blob: 4ed643d050e3b05192415778cf582cf86237cdc3 [file] [log] [blame]
/// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/writer/hlsl/generator_impl.h"
#include <sstream>
#include "spirv/unified1/GLSL.std.450.h"
#include "src/ast/array_accessor_expression.h"
#include "src/ast/as_expression.h"
#include "src/ast/assignment_statement.h"
#include "src/ast/binary_expression.h"
#include "src/ast/bool_literal.h"
#include "src/ast/call_expression.h"
#include "src/ast/call_statement.h"
#include "src/ast/case_statement.h"
#include "src/ast/cast_expression.h"
#include "src/ast/decorated_variable.h"
#include "src/ast/else_statement.h"
#include "src/ast/float_literal.h"
#include "src/ast/identifier_expression.h"
#include "src/ast/if_statement.h"
#include "src/ast/intrinsic.h"
#include "src/ast/loop_statement.h"
#include "src/ast/member_accessor_expression.h"
#include "src/ast/return_statement.h"
#include "src/ast/sint_literal.h"
#include "src/ast/struct.h"
#include "src/ast/switch_statement.h"
#include "src/ast/type/alias_type.h"
#include "src/ast/type/array_type.h"
#include "src/ast/type/f32_type.h"
#include "src/ast/type/i32_type.h"
#include "src/ast/type/matrix_type.h"
#include "src/ast/type/struct_type.h"
#include "src/ast/type/vector_type.h"
#include "src/ast/uint_literal.h"
#include "src/ast/unary_op_expression.h"
#include "src/ast/variable_decl_statement.h"
namespace tint {
namespace writer {
namespace hlsl {
namespace {
const char kInStructNameSuffix[] = "in";
const char kOutStructNameSuffix[] = "out";
const char kTintStructInVarPrefix[] = "tint_in";
const char kTintStructOutVarPrefix[] = "tint_out";
bool last_is_break_or_fallthrough(const ast::BlockStatement* stmts) {
if (stmts->empty()) {
return false;
}
return stmts->last()->IsBreak() || stmts->last()->IsFallthrough();
}
std::string get_buffer_name(ast::Expression* expr) {
for (;;) {
if (expr->IsIdentifier()) {
return expr->AsIdentifier()->name();
} else if (expr->IsMemberAccessor()) {
expr = expr->AsMemberAccessor()->structure();
} else if (expr->IsArrayAccessor()) {
expr = expr->AsArrayAccessor()->array();
} else {
break;
}
}
return "";
}
uint32_t convert_swizzle_to_index(const std::string& swizzle) {
if (swizzle == "r" || swizzle == "x") {
return 0;
}
if (swizzle == "g" || swizzle == "y") {
return 1;
}
if (swizzle == "b" || swizzle == "z") {
return 2;
}
if (swizzle == "a" || swizzle == "w") {
return 3;
}
return 0;
}
} // namespace
GeneratorImpl::GeneratorImpl(ast::Module* module) : module_(module) {}
GeneratorImpl::~GeneratorImpl() = default;
void GeneratorImpl::make_indent(std::ostream& out) {
for (size_t i = 0; i < indent_; i++) {
out << " ";
}
}
bool GeneratorImpl::Generate(std::ostream& out) {
for (const auto& global : module_->global_variables()) {
register_global(global.get());
}
for (auto* const alias : module_->alias_types()) {
if (!EmitAliasType(out, alias)) {
return false;
}
}
if (!module_->alias_types().empty()) {
out << std::endl;
}
for (const auto& var : module_->global_variables()) {
if (!var->is_const()) {
continue;
}
if (!EmitProgramConstVariable(out, var.get())) {
return false;
}
}
for (const auto& ep : module_->entry_points()) {
if (!EmitEntryPointData(out, ep.get())) {
return false;
}
}
for (const auto& func : module_->functions()) {
if (!EmitFunction(out, func.get())) {
return false;
}
}
for (const auto& ep : module_->entry_points()) {
if (!EmitEntryPointFunction(out, ep.get())) {
return false;
}
out << std::endl;
}
return true;
}
void GeneratorImpl::register_global(ast::Variable* global) {
global_variables_.set(global->name(), global);
}
std::string GeneratorImpl::generate_name(const std::string& prefix) {
std::string name = prefix;
uint32_t i = 0;
while (namer_.IsMapped(name)) {
name = prefix + "_" + std::to_string(i);
++i;
}
namer_.RegisterRemappedName(name);
return name;
}
std::string GeneratorImpl::current_ep_var_name(VarType type) {
std::string name = "";
switch (type) {
case VarType::kIn: {
auto in_it = ep_name_to_in_data_.find(current_ep_name_);
if (in_it != ep_name_to_in_data_.end()) {
name = in_it->second.var_name;
}
break;
}
case VarType::kOut: {
auto outit = ep_name_to_out_data_.find(current_ep_name_);
if (outit != ep_name_to_out_data_.end()) {
name = outit->second.var_name;
}
break;
}
}
return name;
}
bool GeneratorImpl::EmitAliasType(std::ostream& out,
const ast::type::AliasType* alias) {
make_indent(out);
if (alias->type()->IsStruct()) {
if (!EmitType(out, alias->type(), namer_.NameFor(alias->name()))) {
return false;
}
out << ";" << std::endl;
} else {
out << "typedef ";
if (!EmitType(out, alias->type(), "")) {
return false;
}
out << " " << namer_.NameFor(alias->name()) << ";" << std::endl;
}
return true;
}
bool GeneratorImpl::EmitArrayAccessor(std::ostream& out,
ast::ArrayAccessorExpression* expr) {
// Handle writing into a storage buffer array
if (is_storage_buffer_access(expr)) {
return EmitStorageBufferAccessor(out, expr, nullptr);
}
if (!EmitExpression(out, expr->array())) {
return false;
}
out << "[";
if (!EmitExpression(out, expr->idx_expr())) {
return false;
}
out << "]";
return true;
}
bool GeneratorImpl::EmitAs(std::ostream& out, ast::AsExpression* expr) {
if (!expr->type()->IsF32() && !expr->type()->IsI32() &&
!expr->type()->IsU32()) {
error_ = "Unable to do as cast to type " + expr->type()->type_name();
return false;
}
out << "as";
if (!EmitType(out, expr->type(), "")) {
return false;
}
out << "(";
if (!EmitExpression(out, expr->expr())) {
return false;
}
out << ")";
return true;
}
bool GeneratorImpl::EmitAssign(std::ostream& out,
ast::AssignmentStatement* stmt) {
make_indent(out);
// If the LHS is an accessor into a storage buffer then we have to
// emit a Store operation instead of an ='s.
if (stmt->lhs()->IsMemberAccessor()) {
auto* mem = stmt->lhs()->AsMemberAccessor();
if (is_storage_buffer_access(mem)) {
if (!EmitStorageBufferAccessor(out, mem, stmt->rhs())) {
return false;
}
out << ";" << std::endl;
return true;
}
} else if (stmt->lhs()->IsArrayAccessor()) {
auto* ary = stmt->lhs()->AsArrayAccessor();
if (is_storage_buffer_access(ary)) {
if (!EmitStorageBufferAccessor(out, ary, stmt->rhs())) {
return false;
}
out << ";" << std::endl;
return true;
}
}
if (!EmitExpression(out, stmt->lhs())) {
return false;
}
out << " = ";
if (!EmitExpression(out, stmt->rhs())) {
return false;
}
out << ";" << std::endl;
return true;
}
bool GeneratorImpl::EmitBinary(std::ostream& out, ast::BinaryExpression* expr) {
out << "(";
if (!EmitExpression(out, expr->lhs())) {
return false;
}
out << " ";
switch (expr->op()) {
case ast::BinaryOp::kAnd:
out << "&";
break;
case ast::BinaryOp::kOr:
out << "|";
break;
case ast::BinaryOp::kXor:
out << "^";
break;
case ast::BinaryOp::kLogicalAnd:
// TODO(dsinclair): Implement support ...
error_ = "&& not supported yet";
return false;
case ast::BinaryOp::kLogicalOr:
// TODO(dsinclair): Implement support ...
error_ = "|| not supported yet";
return false;
case ast::BinaryOp::kEqual:
out << "==";
break;
case ast::BinaryOp::kNotEqual:
out << "!=";
break;
case ast::BinaryOp::kLessThan:
out << "<";
break;
case ast::BinaryOp::kGreaterThan:
out << ">";
break;
case ast::BinaryOp::kLessThanEqual:
out << "<=";
break;
case ast::BinaryOp::kGreaterThanEqual:
out << ">=";
break;
case ast::BinaryOp::kShiftLeft:
out << "<<";
break;
case ast::BinaryOp::kShiftRight:
// TODO(dsinclair): MSL is based on C++14, and >> in C++14 has
// implementation-defined behaviour for negative LHS. We may have to
// generate extra code to implement WGSL-specified behaviour for negative
// LHS.
out << R"(>>)";
break;
case ast::BinaryOp::kAdd:
out << "+";
break;
case ast::BinaryOp::kSubtract:
out << "-";
break;
case ast::BinaryOp::kMultiply:
out << "*";
break;
case ast::BinaryOp::kDivide:
out << "/";
break;
case ast::BinaryOp::kModulo:
out << "%";
break;
case ast::BinaryOp::kNone:
error_ = "missing binary operation type";
return false;
}
out << " ";
if (!EmitExpression(out, expr->rhs())) {
return false;
}
out << ")";
return true;
}
bool GeneratorImpl::EmitBlock(std::ostream& out,
const ast::BlockStatement* stmt) {
out << "{" << std::endl;
increment_indent();
for (const auto& s : *stmt) {
if (!EmitStatement(out, s.get())) {
return false;
}
}
decrement_indent();
make_indent(out);
out << "}";
return true;
}
bool GeneratorImpl::EmitBlockAndNewline(std::ostream& out,
const ast::BlockStatement* stmt) {
const bool result = EmitBlock(out, stmt);
if (result) {
out << std::endl;
}
return result;
}
bool GeneratorImpl::EmitIndentedBlockAndNewline(std::ostream& out,
ast::BlockStatement* stmt) {
make_indent(out);
const bool result = EmitBlock(out, stmt);
if (result) {
out << std::endl;
}
return result;
}
bool GeneratorImpl::EmitBreak(std::ostream& out, ast::BreakStatement*) {
make_indent(out);
out << "break;" << std::endl;
return true;
}
std::string GeneratorImpl::generate_intrinsic_name(const std::string& name) {
if (name == "any") {
return "any";
}
if (name == "all") {
return "all";
}
if (name == "dot") {
return "dot";
}
if (name == "is_finite") {
return "isfinite";
}
if (name == "is_inf") {
return "isinf";
}
if (name == "is_nan") {
return "isnan";
}
if (name == "dpdy") {
return "ddy";
}
if (name == "dpdy_fine") {
return "ddy_fine";
}
if (name == "dpdy_coarse") {
return "ddy_coarse";
}
if (name == "dpdx") {
return "ddx";
}
if (name == "dpdx_fine") {
return "ddx_fine";
}
if (name == "dpdx_coarse") {
return "ddx_coarse";
}
if (name == "fwidth" || name == "fwidth_fine" || name == "fwidth_coarse") {
return "fwidth";
}
return "";
}
bool GeneratorImpl::EmitCall(std::ostream& out, ast::CallExpression* expr) {
if (!expr->func()->IsIdentifier()) {
error_ = "invalid function name";
return 0;
}
auto* ident = expr->func()->AsIdentifier();
if (!ident->has_path() && ast::intrinsic::IsIntrinsic(ident->name())) {
const auto& params = expr->params();
if (ident->name() == "select") {
error_ = "select not supported in HLSL backend yet";
return false;
} else if (ident->name() == "is_normal") {
error_ = "is_normal not supported in HLSL backend yet";
return false;
} else if (ident->name() == "outer_product") {
error_ = "outer_product not supported yet";
return false;
// TODO(dsinclair): This gets tricky. We need to generate two variables to
// hold the outer_product expressions, but we maybe inside an expression
// ourselves. So, this will need to, possibly, output the variables
// _before_ the expression which contains the outer product.
//
// This then has the follow on, what if we have `(false &&
// outer_product())` in that case, we shouldn't evaluate the expressions
// at all because of short circuting.
//
// So .... this turns out to be hard ...
// // We create variables to hold the two parameters in case they're
// // function calls with side effects.
// auto* param0 = param[0].get();
// auto* name0 = generate_name("outer_product_expr_0");
// auto* param1 = param[1].get();
// auto* name1 = generate_name("outer_product_expr_1");
// make_indent(out);
// if (!EmitType(out, expr->result_type(), "")) {
// return false;
// }
// out << "(";
// auto param1_type = params[1]->result_type()->UnwrapPtrIfNeeded();
// if (!param1_type->IsVector()) {
// error_ = "invalid param type in outer_product got: " +
// param1_type->type_name();
// return false;
// }
// for (uint32_t i = 0; i < param1_type->AsVector()->size(); ++i) {
// if (i > 0) {
// out << ", ";
// }
// if (!EmitExpression(out, params[0].get())) {
// return false;
// }
// out << " * ";
// if (!EmitExpression(out, params[1].get())) {
// return false;
// }
// out << "[" << i << "]";
// }
// out << ")";
} else {
auto name = generate_intrinsic_name(ident->name());
if (name.empty()) {
error_ = "unable to determine intrinsic name for intrinsic: " +
ident->name();
return false;
}
make_indent(out);
out << name << "(";
bool first = true;
for (const auto& param : params) {
if (!first) {
out << ", ";
}
first = false;
if (!EmitExpression(out, param.get())) {
return false;
}
}
out << ")";
}
return true;
}
if (!ident->has_path()) {
auto name = ident->name();
auto it = ep_func_name_remapped_.find(current_ep_name_ + "_" + name);
if (it != ep_func_name_remapped_.end()) {
name = it->second;
}
auto* func = module_->FindFunctionByName(ident->name());
if (func == nullptr) {
error_ = "Unable to find function: " + name;
return false;
}
out << name << "(";
bool first = true;
if (has_referenced_in_var_needing_struct(func)) {
auto var_name = current_ep_var_name(VarType::kIn);
if (!var_name.empty()) {
out << var_name;
first = false;
}
}
if (has_referenced_out_var_needing_struct(func)) {
auto var_name = current_ep_var_name(VarType::kOut);
if (!var_name.empty()) {
if (!first) {
out << ", ";
}
first = false;
out << var_name;
}
}
const auto& params = expr->params();
for (const auto& param : params) {
if (!first) {
out << ", ";
}
first = false;
if (!EmitExpression(out, param.get())) {
return false;
}
}
out << ")";
} else {
return EmitImportFunction(out, expr);
}
return true;
}
bool GeneratorImpl::EmitImportFunction(std::ostream& out,
ast::CallExpression* expr) {
auto* ident = expr->func()->AsIdentifier();
auto* imp = module_->FindImportByName(ident->path());
if (imp == nullptr) {
error_ = "unable to find import for " + ident->path();
return 0;
}
auto id = imp->GetIdForMethod(ident->name());
if (id == 0) {
error_ = "unable to lookup: " + ident->name() + " in " + ident->path();
}
switch (id) {
case GLSLstd450Acos:
case GLSLstd450Asin:
case GLSLstd450Atan:
case GLSLstd450Atan2:
case GLSLstd450Ceil:
case GLSLstd450Cos:
case GLSLstd450Cosh:
case GLSLstd450Cross:
case GLSLstd450Degrees:
case GLSLstd450Determinant:
case GLSLstd450Distance:
case GLSLstd450Exp:
case GLSLstd450Exp2:
case GLSLstd450FaceForward:
case GLSLstd450Floor:
case GLSLstd450Fma:
case GLSLstd450Length:
case GLSLstd450Log:
case GLSLstd450Log2:
case GLSLstd450Normalize:
case GLSLstd450Pow:
case GLSLstd450Radians:
case GLSLstd450Reflect:
case GLSLstd450Round:
case GLSLstd450Sin:
case GLSLstd450Sinh:
case GLSLstd450SmoothStep:
case GLSLstd450Sqrt:
case GLSLstd450Step:
case GLSLstd450Tan:
case GLSLstd450Tanh:
case GLSLstd450Trunc:
out << ident->name();
break;
case GLSLstd450Fract:
out << "frac";
break;
case GLSLstd450InterpolateAtCentroid:
out << "EvaluateAttributeAtCentroid";
break;
case GLSLstd450InverseSqrt:
out << "rsqrt";
break;
case GLSLstd450FMix:
out << "mix";
break;
case GLSLstd450SSign:
case GLSLstd450FSign:
out << "sign";
break;
case GLSLstd450FAbs:
case GLSLstd450SAbs:
out << "abs";
break;
case GLSLstd450FMax:
case GLSLstd450NMax:
case GLSLstd450SMax:
case GLSLstd450UMax:
out << "max";
break;
case GLSLstd450FMin:
case GLSLstd450NMin:
case GLSLstd450SMin:
case GLSLstd450UMin:
out << "min";
break;
case GLSLstd450FClamp:
case GLSLstd450SClamp:
case GLSLstd450NClamp:
case GLSLstd450UClamp:
out << "clamp";
break;
// TODO(dsinclair): Determine mappings for the following
case GLSLstd450Atanh:
case GLSLstd450Asinh:
case GLSLstd450Acosh:
case GLSLstd450FindILsb:
case GLSLstd450FindUMsb:
case GLSLstd450FindSMsb:
case GLSLstd450MatrixInverse:
case GLSLstd450RoundEven:
error_ = "Unknown import method: " + ident->name();
return false;
}
out << "(";
bool first = true;
const auto& params = expr->params();
for (const auto& param : params) {
if (!first) {
out << ", ";
}
first = false;
if (!EmitExpression(out, param.get())) {
return false;
}
}
out << ")";
return true;
}
bool GeneratorImpl::EmitCast(std::ostream& out, ast::CastExpression* expr) {
if (!EmitType(out, expr->type(), "")) {
return false;
}
out << "(";
if (!EmitExpression(out, expr->expr())) {
return false;
}
out << ")";
return true;
}
bool GeneratorImpl::EmitCase(std::ostream& out, ast::CaseStatement* stmt) {
make_indent(out);
if (stmt->IsDefault()) {
out << "default:";
} else {
bool first = true;
for (const auto& selector : stmt->selectors()) {
if (!first) {
out << std::endl;
make_indent(out);
}
first = false;
out << "case ";
if (!EmitLiteral(out, selector.get())) {
return false;
}
out << ":";
}
}
out << " {" << std::endl;
increment_indent();
for (const auto& s : *(stmt->body())) {
if (!EmitStatement(out, s.get())) {
return false;
}
}
if (!last_is_break_or_fallthrough(stmt->body())) {
make_indent(out);
out << "break;" << std::endl;
}
decrement_indent();
make_indent(out);
out << "}" << std::endl;
return true;
}
bool GeneratorImpl::EmitConstructor(std::ostream& out,
ast::ConstructorExpression* expr) {
if (expr->IsScalarConstructor()) {
return EmitScalarConstructor(out, expr->AsScalarConstructor());
}
return EmitTypeConstructor(out, expr->AsTypeConstructor());
}
bool GeneratorImpl::EmitScalarConstructor(
std::ostream& out,
ast::ScalarConstructorExpression* expr) {
return EmitLiteral(out, expr->literal());
}
bool GeneratorImpl::EmitTypeConstructor(std::ostream& out,
ast::TypeConstructorExpression* expr) {
if (expr->type()->IsArray()) {
out << "{";
} else {
if (!EmitType(out, expr->type(), "")) {
return false;
}
out << "(";
}
// If the type constructor is empty then we need to construct with the zero
// value for all components.
if (expr->values().empty()) {
if (!EmitZeroValue(out, expr->type())) {
return false;
}
} else {
bool first = true;
for (const auto& e : expr->values()) {
if (!first) {
out << ", ";
}
first = false;
if (!EmitExpression(out, e.get())) {
return false;
}
}
}
if (expr->type()->IsArray()) {
out << "}";
} else {
out << ")";
}
return true;
}
bool GeneratorImpl::EmitContinue(std::ostream& out, ast::ContinueStatement*) {
make_indent(out);
out << "continue;" << std::endl;
return true;
}
bool GeneratorImpl::EmitDiscard(std::ostream& out, ast::DiscardStatement*) {
make_indent(out);
// TODO(dsinclair): Verify this is correct when the discard semantics are
// defined for WGSL (https://github.com/gpuweb/gpuweb/issues/361)
out << "discard;" << std::endl;
return true;
}
bool GeneratorImpl::EmitExpression(std::ostream& out, ast::Expression* expr) {
if (expr->IsAs()) {
return EmitAs(out, expr->AsAs());
}
if (expr->IsArrayAccessor()) {
return EmitArrayAccessor(out, expr->AsArrayAccessor());
}
if (expr->IsBinary()) {
return EmitBinary(out, expr->AsBinary());
}
if (expr->IsCall()) {
return EmitCall(out, expr->AsCall());
}
if (expr->IsCast()) {
return EmitCast(out, expr->AsCast());
}
if (expr->IsConstructor()) {
return EmitConstructor(out, expr->AsConstructor());
}
if (expr->IsIdentifier()) {
return EmitIdentifier(out, expr->AsIdentifier());
}
if (expr->IsMemberAccessor()) {
return EmitMemberAccessor(out, expr->AsMemberAccessor());
}
if (expr->IsUnaryOp()) {
return EmitUnaryOp(out, expr->AsUnaryOp());
}
error_ = "unknown expression type: " + expr->str();
return false;
}
bool GeneratorImpl::global_is_in_struct(ast::Variable* var) const {
return var->IsDecorated() &&
(var->AsDecorated()->HasLocationDecoration() ||
var->AsDecorated()->HasBuiltinDecoration()) &&
(var->storage_class() == ast::StorageClass::kInput ||
var->storage_class() == ast::StorageClass::kOutput);
}
bool GeneratorImpl::EmitIdentifier(std::ostream& out,
ast::IdentifierExpression* expr) {
auto* ident = expr->AsIdentifier();
if (ident->has_path()) {
// TODO(dsinclair): Handle identifier with path
error_ = "Identifier paths not handled yet.";
return false;
}
ast::Variable* var = nullptr;
if (global_variables_.get(ident->name(), &var)) {
if (global_is_in_struct(var)) {
auto var_type = var->storage_class() == ast::StorageClass::kInput
? VarType::kIn
: VarType::kOut;
auto name = current_ep_var_name(var_type);
if (name.empty()) {
error_ = "unable to find entry point data for variable";
return false;
}
out << name << ".";
}
}
out << namer_.NameFor(ident->name());
return true;
}
bool GeneratorImpl::EmitIf(std::ostream& out, ast::IfStatement* stmt) {
make_indent(out);
out << "if (";
if (!EmitExpression(out, stmt->condition())) {
return false;
}
out << ") ";
if (!EmitBlock(out, stmt->body())) {
return false;
}
for (const auto& e : stmt->else_statements()) {
if (!EmitElse(out, e.get())) {
return false;
}
}
out << std::endl;
return true;
}
bool GeneratorImpl::EmitElse(std::ostream& out, ast::ElseStatement* stmt) {
if (stmt->HasCondition()) {
out << " else if (";
if (!EmitExpression(out, stmt->condition())) {
return false;
}
out << ") ";
} else {
out << " else ";
}
return EmitBlock(out, stmt->body());
}
bool GeneratorImpl::has_referenced_in_var_needing_struct(ast::Function* func) {
for (auto data : func->referenced_location_variables()) {
auto* var = data.first;
if (var->storage_class() == ast::StorageClass::kInput) {
return true;
}
}
for (auto data : func->referenced_builtin_variables()) {
auto* var = data.first;
if (var->storage_class() == ast::StorageClass::kInput) {
return true;
}
}
return false;
}
bool GeneratorImpl::has_referenced_out_var_needing_struct(ast::Function* func) {
for (auto data : func->referenced_location_variables()) {
auto* var = data.first;
if (var->storage_class() == ast::StorageClass::kOutput) {
return true;
}
}
for (auto data : func->referenced_builtin_variables()) {
auto* var = data.first;
if (var->storage_class() == ast::StorageClass::kOutput) {
return true;
}
}
return false;
}
bool GeneratorImpl::has_referenced_var_needing_struct(ast::Function* func) {
for (auto data : func->referenced_location_variables()) {
auto* var = data.first;
if (var->storage_class() == ast::StorageClass::kOutput ||
var->storage_class() == ast::StorageClass::kInput) {
return true;
}
}
for (auto data : func->referenced_builtin_variables()) {
auto* var = data.first;
if (var->storage_class() == ast::StorageClass::kOutput ||
var->storage_class() == ast::StorageClass::kInput) {
return true;
}
}
return false;
}
bool GeneratorImpl::EmitFunction(std::ostream& out, ast::Function* func) {
make_indent(out);
// Entry points will be emitted later, skip for now.
if (module_->IsFunctionEntryPoint(func->name())) {
return true;
}
// TODO(dsinclair): This could be smarter. If the input/outputs for multiple
// entry points are the same we could generate a single struct and then have
// this determine it's the same struct and just emit once.
bool emit_duplicate_functions = func->ancestor_entry_points().size() > 0 &&
has_referenced_var_needing_struct(func);
if (emit_duplicate_functions) {
for (const auto& ep_name : func->ancestor_entry_points()) {
if (!EmitFunctionInternal(out, func, emit_duplicate_functions, ep_name)) {
return false;
}
out << std::endl;
}
} else {
// Emit as non-duplicated
if (!EmitFunctionInternal(out, func, false, "")) {
return false;
}
out << std::endl;
}
return true;
}
bool GeneratorImpl::EmitFunctionInternal(std::ostream& out,
ast::Function* func,
bool emit_duplicate_functions,
const std::string& ep_name) {
auto name = func->name();
if (!EmitType(out, func->return_type(), "")) {
return false;
}
out << " ";
if (emit_duplicate_functions) {
name = generate_name(name + "_" + ep_name);
ep_func_name_remapped_[ep_name + "_" + func->name()] = name;
} else {
name = namer_.NameFor(name);
}
out << name << "(";
bool first = true;
// If we're emitting duplicate functions that means the function takes
// the stage_in or stage_out value from the entry point, emit them.
//
// We emit both of them if they're there regardless of if they're both used.
if (emit_duplicate_functions) {
auto in_it = ep_name_to_in_data_.find(ep_name);
if (in_it != ep_name_to_in_data_.end()) {
out << "in " << in_it->second.struct_name << " "
<< in_it->second.var_name;
first = false;
}
auto outit = ep_name_to_out_data_.find(ep_name);
if (outit != ep_name_to_out_data_.end()) {
if (!first) {
out << ", ";
}
out << "out " << outit->second.struct_name << " "
<< outit->second.var_name;
first = false;
}
}
for (const auto& v : func->params()) {
if (!first) {
out << ", ";
}
first = false;
if (!EmitType(out, v->type(), v->name())) {
return false;
}
// Array name is output as part of the type
if (!v->type()->IsArray()) {
out << " " << v->name();
}
}
out << ") ";
current_ep_name_ = ep_name;
if (!EmitBlockAndNewline(out, func->body())) {
return false;
}
current_ep_name_ = "";
return true;
}
bool GeneratorImpl::EmitEntryPointData(std::ostream& out, ast::EntryPoint* ep) {
auto* func = module_->FindFunctionByName(ep->function_name());
if (func == nullptr) {
error_ = "Unable to find entry point function: " + ep->function_name();
return false;
}
std::vector<std::pair<ast::Variable*, ast::VariableDecoration*>> in_variables;
std::vector<std::pair<ast::Variable*, ast::VariableDecoration*>> outvariables;
for (auto data : func->referenced_location_variables()) {
auto* var = data.first;
auto* deco = data.second;
if (var->storage_class() == ast::StorageClass::kInput) {
in_variables.push_back({var, deco});
} else if (var->storage_class() == ast::StorageClass::kOutput) {
outvariables.push_back({var, deco});
}
}
for (auto data : func->referenced_builtin_variables()) {
auto* var = data.first;
auto* deco = data.second;
if (var->storage_class() == ast::StorageClass::kInput) {
in_variables.push_back({var, deco});
} else if (var->storage_class() == ast::StorageClass::kOutput) {
outvariables.push_back({var, deco});
}
}
bool emitted_uniform = false;
for (auto data : func->referenced_uniform_variables()) {
auto* var = data.first;
// TODO(dsinclair): We're using the binding to make up the buffer number but
// we should instead be using a provided mapping that uses both buffer and
// set. https://bugs.chromium.org/p/tint/issues/detail?id=104
auto* binding = data.second.binding;
if (binding == nullptr) {
error_ = "unable to find binding information for uniform: " + var->name();
return false;
}
// auto* set = data.second.set;
auto* type = var->type()->UnwrapAliasesIfNeeded();
if (type->IsStruct()) {
auto* strct = type->AsStruct();
out << "ConstantBuffer<" << strct->name() << "> " << var->name()
<< " : register(b" << binding->value() << ");" << std::endl;
} else {
// TODO(dsinclair): There is outstanding spec work to require all uniform
// buffers to be [[block]] decorated, which means structs. This is
// currently not the case, so this code handles the cases where the data
// is not a block.
// Relevant: https://github.com/gpuweb/gpuweb/issues/1004
// https://github.com/gpuweb/gpuweb/issues/1008
out << "cbuffer : register(b" << binding->value() << ") {" << std::endl;
increment_indent();
make_indent(out);
if (!EmitType(out, type, "")) {
return false;
}
out << " " << var->name() << ";" << std::endl;
decrement_indent();
out << "};" << std::endl;
}
emitted_uniform = true;
}
if (emitted_uniform) {
out << std::endl;
}
bool emitted_storagebuffer = false;
for (auto data : func->referenced_storagebuffer_variables()) {
auto* var = data.first;
auto* binding = data.second.binding;
out << "RWByteAddressBuffer " << var->name() << " : register(u"
<< binding->value() << ");" << std::endl;
emitted_storagebuffer = true;
}
if (emitted_storagebuffer) {
out << std::endl;
}
auto ep_name = ep->name();
if (ep_name.empty()) {
ep_name = ep->function_name();
}
// TODO(dsinclair): There is a potential bug here. Entry points can have the
// same name in WGSL if they have different pipeline stages. This does not
// take that into account and will emit duplicate struct names. I'm ignoring
// this until https://github.com/gpuweb/gpuweb/issues/662 is resolved as it
// may remove this issue and entry point names will need to be unique.
if (!in_variables.empty()) {
auto in_struct_name = generate_name(ep_name + "_" + kInStructNameSuffix);
auto in_var_name = generate_name(kTintStructInVarPrefix);
ep_name_to_in_data_[ep_name] = {in_struct_name, in_var_name};
make_indent(out);
out << "struct " << in_struct_name << " {" << std::endl;
increment_indent();
for (auto& data : in_variables) {
auto* var = data.first;
auto* deco = data.second;
make_indent(out);
if (!EmitType(out, var->type(), var->name())) {
return false;
}
out << " " << var->name() << " : ";
if (deco->IsLocation()) {
if (ep->stage() == ast::PipelineStage::kCompute) {
error_ = "invalid location variable for pipeline stage";
return false;
}
out << "TEXCOORD" << deco->AsLocation()->value();
} else if (deco->IsBuiltin()) {
auto attr = builtin_to_attribute(deco->AsBuiltin()->value());
if (attr.empty()) {
error_ = "unsupported builtin";
return false;
}
out << attr;
} else {
error_ = "unsupported variable decoration for entry point output";
return false;
}
out << ";" << std::endl;
}
decrement_indent();
make_indent(out);
out << "};" << std::endl << std::endl;
}
if (!outvariables.empty()) {
auto outstruct_name = generate_name(ep_name + "_" + kOutStructNameSuffix);
auto outvar_name = generate_name(kTintStructOutVarPrefix);
ep_name_to_out_data_[ep_name] = {outstruct_name, outvar_name};
make_indent(out);
out << "struct " << outstruct_name << " {" << std::endl;
increment_indent();
for (auto& data : outvariables) {
auto* var = data.first;
auto* deco = data.second;
make_indent(out);
if (!EmitType(out, var->type(), var->name())) {
return false;
}
out << " " << var->name() << " : ";
if (deco->IsLocation()) {
auto loc = deco->AsLocation()->value();
if (ep->stage() == ast::PipelineStage::kVertex) {
out << "TEXCOORD" << loc;
} else if (ep->stage() == ast::PipelineStage::kFragment) {
out << "SV_Target" << loc << "";
} else {
error_ = "invalid location variable for pipeline stage";
return false;
}
} else if (deco->IsBuiltin()) {
auto attr = builtin_to_attribute(deco->AsBuiltin()->value());
if (attr.empty()) {
error_ = "unsupported builtin";
return false;
}
out << attr;
} else {
error_ = "unsupported variable decoration for entry point output";
return false;
}
out << ";" << std::endl;
}
decrement_indent();
make_indent(out);
out << "};" << std::endl << std::endl;
}
return true;
}
std::string GeneratorImpl::builtin_to_attribute(ast::Builtin builtin) const {
switch (builtin) {
case ast::Builtin::kPosition:
return "SV_Position";
case ast::Builtin::kVertexIdx:
return "SV_VertexID";
case ast::Builtin::kInstanceIdx:
return "SV_InstanceID";
case ast::Builtin::kFrontFacing:
return "SV_IsFrontFacing";
case ast::Builtin::kFragCoord:
return "SV_Position";
case ast::Builtin::kFragDepth:
return "SV_Depth";
// TODO(dsinclair): Ignore for now. This has been removed as a builtin
// in the spec. Need to update Tint to match.
// https://github.com/gpuweb/gpuweb/pull/824
case ast::Builtin::kWorkgroupSize:
return "";
case ast::Builtin::kLocalInvocationId:
return "SV_GroupThreadID";
case ast::Builtin::kLocalInvocationIdx:
return "SV_GroupIndex";
case ast::Builtin::kGlobalInvocationId:
return "SV_DispatchThreadID";
default:
break;
}
return "";
}
bool GeneratorImpl::EmitEntryPointFunction(std::ostream& out,
ast::EntryPoint* ep) {
make_indent(out);
current_ep_name_ = ep->name();
if (current_ep_name_.empty()) {
current_ep_name_ = ep->function_name();
}
auto* func = module_->FindFunctionByName(ep->function_name());
if (func == nullptr) {
error_ = "unable to find function for entry point: " + ep->function_name();
return false;
}
auto outdata = ep_name_to_out_data_.find(current_ep_name_);
bool has_outdata = outdata != ep_name_to_out_data_.end();
if (has_outdata) {
out << outdata->second.struct_name;
} else {
out << "void";
}
out << " " << namer_.NameFor(current_ep_name_) << "(";
auto in_data = ep_name_to_in_data_.find(current_ep_name_);
if (in_data != ep_name_to_in_data_.end()) {
out << in_data->second.struct_name << " " << in_data->second.var_name;
}
out << ") {" << std::endl;
increment_indent();
if (has_outdata) {
make_indent(out);
out << outdata->second.struct_name << " " << outdata->second.var_name << ";"
<< std::endl;
}
generating_entry_point_ = true;
for (const auto& s : *(func->body())) {
if (!EmitStatement(out, s.get())) {
return false;
}
}
generating_entry_point_ = false;
decrement_indent();
make_indent(out);
out << "}" << std::endl;
current_ep_name_ = "";
return true;
}
bool GeneratorImpl::EmitLiteral(std::ostream& out, ast::Literal* lit) {
if (lit->IsBool()) {
out << (lit->AsBool()->IsTrue() ? "true" : "false");
} else if (lit->IsFloat()) {
auto flags = out.flags();
auto precision = out.precision();
out.flags(flags | std::ios_base::showpoint);
out.precision(std::numeric_limits<float>::max_digits10);
out << lit->AsFloat()->value() << "f";
out.precision(precision);
out.flags(flags);
} else if (lit->IsSint()) {
out << lit->AsSint()->value();
} else if (lit->IsUint()) {
out << lit->AsUint()->value() << "u";
} else {
error_ = "unknown literal type";
return false;
}
return true;
}
bool GeneratorImpl::EmitZeroValue(std::ostream& out, ast::type::Type* type) {
if (type->IsBool()) {
out << "false";
} else if (type->IsF32()) {
out << "0.0f";
} else if (type->IsI32()) {
out << "0";
} else if (type->IsU32()) {
out << "0u";
} else if (type->IsVector()) {
return EmitZeroValue(out, type->AsVector()->type());
} else if (type->IsMatrix()) {
auto* mat = type->AsMatrix();
for (uint32_t i = 0; i < (mat->rows() * mat->columns()); i++) {
if (i != 0) {
out << ", ";
}
if (!EmitZeroValue(out, mat->type())) {
return false;
}
}
} else {
error_ = "Invalid type for zero emission: " + type->type_name();
return false;
}
return true;
}
bool GeneratorImpl::EmitLoop(std::ostream& out, ast::LoopStatement* stmt) {
loop_emission_counter_++;
std::string guard = namer_.NameFor("tint_hlsl_is_first_" +
std::to_string(loop_emission_counter_));
if (stmt->has_continuing()) {
make_indent(out);
// Continuing variables get their own scope.
out << "{" << std::endl;
increment_indent();
make_indent(out);
out << "bool " << guard << " = true;" << std::endl;
}
make_indent(out);
out << "for(;;) {" << std::endl;
increment_indent();
if (stmt->has_continuing()) {
make_indent(out);
out << "if (!" << guard << ") ";
if (!EmitBlockAndNewline(out, stmt->continuing())) {
return false;
}
make_indent(out);
out << guard << " = false;" << std::endl;
out << std::endl;
}
for (const auto& s : *(stmt->body())) {
if (!EmitStatement(out, s.get())) {
return false;
}
}
decrement_indent();
make_indent(out);
out << "}" << std::endl;
// Close the scope for any continuing variables.
if (stmt->has_continuing()) {
decrement_indent();
make_indent(out);
out << "}" << std::endl;
}
return true;
}
std::string GeneratorImpl::generate_storage_buffer_index_expression(
ast::Expression* expr) {
std::ostringstream out;
bool first = true;
for (;;) {
if (expr->IsIdentifier()) {
break;
}
if (!first) {
out << " + ";
}
first = false;
if (expr->IsMemberAccessor()) {
auto* mem = expr->AsMemberAccessor();
auto* res_type = mem->structure()->result_type()->UnwrapAliasPtrAlias();
if (res_type->IsStruct()) {
auto* str_type = res_type->AsStruct()->impl();
auto* str_member = str_type->get_member(mem->member()->name());
if (!str_member->has_offset_decoration()) {
error_ = "missing offset decoration for struct member";
return "";
}
out << str_member->offset();
} else if (res_type->IsVector()) {
// This must be a single element swizzle if we've got a vector at this
// point.
if (mem->member()->name().size() != 1) {
error_ =
"Encountered multi-element swizzle when should have only one "
"level";
return "";
}
// TODO(dsinclair): All our types are currently 4 bytes (f32, i32, u32)
// so this is assuming 4. This will need to be fixed when we get f16 or
// f64 types.
out << "(4 * " << convert_swizzle_to_index(mem->member()->name())
<< ")";
} else {
error_ =
"Invalid result type for member accessor: " + res_type->type_name();
return "";
}
expr = mem->structure();
} else if (expr->IsArrayAccessor()) {
auto* ary = expr->AsArrayAccessor();
auto* ary_type = ary->array()->result_type()->UnwrapAliasPtrAlias();
out << "(";
// TODO(dsinclair): Handle matrix case
if (ary_type->IsArray()) {
out << ary_type->AsArray()->array_stride();
} else if (ary_type->IsVector()) {
// TODO(dsinclair): This is a hack. Our vectors can only be f32, i32
// or u32 which are all 4 bytes. When we get f16 or other types we'll
// have to ask the type for the byte size.
out << "4";
} else {
error_ = "Invalid array type in storage buffer access";
return "";
}
out << " * ";
if (!EmitExpression(out, ary->idx_expr())) {
return "";
}
out << ")";
expr = ary->array();
} else {
error_ = "error emitting storage buffer access";
return "";
}
}
return out.str();
}
// TODO(dsinclair): This currently only handles loading of 4, 8, 12 or 16 byte
// members. If we need to support larger we'll need to do the loading into
// chunks.
//
// TODO(dsinclair): Need to support loading through a pointer. The pointer is
// just a memory address in the storage buffer, so need to do the correct
// calculation.
bool GeneratorImpl::EmitStorageBufferAccessor(std::ostream& out,
ast::Expression* expr,
ast::Expression* rhs) {
auto* result_type = expr->result_type()->UnwrapAliasPtrAlias();
std::string access_method = rhs != nullptr ? "Store" : "Load";
if (result_type->IsVector()) {
access_method += std::to_string(result_type->AsVector()->size());
}
// If we aren't storing then we need to put in the outer cast.
if (rhs == nullptr) {
if (result_type->is_float_scalar_or_vector()) {
out << "asfloat(";
} else if (result_type->is_signed_scalar_or_vector()) {
out << "asint(";
} else if (result_type->is_unsigned_scalar_or_vector()) {
out << "asuint(";
}
}
auto buffer_name = get_buffer_name(expr);
if (buffer_name.empty()) {
error_ = "error emitting storage buffer access";
return false;
}
out << buffer_name << "." << access_method << "(";
auto idx = generate_storage_buffer_index_expression(expr);
if (idx.empty()) {
return false;
}
out << idx;
if (rhs != nullptr) {
out << ", asuint(";
if (!EmitExpression(out, rhs)) {
return false;
}
out << ")";
}
out << ")";
// Close the outer cast.
if (rhs == nullptr) {
out << ")";
}
return true;
}
bool GeneratorImpl::is_storage_buffer_access(
ast::ArrayAccessorExpression* expr) {
// We only care about array so we can get to the next part of the expression.
// If it isn't an array or a member accessor we can stop looking as it won't
// be a storage buffer.
auto* ary = expr->array();
if (ary->IsMemberAccessor()) {
return is_storage_buffer_access(ary->AsMemberAccessor());
} else if (ary->IsArrayAccessor()) {
return is_storage_buffer_access(ary->AsArrayAccessor());
}
return false;
}
bool GeneratorImpl::is_storage_buffer_access(
ast::MemberAccessorExpression* expr) {
auto* structure = expr->structure();
auto* data_type = structure->result_type()->UnwrapAliasPtrAlias();
// If the data is a multi-element swizzle then we will not load the swizzle
// portion through the Load command.
if (data_type->IsVector() && expr->member()->name().size() > 1) {
return false;
}
// Check if this is a storage buffer variable
if (structure->IsIdentifier()) {
auto* ident = expr->structure()->AsIdentifier();
if (ident->has_path()) {
return false;
}
ast::Variable* var = nullptr;
if (!global_variables_.get(ident->name(), &var)) {
return false;
}
return var->storage_class() == ast::StorageClass::kStorageBuffer;
} else if (structure->IsMemberAccessor()) {
return is_storage_buffer_access(structure->AsMemberAccessor());
} else if (structure->IsArrayAccessor()) {
return is_storage_buffer_access(structure->AsArrayAccessor());
}
// Technically I don't think this is possible, but if we don't have a struct
// or array accessor then we can't have a storage buffer I believe.
return false;
}
bool GeneratorImpl::EmitMemberAccessor(std::ostream& out,
ast::MemberAccessorExpression* expr) {
// Look for storage buffer accesses as we have to convert them into Load
// expressions. Stores will be identified in the assignment emission and a
// member accessor store of a storage buffer will not get here.
if (is_storage_buffer_access(expr)) {
return EmitStorageBufferAccessor(out, expr, nullptr);
}
if (!EmitExpression(out, expr->structure())) {
return false;
}
out << ".";
return EmitExpression(out, expr->member());
}
bool GeneratorImpl::EmitReturn(std::ostream& out, ast::ReturnStatement* stmt) {
make_indent(out);
out << "return";
if (generating_entry_point_) {
auto outdata = ep_name_to_out_data_.find(current_ep_name_);
if (outdata != ep_name_to_out_data_.end()) {
out << " " << outdata->second.var_name;
}
} else if (stmt->has_value()) {
out << " ";
if (!EmitExpression(out, stmt->value())) {
return false;
}
}
out << ";" << std::endl;
return true;
}
bool GeneratorImpl::EmitStatement(std::ostream& out, ast::Statement* stmt) {
if (stmt->IsAssign()) {
return EmitAssign(out, stmt->AsAssign());
}
if (stmt->IsBlock()) {
return EmitIndentedBlockAndNewline(out, stmt->AsBlock());
}
if (stmt->IsBreak()) {
return EmitBreak(out, stmt->AsBreak());
}
if (stmt->IsCall()) {
make_indent(out);
if (!EmitCall(out, stmt->AsCall()->expr())) {
return false;
}
out << ";" << std::endl;
return true;
}
if (stmt->IsContinue()) {
return EmitContinue(out, stmt->AsContinue());
}
if (stmt->IsDiscard()) {
return EmitDiscard(out, stmt->AsDiscard());
}
if (stmt->IsFallthrough()) {
make_indent(out);
out << "/* fallthrough */" << std::endl;
return true;
}
if (stmt->IsIf()) {
return EmitIf(out, stmt->AsIf());
}
if (stmt->IsLoop()) {
return EmitLoop(out, stmt->AsLoop());
}
if (stmt->IsReturn()) {
return EmitReturn(out, stmt->AsReturn());
}
if (stmt->IsSwitch()) {
return EmitSwitch(out, stmt->AsSwitch());
}
if (stmt->IsVariableDecl()) {
return EmitVariable(out, stmt->AsVariableDecl()->variable());
}
error_ = "unknown statement type: " + stmt->str();
return false;
}
bool GeneratorImpl::EmitSwitch(std::ostream& out, ast::SwitchStatement* stmt) {
make_indent(out);
out << "switch(";
if (!EmitExpression(out, stmt->condition())) {
return false;
}
out << ") {" << std::endl;
increment_indent();
for (const auto& s : stmt->body()) {
if (!EmitCase(out, s.get())) {
return false;
}
}
decrement_indent();
make_indent(out);
out << "}" << std::endl;
return true;
}
bool GeneratorImpl::EmitType(std::ostream& out,
ast::type::Type* type,
const std::string& name) {
if (type->IsAlias()) {
auto* alias = type->AsAlias();
out << namer_.NameFor(alias->name());
} else if (type->IsArray()) {
auto* ary = type->AsArray();
ast::type::Type* base_type = ary;
std::vector<uint32_t> sizes;
while (base_type->IsArray()) {
if (base_type->AsArray()->IsRuntimeArray()) {
// TODO(dsinclair): Support runtime arrays
// https://bugs.chromium.org/p/tint/issues/detail?id=185
error_ = "runtime array not supported yet.";
return false;
} else {
sizes.push_back(base_type->AsArray()->size());
}
base_type = base_type->AsArray()->type();
}
if (!EmitType(out, base_type, "")) {
return false;
}
if (!name.empty()) {
out << " " << namer_.NameFor(name);
}
for (uint32_t size : sizes) {
out << "[" << size << "]";
}
} else if (type->IsBool()) {
out << "bool";
} else if (type->IsF32()) {
out << "float";
} else if (type->IsI32()) {
out << "int";
} else if (type->IsMatrix()) {
auto* mat = type->AsMatrix();
out << "matrix<";
if (!EmitType(out, mat->type(), "")) {
return false;
}
out << ", " << mat->rows() << ", " << mat->columns() << ">";
} else if (type->IsPointer()) {
// TODO(dsinclair): What do we do with pointers in HLSL?
// https://bugs.chromium.org/p/tint/issues/detail?id=183
error_ = "pointers not supported in HLSL";
return false;
} else if (type->IsStruct()) {
auto* str = type->AsStruct()->impl();
// TODO(dsinclair): Block decoration?
// if (str->decoration() != ast::StructDecoration::kNone) {
// }
out << "struct";
// If a name was provided for the struct emit it.
if (!name.empty()) {
out << " " << name;
}
out << " {" << std::endl;
increment_indent();
for (const auto& mem : str->members()) {
make_indent(out);
// TODO(dsinclair): Handle [[offset]] annotation on structs
// https://bugs.chromium.org/p/tint/issues/detail?id=184
if (!EmitType(out, mem->type(), mem->name())) {
return false;
}
// Array member name will be output with the type
if (!mem->type()->IsArray()) {
out << " " << namer_.NameFor(mem->name());
}
out << ";" << std::endl;
}
decrement_indent();
make_indent(out);
out << "}";
} else if (type->IsU32()) {
out << "uint";
} else if (type->IsVector()) {
auto* vec = type->AsVector();
out << "vector<";
if (!EmitType(out, vec->type(), "")) {
return false;
}
out << ", " << vec->size() << ">";
} else if (type->IsVoid()) {
out << "void";
} else {
error_ = "unknown type in EmitType";
return false;
}
return true;
}
bool GeneratorImpl::EmitUnaryOp(std::ostream& out,
ast::UnaryOpExpression* expr) {
switch (expr->op()) {
case ast::UnaryOp::kNot:
out << "!";
break;
case ast::UnaryOp::kNegation:
out << "-";
break;
}
out << "(";
if (!EmitExpression(out, expr->expr())) {
return false;
}
out << ")";
return true;
}
bool GeneratorImpl::EmitVariable(std::ostream& out, ast::Variable* var) {
make_indent(out);
// TODO(dsinclair): Handle variable decorations
if (var->IsDecorated()) {
error_ = "Variable decorations are not handled yet";
return false;
}
if (var->is_const()) {
out << "const ";
}
if (!EmitType(out, var->type(), var->name())) {
return false;
}
if (!var->type()->IsArray()) {
out << " " << var->name();
}
if (var->constructor() != nullptr) {
out << " = ";
if (!EmitExpression(out, var->constructor())) {
return false;
}
}
out << ";" << std::endl;
return true;
}
bool GeneratorImpl::EmitProgramConstVariable(std::ostream& out,
const ast::Variable* var) {
make_indent(out);
if (var->IsDecorated()) {
error_ = "Decorated const values not valid";
return false;
}
if (!var->is_const()) {
error_ = "Expected a const value";
return false;
}
out << "static const ";
if (!EmitType(out, var->type(), var->name())) {
return false;
}
if (!var->type()->IsArray()) {
out << " " << var->name();
}
if (var->constructor() != nullptr) {
out << " = ";
if (!EmitExpression(out, var->constructor())) {
return false;
}
}
out << ";" << std::endl;
return true;
}
} // namespace hlsl
} // namespace writer
} // namespace tint