(), lhs_type->AsMatrix()->rows(), |
| rhs_type->AsMatrix()->columns()))); |
| |
| } else if (lhs_type->IsMatrix() && rhs_type->IsVector()) { |
| auto* mat = lhs_type->AsMatrix(); |
| expr->set_result_type(ctx_.type_mgr().Get( |
| std::make_unique<ast::type::VectorType>(mat->type(), mat->rows()))); |
| } else if (lhs_type->IsVector() && rhs_type->IsMatrix()) { |
| auto* mat = rhs_type->AsMatrix(); |
| expr->set_result_type( |
| ctx_.type_mgr().Get(std::make_unique<ast::type::VectorType>( |
| mat->type(), mat->columns()))); |
| } else if (lhs_type->IsMatrix()) { |
| // matrix * scalar |
| expr->set_result_type(lhs_type); |
| } else if (rhs_type->IsMatrix()) { |
| // scalar * matrix |
| expr->set_result_type(rhs_type); |
| } else if (lhs_type->IsVector() && rhs_type->IsVector()) { |
| expr->set_result_type(lhs_type); |
| } else if (lhs_type->IsVector()) { |
| // Vector * scalar |
| expr->set_result_type(lhs_type); |
| } else if (rhs_type->IsVector()) { |
| // Scalar * vector |
| expr->set_result_type(rhs_type); |
| } else { |
| // Scalar * Scalar |
| expr->set_result_type(lhs_type); |
| } |
| |
| return true; |
| } |
| |
| set_error(expr->source(), "Unknown binary expression"); |
| return false; |
| } |
| |
| bool TypeDeterminer::DetermineUnaryOp(ast::UnaryOpExpression* expr) { |
| // Result type matches the parameter type. |
| if (!DetermineResultType(expr->expr())) { |
| return false; |
| } |
| expr->set_result_type(expr->expr()->result_type()->UnwrapPtrIfNeeded()); |
| return true; |
| } |
| |
| bool TypeDeterminer::DetermineStorageTextureSubtype( |
| ast::type::StorageTextureType* tex) { |
| if (tex->type() != nullptr) { |
| return true; |
| } |
| |
| switch (tex->image_format()) { |
| case ast::type::ImageFormat::kR8Unorm: |
| case ast::type::ImageFormat::kRg8Unorm: |
| case ast::type::ImageFormat::kRgba8Unorm: |
| case ast::type::ImageFormat::kRgba8UnormSrgb: |
| case ast::type::ImageFormat::kBgra8Unorm: |
| case ast::type::ImageFormat::kBgra8UnormSrgb: |
| case ast::type::ImageFormat::kRgb10A2Unorm: |
| case ast::type::ImageFormat::kR8Uint: |
| case ast::type::ImageFormat::kR16Uint: |
| case ast::type::ImageFormat::kRg8Uint: |
| case ast::type::ImageFormat::kR32Uint: |
| case ast::type::ImageFormat::kRg16Uint: |
| case ast::type::ImageFormat::kRgba8Uint: |
| case ast::type::ImageFormat::kRg32Uint: |
| case ast::type::ImageFormat::kRgba16Uint: |
| case ast::type::ImageFormat::kRgba32Uint: { |
| tex->set_type( |
| ctx_.type_mgr().Get(std::make_unique<ast::type::U32Type>())); |
| return true; |
| } |
| |
| case ast::type::ImageFormat::kR8Snorm: |
| case ast::type::ImageFormat::kRg8Snorm: |
| case ast::type::ImageFormat::kRgba8Snorm: |
| case ast::type::ImageFormat::kR8Sint: |
| case ast::type::ImageFormat::kR16Sint: |
| case ast::type::ImageFormat::kRg8Sint: |
| case ast::type::ImageFormat::kR32Sint: |
| case ast::type::ImageFormat::kRg16Sint: |
| case ast::type::ImageFormat::kRgba8Sint: |
| case ast::type::ImageFormat::kRg32Sint: |
| case ast::type::ImageFormat::kRgba16Sint: |
| case ast::type::ImageFormat::kRgba32Sint: { |
| tex->set_type( |
| ctx_.type_mgr().Get(std::make_unique<ast::type::I32Type>())); |
| return true; |
| } |
| |
| case ast::type::ImageFormat::kR16Float: |
| case ast::type::ImageFormat::kR32Float: |
| case ast::type::ImageFormat::kRg16Float: |
| case ast::type::ImageFormat::kRg11B10Float: |
| case ast::type::ImageFormat::kRg32Float: |
| case ast::type::ImageFormat::kRgba16Float: |
| case ast::type::ImageFormat::kRgba32Float: { |
| tex->set_type( |
| ctx_.type_mgr().Get(std::make_unique<ast::type::F32Type>())); |
| return true; |
| } |
| |
| case ast::type::ImageFormat::kNone: |
| break; |
| } |
| |
| return false; |
| } |
| |
| } // namespace tint |