blob: cb70b423b1dfc1f268d9013cabfa319892fd12b8 [file] [log] [blame]
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "gmock/gmock.h"
#include "src/reader/spirv/function.h"
#include "src/reader/spirv/parser_impl_test_helper.h"
#include "src/reader/spirv/spirv_tools_helpers_test.h"
namespace tint {
namespace reader {
namespace spirv {
namespace {
using ::testing::Eq;
using ::testing::HasSubstr;
/// @returns a SPIR-V assembly segment which assigns debug names
/// to particular IDs.
std::string Names(std::vector<std::string> ids) {
std::ostringstream outs;
for (auto& id : ids) {
outs << " OpName %" << id << " \"" << id << "\"\n";
}
return outs.str();
}
std::string Preamble() {
return R"(
OpCapability Shader
OpMemoryModel Logical Simple
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%bool = OpTypeBool
%float = OpTypeFloat 32
%uint = OpTypeInt 32 0
%int = OpTypeInt 32 1
%ptr_bool = OpTypePointer Function %bool
%ptr_float = OpTypePointer Function %float
%ptr_uint = OpTypePointer Function %uint
%ptr_int = OpTypePointer Function %int
%true = OpConstantTrue %bool
%false = OpConstantFalse %bool
%float_0 = OpConstant %float 0.0
%float_1p5 = OpConstant %float 1.5
%uint_0 = OpConstant %uint 0
%uint_1 = OpConstant %uint 1
%int_m1 = OpConstant %int -1
%uint_2 = OpConstant %uint 2
%uint_3 = OpConstant %uint 3
%uint_4 = OpConstant %uint 4
%uint_5 = OpConstant %uint 5
%v2float = OpTypeVector %float 2
%m3v2float = OpTypeMatrix %v2float 3
%arr2uint = OpTypeArray %uint %uint_2
%strct = OpTypeStruct %uint %float %arr2uint
)";
}
TEST_F(SpvParserTest, EmitFunctionVariables_AnonymousVars) {
auto p = parser(test::Assemble(Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpVariable %ptr_uint Function
%2 = OpVariable %ptr_uint Function
%3 = OpVariable %ptr_uint Function
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitFunctionVariables());
EXPECT_THAT(ToString(p->builder(), fe.ast_body()),
HasSubstr(R"(VariableDeclStatement{
Variable{
x_1
function
__u32
}
}
VariableDeclStatement{
Variable{
x_2
function
__u32
}
}
VariableDeclStatement{
Variable{
x_3
function
__u32
}
}
)"));
}
TEST_F(SpvParserTest, EmitFunctionVariables_NamedVars) {
auto p = parser(test::Assemble(Names({"a", "b", "c"}) + Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%a = OpVariable %ptr_uint Function
%b = OpVariable %ptr_uint Function
%c = OpVariable %ptr_uint Function
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitFunctionVariables());
EXPECT_THAT(ToString(p->builder(), fe.ast_body()),
HasSubstr(R"(VariableDeclStatement{
Variable{
a
function
__u32
}
}
VariableDeclStatement{
Variable{
b
function
__u32
}
}
VariableDeclStatement{
Variable{
c
function
__u32
}
}
)"));
}
TEST_F(SpvParserTest, EmitFunctionVariables_MixedTypes) {
auto p = parser(test::Assemble(Names({"a", "b", "c"}) + Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%a = OpVariable %ptr_uint Function
%b = OpVariable %ptr_int Function
%c = OpVariable %ptr_float Function
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitFunctionVariables());
EXPECT_THAT(ToString(p->builder(), fe.ast_body()),
HasSubstr(R"(VariableDeclStatement{
Variable{
a
function
__u32
}
}
VariableDeclStatement{
Variable{
b
function
__i32
}
}
VariableDeclStatement{
Variable{
c
function
__f32
}
}
)"));
}
TEST_F(SpvParserTest, EmitFunctionVariables_ScalarInitializers) {
auto p =
parser(test::Assemble(Names({"a", "b", "c", "d", "e"}) + Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%a = OpVariable %ptr_bool Function %true
%b = OpVariable %ptr_bool Function %false
%c = OpVariable %ptr_int Function %int_m1
%d = OpVariable %ptr_uint Function %uint_1
%e = OpVariable %ptr_float Function %float_1p5
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitFunctionVariables());
EXPECT_THAT(ToString(p->builder(), fe.ast_body()),
HasSubstr(R"(VariableDeclStatement{
Variable{
a
function
__bool
{
ScalarConstructor[not set]{true}
}
}
}
VariableDeclStatement{
Variable{
b
function
__bool
{
ScalarConstructor[not set]{false}
}
}
}
VariableDeclStatement{
Variable{
c
function
__i32
{
ScalarConstructor[not set]{-1}
}
}
}
VariableDeclStatement{
Variable{
d
function
__u32
{
ScalarConstructor[not set]{1}
}
}
}
VariableDeclStatement{
Variable{
e
function
__f32
{
ScalarConstructor[not set]{1.500000}
}
}
}
)"));
}
TEST_F(SpvParserTest, EmitFunctionVariables_ScalarNullInitializers) {
auto p = parser(test::Assemble(Names({"a", "b", "c", "d"}) + Preamble() + R"(
%null_bool = OpConstantNull %bool
%null_int = OpConstantNull %int
%null_uint = OpConstantNull %uint
%null_float = OpConstantNull %float
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%a = OpVariable %ptr_bool Function %null_bool
%b = OpVariable %ptr_int Function %null_int
%c = OpVariable %ptr_uint Function %null_uint
%d = OpVariable %ptr_float Function %null_float
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitFunctionVariables());
EXPECT_THAT(ToString(p->builder(), fe.ast_body()),
HasSubstr(R"(VariableDeclStatement{
Variable{
a
function
__bool
{
ScalarConstructor[not set]{false}
}
}
}
VariableDeclStatement{
Variable{
b
function
__i32
{
ScalarConstructor[not set]{0}
}
}
}
VariableDeclStatement{
Variable{
c
function
__u32
{
ScalarConstructor[not set]{0}
}
}
}
VariableDeclStatement{
Variable{
d
function
__f32
{
ScalarConstructor[not set]{0.000000}
}
}
}
)"));
}
TEST_F(SpvParserTest, EmitFunctionVariables_VectorInitializer) {
auto p = parser(test::Assemble(Preamble() + R"(
%ptr = OpTypePointer Function %v2float
%two = OpConstant %float 2.0
%const = OpConstantComposite %v2float %float_1p5 %two
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%200 = OpVariable %ptr Function %const
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitFunctionVariables());
EXPECT_THAT(ToString(p->builder(), fe.ast_body()),
HasSubstr(R"(VariableDeclStatement{
Variable{
x_200
function
__vec_2__f32
{
TypeConstructor[not set]{
__vec_2__f32
ScalarConstructor[not set]{1.500000}
ScalarConstructor[not set]{2.000000}
}
}
}
}
)")) << ToString(p->builder(), fe.ast_body());
}
TEST_F(SpvParserTest, EmitFunctionVariables_MatrixInitializer) {
auto p = parser(test::Assemble(Preamble() + R"(
%ptr = OpTypePointer Function %m3v2float
%two = OpConstant %float 2.0
%three = OpConstant %float 3.0
%four = OpConstant %float 4.0
%v0 = OpConstantComposite %v2float %float_1p5 %two
%v1 = OpConstantComposite %v2float %two %three
%v2 = OpConstantComposite %v2float %three %four
%const = OpConstantComposite %m3v2float %v0 %v1 %v2
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%200 = OpVariable %ptr Function %const
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitFunctionVariables());
EXPECT_THAT(ToString(p->builder(), fe.ast_body()),
HasSubstr(R"(VariableDeclStatement{
Variable{
x_200
function
__mat_2_3__f32
{
TypeConstructor[not set]{
__mat_2_3__f32
TypeConstructor[not set]{
__vec_2__f32
ScalarConstructor[not set]{1.500000}
ScalarConstructor[not set]{2.000000}
}
TypeConstructor[not set]{
__vec_2__f32
ScalarConstructor[not set]{2.000000}
ScalarConstructor[not set]{3.000000}
}
TypeConstructor[not set]{
__vec_2__f32
ScalarConstructor[not set]{3.000000}
ScalarConstructor[not set]{4.000000}
}
}
}
}
}
)"));
}
TEST_F(SpvParserTest, EmitFunctionVariables_ArrayInitializer) {
auto p = parser(test::Assemble(Preamble() + R"(
%ptr = OpTypePointer Function %arr2uint
%two = OpConstant %uint 2
%const = OpConstantComposite %arr2uint %uint_1 %two
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%200 = OpVariable %ptr Function %const
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitFunctionVariables());
EXPECT_THAT(ToString(p->builder(), fe.ast_body()),
HasSubstr(R"(VariableDeclStatement{
Variable{
x_200
function
__array__u32_2
{
TypeConstructor[not set]{
__array__u32_2
ScalarConstructor[not set]{1}
ScalarConstructor[not set]{2}
}
}
}
}
)")) << ToString(p->builder(), fe.ast_body());
}
TEST_F(SpvParserTest, EmitFunctionVariables_ArrayInitializer_Alias) {
auto p = parser(test::Assemble(
std::string("OpDecorate %arr2uint ArrayStride 16\n") + Preamble() + R"(
%ptr = OpTypePointer Function %arr2uint
%two = OpConstant %uint 2
%const = OpConstantComposite %arr2uint %uint_1 %two
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%200 = OpVariable %ptr Function %const
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitFunctionVariables());
auto got = ToString(p->builder(), fe.ast_body());
const char* expect = R"(VariableDeclStatement{
Variable{
x_200
function
__alias_Arr__array__u32_2_stride_16
{
TypeConstructor[not set]{
__alias_Arr__array__u32_2_stride_16
ScalarConstructor[not set]{1}
ScalarConstructor[not set]{2}
}
}
}
}
)";
EXPECT_EQ(expect, got);
}
TEST_F(SpvParserTest, EmitFunctionVariables_ArrayInitializer_Null) {
auto p = parser(test::Assemble(Preamble() + R"(
%ptr = OpTypePointer Function %arr2uint
%two = OpConstant %uint 2
%const = OpConstantNull %arr2uint
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%200 = OpVariable %ptr Function %const
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitFunctionVariables());
EXPECT_THAT(ToString(p->builder(), fe.ast_body()),
HasSubstr(R"(VariableDeclStatement{
Variable{
x_200
function
__array__u32_2
{
TypeConstructor[not set]{
__array__u32_2
ScalarConstructor[not set]{0}
ScalarConstructor[not set]{0}
}
}
}
}
)")) << ToString(p->builder(), fe.ast_body());
}
TEST_F(SpvParserTest, EmitFunctionVariables_ArrayInitializer_Alias_Null) {
auto p = parser(test::Assemble(
std::string("OpDecorate %arr2uint ArrayStride 16\n") + Preamble() + R"(
%ptr = OpTypePointer Function %arr2uint
%two = OpConstant %uint 2
%const = OpConstantNull %arr2uint
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%200 = OpVariable %ptr Function %const
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitFunctionVariables());
EXPECT_THAT(ToString(p->builder(), fe.ast_body()),
HasSubstr(R"(VariableDeclStatement{
Variable{
x_200
function
__alias_Arr__array__u32_2_stride_16
{
TypeConstructor[not set]{
__alias_Arr__array__u32_2_stride_16
ScalarConstructor[not set]{0}
ScalarConstructor[not set]{0}
}
}
}
}
)")) << ToString(p->builder(), fe.ast_body());
}
TEST_F(SpvParserTest, EmitFunctionVariables_StructInitializer) {
auto p = parser(test::Assemble(Preamble() + R"(
%ptr = OpTypePointer Function %strct
%two = OpConstant %uint 2
%arrconst = OpConstantComposite %arr2uint %uint_1 %two
%const = OpConstantComposite %strct %uint_1 %float_1p5 %arrconst
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%200 = OpVariable %ptr Function %const
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitFunctionVariables());
EXPECT_THAT(ToString(p->builder(), fe.ast_body()),
HasSubstr(R"(VariableDeclStatement{
Variable{
x_200
function
__struct_S
{
TypeConstructor[not set]{
__struct_S
ScalarConstructor[not set]{1}
ScalarConstructor[not set]{1.500000}
TypeConstructor[not set]{
__array__u32_2
ScalarConstructor[not set]{1}
ScalarConstructor[not set]{2}
}
}
}
}
}
)")) << ToString(p->builder(), fe.ast_body());
}
TEST_F(SpvParserTest, EmitFunctionVariables_StructInitializer_Null) {
auto p = parser(test::Assemble(Preamble() + R"(
%ptr = OpTypePointer Function %strct
%two = OpConstant %uint 2
%arrconst = OpConstantComposite %arr2uint %uint_1 %two
%const = OpConstantNull %strct
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%200 = OpVariable %ptr Function %const
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitFunctionVariables());
EXPECT_THAT(ToString(p->builder(), fe.ast_body()),
HasSubstr(R"(VariableDeclStatement{
Variable{
x_200
function
__struct_S
{
TypeConstructor[not set]{
__struct_S
ScalarConstructor[not set]{0}
ScalarConstructor[not set]{0.000000}
TypeConstructor[not set]{
__array__u32_2
ScalarConstructor[not set]{0}
ScalarConstructor[not set]{0}
}
}
}
}
}
)")) << ToString(p->builder(), fe.ast_body());
}
TEST_F(SpvParserTest,
EmitStatement_CombinatorialValue_Defer_UsedOnceSameConstruct) {
auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
%25 = OpVariable %ptr_uint Function
%2 = OpIAdd %uint %uint_1 %uint_1
OpStore %25 %uint_1 ; Do initial store to mark source location
OpBranch %20
%20 = OpLabel
OpStore %25 %2 ; defer emission of the addition until here.
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto got = ToString(p->builder(), fe.ast_body());
auto* expect =
R"(VariableDeclStatement{
Variable{
x_25
function
__u32
}
}
Assignment{
Identifier[not set]{x_25}
ScalarConstructor[not set]{1}
}
Assignment{
Identifier[not set]{x_25}
Binary[not set]{
ScalarConstructor[not set]{1}
add
ScalarConstructor[not set]{1}
}
}
Return{}
)";
EXPECT_EQ(expect, got);
}
TEST_F(SpvParserTest, EmitStatement_CombinatorialValue_Immediate_UsedTwice) {
auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
%25 = OpVariable %ptr_uint Function
%2 = OpIAdd %uint %uint_1 %uint_1
OpStore %25 %uint_1 ; Do initial store to mark source location
OpBranch %20
%20 = OpLabel
OpStore %25 %2
OpStore %25 %2
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto got = ToString(p->builder(), fe.ast_body());
auto* expect = R"(VariableDeclStatement{
Variable{
x_25
function
__u32
}
}
VariableDeclStatement{
VariableConst{
x_2
none
__u32
{
Binary[not set]{
ScalarConstructor[not set]{1}
add
ScalarConstructor[not set]{1}
}
}
}
}
Assignment{
Identifier[not set]{x_25}
ScalarConstructor[not set]{1}
}
Assignment{
Identifier[not set]{x_25}
Identifier[not set]{x_2}
}
Assignment{
Identifier[not set]{x_25}
Identifier[not set]{x_2}
}
Return{}
)";
EXPECT_EQ(expect, got);
}
TEST_F(SpvParserTest,
EmitStatement_CombinatorialValue_Immediate_UsedOnceDifferentConstruct) {
// Translation should not sink expensive operations into or out of control
// flow. As a simple heuristic, don't move *any* combinatorial operation
// across any control flow.
auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
%25 = OpVariable %ptr_uint Function
%2 = OpIAdd %uint %uint_1 %uint_1
OpStore %25 %uint_1 ; Do initial store to mark source location
OpBranch %20
%20 = OpLabel ; Introduce a new construct
OpLoopMerge %99 %80 None
OpBranch %80
%80 = OpLabel
OpStore %25 %2 ; store combinatorial value %2, inside the loop
OpBranch %20
%99 = OpLabel ; merge block
OpStore %25 %uint_2
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto got = ToString(p->builder(), fe.ast_body());
auto* expect = R"(VariableDeclStatement{
Variable{
x_25
function
__u32
}
}
VariableDeclStatement{
VariableConst{
x_2
none
__u32
{
Binary[not set]{
ScalarConstructor[not set]{1}
add
ScalarConstructor[not set]{1}
}
}
}
}
Assignment{
Identifier[not set]{x_25}
ScalarConstructor[not set]{1}
}
Loop{
continuing {
Assignment{
Identifier[not set]{x_25}
Identifier[not set]{x_2}
}
}
}
Assignment{
Identifier[not set]{x_25}
ScalarConstructor[not set]{2}
}
Return{}
)";
EXPECT_EQ(expect, got);
}
TEST_F(
SpvParserTest,
EmitStatement_CombinatorialNonPointer_DefConstruct_DoesNotEncloseAllUses) {
// Compensate for the difference between dominance and scoping.
// Exercise hoisting of the constant definition to before its natural
// location.
//
// The definition of %2 should be hoisted
auto assembly = Preamble() + R"(
%pty = OpTypePointer Private %uint
%1 = OpVariable %pty Private
%100 = OpFunction %void None %voidfn
%3 = OpLabel
OpStore %1 %uint_0
OpBranch %5
%5 = OpLabel
OpStore %1 %uint_1
OpLoopMerge %99 %80 None
OpBranchConditional %false %99 %20
%20 = OpLabel
OpStore %1 %uint_3
OpSelectionMerge %50 None
OpBranchConditional %true %30 %40
%30 = OpLabel
; This combinatorial definition in nested control flow dominates
; the use in the merge block in %50
%2 = OpIAdd %uint %uint_1 %uint_1
OpBranch %50
%40 = OpLabel
OpReturn
%50 = OpLabel ; merge block for if-selection
OpStore %1 %2
OpBranch %80
%80 = OpLabel ; merge block
OpStore %1 %uint_4
OpBranchConditional %false %99 %5 ; loop backedge
%99 = OpLabel
OpStore %1 %uint_5
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto got = ToString(p->builder(), fe.ast_body());
auto* expect = R"(Assignment{
Identifier[not set]{x_1}
ScalarConstructor[not set]{0}
}
Loop{
VariableDeclStatement{
Variable{
x_2
function
__u32
}
}
Assignment{
Identifier[not set]{x_1}
ScalarConstructor[not set]{1}
}
If{
(
ScalarConstructor[not set]{false}
)
{
Break{}
}
}
Assignment{
Identifier[not set]{x_1}
ScalarConstructor[not set]{3}
}
If{
(
ScalarConstructor[not set]{true}
)
{
Assignment{
Identifier[not set]{x_2}
Binary[not set]{
ScalarConstructor[not set]{1}
add
ScalarConstructor[not set]{1}
}
}
}
}
Else{
{
Return{}
}
}
Assignment{
Identifier[not set]{x_1}
Identifier[not set]{x_2}
}
continuing {
Assignment{
Identifier[not set]{x_1}
ScalarConstructor[not set]{4}
}
If{
(
ScalarConstructor[not set]{false}
)
{
Break{}
}
}
}
}
Assignment{
Identifier[not set]{x_1}
ScalarConstructor[not set]{5}
}
Return{}
)";
EXPECT_EQ(expect, got);
}
TEST_F(
SpvParserTest,
EmitStatement_CombinatorialNonPointer_Hoisting_DefFirstBlockIf_InFunction) {
// This is a hoisting case, where the definition is in the first block
// of an if selection construct. In this case the definition should count
// as being in the parent (enclosing) construct.
//
// The definition of %1 is in an IfSelection construct and also the enclosing
// Function construct, both of which start at block %10. For the purpose of
// determining the construct containing %10, go to the parent construct of
// the IfSelection.
auto assembly = Preamble() + R"(
%pty = OpTypePointer Private %uint
%200 = OpVariable %pty Private
%cond = OpConstantTrue %bool
%100 = OpFunction %void None %voidfn
; in IfSelection construct, nested in Function construct
%10 = OpLabel
%1 = OpCopyObject %uint %uint_1
OpSelectionMerge %99 None
OpBranchConditional %cond %20 %99
%20 = OpLabel ; in IfSelection construct
OpBranch %99
%99 = OpLabel
%3 = OpCopyObject %uint %1; in Function construct
OpStore %200 %3
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitBody()) << p->error();
// We don't hoist x_1 into its own mutable variable. It is emitted as
// a const definition.
auto got = ToString(p->builder(), fe.ast_body());
auto* expect = R"(VariableDeclStatement{
VariableConst{
x_1
none
__u32
{
ScalarConstructor[not set]{1}
}
}
}
If{
(
ScalarConstructor[not set]{true}
)
{
}
}
VariableDeclStatement{
VariableConst{
x_3
none
__u32
{
Identifier[not set]{x_1}
}
}
}
Assignment{
Identifier[not set]{x_200}
Identifier[not set]{x_3}
}
Return{}
)";
EXPECT_EQ(expect, got);
}
TEST_F(SpvParserTest,
EmitStatement_CombinatorialNonPointer_Hoisting_DefFirstBlockIf_InIf) {
// This is like the previous case, but the IfSelection is nested inside
// another IfSelection.
// This tests that the hoisting algorithm goes to only one parent of
// the definining if-selection block, and doesn't jump all the way out
// to the Function construct that encloses everything.
//
// We should not hoist %1 because its definition should count as being
// in the outer IfSelection, not the inner IfSelection.
auto assembly = Preamble() + R"(
%pty = OpTypePointer Private %uint
%200 = OpVariable %pty Private
%cond = OpConstantTrue %bool
%100 = OpFunction %void None %voidfn
; outer IfSelection
%10 = OpLabel
OpSelectionMerge %99 None
OpBranchConditional %cond %20 %99
; inner IfSelection
%20 = OpLabel
%1 = OpCopyObject %uint %uint_1
OpSelectionMerge %89 None
OpBranchConditional %cond %30 %89
%30 = OpLabel ; last block of inner IfSelection
OpBranch %89
; in outer IfSelection
%89 = OpLabel
%3 = OpCopyObject %uint %1; Last use of %1, in outer IfSelection
OpStore %200 %3
OpBranch %99
%99 = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto got = ToString(p->builder(), fe.ast_body());
auto* expect = R"(If{
(
ScalarConstructor[not set]{true}
)
{
VariableDeclStatement{
VariableConst{
x_1
none
__u32
{
ScalarConstructor[not set]{1}
}
}
}
If{
(
ScalarConstructor[not set]{true}
)
{
}
}
VariableDeclStatement{
VariableConst{
x_3
none
__u32
{
Identifier[not set]{x_1}
}
}
}
Assignment{
Identifier[not set]{x_200}
Identifier[not set]{x_3}
}
}
}
Return{}
)";
EXPECT_EQ(expect, got);
}
TEST_F(
SpvParserTest,
EmitStatement_CombinatorialNonPointer_Hoisting_DefFirstBlockSwitch_InIf) {
// This is like the previous case, but the definition is in a SwitchSelection
// inside another IfSelection.
// Tests that definitions in the first block of a switch count as being
// in the parent of the switch construct.
auto assembly = Preamble() + R"(
%pty = OpTypePointer Private %uint
%200 = OpVariable %pty Private
%cond = OpConstantTrue %bool
%100 = OpFunction %void None %voidfn
; outer IfSelection
%10 = OpLabel
OpSelectionMerge %99 None
OpBranchConditional %cond %20 %99
; inner SwitchSelection
%20 = OpLabel
%1 = OpCopyObject %uint %uint_1
OpSelectionMerge %89 None
OpSwitch %uint_1 %89 0 %30
%30 = OpLabel ; last block of inner SwitchSelection
OpBranch %89
; in outer IfSelection
%89 = OpLabel
%3 = OpCopyObject %uint %1; Last use of %1, in outer IfSelection
OpStore %200 %3
OpBranch %99
%99 = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto got = ToString(p->builder(), fe.ast_body());
auto* expect = R"(If{
(
ScalarConstructor[not set]{true}
)
{
VariableDeclStatement{
VariableConst{
x_1
none
__u32
{
ScalarConstructor[not set]{1}
}
}
}
Switch{
ScalarConstructor[not set]{1}
{
Case 0{
}
Default{
}
}
}
VariableDeclStatement{
VariableConst{
x_3
none
__u32
{
Identifier[not set]{x_1}
}
}
}
Assignment{
Identifier[not set]{x_200}
Identifier[not set]{x_3}
}
}
}
Return{}
)";
EXPECT_EQ(expect, got);
}
TEST_F(SpvParserTest,
EmitStatement_CombinatorialNonPointer_Hoisting_DefAndUseFirstBlockIf) {
// In this test, both the defintion and the use are in the first block
// of an IfSelection. No hoisting occurs because hoisting is triggered
// on whether the defining construct contains the last use, rather than
// whether the two constructs are the same.
//
// This example has two SSA IDs which are tempting to hoist but should not:
// %1 is defined and used in the first block of an IfSelection.
// Do not hoist it.
auto assembly = Preamble() + R"(
%cond = OpConstantTrue %bool
%100 = OpFunction %void None %voidfn
; in IfSelection construct, nested in Function construct
%10 = OpLabel
%1 = OpCopyObject %uint %uint_1
%2 = OpCopyObject %uint %1
OpSelectionMerge %99 None
OpBranchConditional %cond %20 %99
%20 = OpLabel ; in IfSelection construct
OpBranch %99
%99 = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitBody()) << p->error();
// We don't hoist x_1 into its own mutable variable. It is emitted as
// a const definition.
auto got = ToString(p->builder(), fe.ast_body());
auto* expect = R"(VariableDeclStatement{
VariableConst{
x_1
none
__u32
{
ScalarConstructor[not set]{1}
}
}
}
VariableDeclStatement{
VariableConst{
x_2
none
__u32
{
Identifier[not set]{x_1}
}
}
}
If{
(
ScalarConstructor[not set]{true}
)
{
}
}
Return{}
)";
EXPECT_EQ(expect, got);
}
TEST_F(SpvParserTest, EmitStatement_Phi_SingleBlockLoopIndex) {
auto assembly = Preamble() + R"(
%pty = OpTypePointer Private %uint
%1 = OpVariable %pty Private
%boolpty = OpTypePointer Private %bool
%7 = OpVariable %boolpty Private
%8 = OpVariable %boolpty Private
%100 = OpFunction %void None %voidfn
%5 = OpLabel
OpBranch %10
; Use an outer loop to show we put the new variable in the
; smallest enclosing scope.
%10 = OpLabel
%101 = OpLoad %bool %7
%102 = OpLoad %bool %8
OpLoopMerge %99 %89 None
OpBranchConditional %101 %99 %20
%20 = OpLabel
%2 = OpPhi %uint %uint_0 %10 %4 %20 ; gets computed value
%3 = OpPhi %uint %uint_1 %10 %3 %20 ; gets itself
%4 = OpIAdd %uint %2 %uint_1
OpLoopMerge %89 %20 None
OpBranchConditional %102 %89 %20
%89 = OpLabel
OpBranch %10
%99 = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto got = ToString(p->builder(), fe.ast_body());
auto* expect = R"(Loop{
VariableDeclStatement{
Variable{
x_2_phi
function
__u32
}
}
VariableDeclStatement{
Variable{
x_3_phi
function
__u32
}
}
VariableDeclStatement{
VariableConst{
x_101
none
__bool
{
Identifier[not set]{x_7}
}
}
}
VariableDeclStatement{
VariableConst{
x_102
none
__bool
{
Identifier[not set]{x_8}
}
}
}
Assignment{
Identifier[not set]{x_2_phi}
ScalarConstructor[not set]{0}
}
Assignment{
Identifier[not set]{x_3_phi}
ScalarConstructor[not set]{1}
}
If{
(
Identifier[not set]{x_101}
)
{
Break{}
}
}
Loop{
VariableDeclStatement{
VariableConst{
x_2
none
__u32
{
Identifier[not set]{x_2_phi}
}
}
}
VariableDeclStatement{
VariableConst{
x_3
none
__u32
{
Identifier[not set]{x_3_phi}
}
}
}
Assignment{
Identifier[not set]{x_2_phi}
Binary[not set]{
Identifier[not set]{x_2}
add
ScalarConstructor[not set]{1}
}
}
Assignment{
Identifier[not set]{x_3_phi}
Identifier[not set]{x_3}
}
If{
(
Identifier[not set]{x_102}
)
{
Break{}
}
}
}
}
Return{}
)";
EXPECT_EQ(expect, got);
}
TEST_F(SpvParserTest, EmitStatement_Phi_MultiBlockLoopIndex) {
auto assembly = Preamble() + R"(
%pty = OpTypePointer Private %uint
%1 = OpVariable %pty Private
%boolpty = OpTypePointer Private %bool
%7 = OpVariable %boolpty Private
%8 = OpVariable %boolpty Private
%100 = OpFunction %void None %voidfn
%5 = OpLabel
OpBranch %10
; Use an outer loop to show we put the new variable in the
; smallest enclosing scope.
%10 = OpLabel
%101 = OpLoad %bool %7
%102 = OpLoad %bool %8
OpLoopMerge %99 %89 None
OpBranchConditional %101 %99 %20
%20 = OpLabel
%2 = OpPhi %uint %uint_0 %10 %4 %30 ; gets computed value
%3 = OpPhi %uint %uint_1 %10 %3 %30 ; gets itself
OpLoopMerge %89 %30 None
OpBranchConditional %102 %89 %30
%30 = OpLabel
%4 = OpIAdd %uint %2 %uint_1
OpBranch %20
%89 = OpLabel
OpBranch %10
%99 = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto got = ToString(p->builder(), fe.ast_body());
auto* expect = R"(Loop{
VariableDeclStatement{
Variable{
x_2_phi
function
__u32
}
}
VariableDeclStatement{
Variable{
x_3_phi
function
__u32
}
}
VariableDeclStatement{
VariableConst{
x_101
none
__bool
{
Identifier[not set]{x_7}
}
}
}
VariableDeclStatement{
VariableConst{
x_102
none
__bool
{
Identifier[not set]{x_8}
}
}
}
Assignment{
Identifier[not set]{x_2_phi}
ScalarConstructor[not set]{0}
}
Assignment{
Identifier[not set]{x_3_phi}
ScalarConstructor[not set]{1}
}
If{
(
Identifier[not set]{x_101}
)
{
Break{}
}
}
Loop{
VariableDeclStatement{
Variable{
x_4
function
__u32
}
}
VariableDeclStatement{
VariableConst{
x_2
none
__u32
{
Identifier[not set]{x_2_phi}
}
}
}
VariableDeclStatement{
VariableConst{
x_3
none
__u32
{
Identifier[not set]{x_3_phi}
}
}
}
If{
(
Identifier[not set]{x_102}
)
{
Break{}
}
}
continuing {
Assignment{
Identifier[not set]{x_4}
Binary[not set]{
Identifier[not set]{x_2}
add
ScalarConstructor[not set]{1}
}
}
Assignment{
Identifier[not set]{x_2_phi}
Identifier[not set]{x_4}
}
Assignment{
Identifier[not set]{x_3_phi}
Identifier[not set]{x_3}
}
}
}
}
Return{}
)";
EXPECT_EQ(expect, got);
}
TEST_F(SpvParserTest, EmitStatement_Phi_ValueFromLoopBodyAndContinuing) {
auto assembly = Preamble() + R"(
%pty = OpTypePointer Private %uint
%1 = OpVariable %pty Private
%boolpty = OpTypePointer Private %bool
%17 = OpVariable %boolpty Private
%100 = OpFunction %void None %voidfn
%9 = OpLabel
%101 = OpLoad %bool %17
OpBranch %10
; Use an outer loop to show we put the new variable in the
; smallest enclosing scope.
%10 = OpLabel
OpLoopMerge %99 %89 None
OpBranch %20
%20 = OpLabel
%2 = OpPhi %uint %uint_0 %10 %4 %30 ; gets computed value
%5 = OpPhi %uint %uint_1 %10 %7 %30
%4 = OpIAdd %uint %2 %uint_1 ; define %4
%6 = OpIAdd %uint %4 %uint_1 ; use %4
OpLoopMerge %89 %30 None
OpBranchConditional %101 %89 %30
%30 = OpLabel
%7 = OpIAdd %uint %4 %6 ; use %4 again
OpBranch %20
%89 = OpLabel
OpBranch %10
%99 = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions())
<< assembly << p->error();
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto got = ToString(p->builder(), fe.ast_body());
auto* expect = R"(VariableDeclStatement{
VariableConst{
x_101
none
__bool
{
Identifier[not set]{x_17}
}
}
}
Loop{
VariableDeclStatement{
Variable{
x_2_phi
function
__u32
}
}
VariableDeclStatement{
Variable{
x_5_phi
function
__u32
}
}
Assignment{
Identifier[not set]{x_2_phi}
ScalarConstructor[not set]{0}
}
Assignment{
Identifier[not set]{x_5_phi}
ScalarConstructor[not set]{1}
}
Loop{
VariableDeclStatement{
Variable{
x_7
function
__u32
}
}
VariableDeclStatement{
VariableConst{
x_2
none
__u32
{
Identifier[not set]{x_2_phi}
}
}
}
VariableDeclStatement{
VariableConst{
x_5
none
__u32
{
Identifier[not set]{x_5_phi}
}
}
}
VariableDeclStatement{
VariableConst{
x_4
none
__u32
{
Binary[not set]{
Identifier[not set]{x_2}
add
ScalarConstructor[not set]{1}
}
}
}
}
VariableDeclStatement{
VariableConst{
x_6
none
__u32
{
Binary[not set]{
Identifier[not set]{x_4}
add
ScalarConstructor[not set]{1}
}
}
}
}
If{
(
Identifier[not set]{x_101}
)
{
Break{}
}
}
continuing {
Assignment{
Identifier[not set]{x_7}
Binary[not set]{
Identifier[not set]{x_4}
add
Identifier[not set]{x_6}
}
}
Assignment{
Identifier[not set]{x_2_phi}
Identifier[not set]{x_4}
}
Assignment{
Identifier[not set]{x_5_phi}
Identifier[not set]{x_7}
}
}
}
}
Return{}
)";
EXPECT_EQ(expect, got);
}
TEST_F(SpvParserTest, EmitStatement_Phi_FromElseAndThen) {
auto assembly = Preamble() + R"(
%pty = OpTypePointer Private %uint
%1 = OpVariable %pty Private
%boolpty = OpTypePointer Private %bool
%7 = OpVariable %boolpty Private
%8 = OpVariable %boolpty Private
%100 = OpFunction %void None %voidfn
%5 = OpLabel
%101 = OpLoad %bool %7
%102 = OpLoad %bool %8
OpBranch %10
; Use an outer loop to show we put the new variable in the
; smallest enclosing scope.
%10 = OpLabel
OpLoopMerge %99 %89 None
OpBranchConditional %101 %99 %20
%20 = OpLabel ; if seleciton
OpSelectionMerge %89 None
OpBranchConditional %102 %30 %40
%30 = OpLabel
OpBranch %89
%40 = OpLabel
OpBranch %89
%89 = OpLabel
%2 = OpPhi %uint %uint_0 %30 %uint_1 %40
OpStore %1 %2
OpBranch %10
%99 = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto got = ToString(p->builder(), fe.ast_body());
auto* expect = R"(VariableDeclStatement{
VariableConst{
x_101
none
__bool
{
Identifier[not set]{x_7}
}
}
}
VariableDeclStatement{
VariableConst{
x_102
none
__bool
{
Identifier[not set]{x_8}
}
}
}
Loop{
VariableDeclStatement{
Variable{
x_2_phi
function
__u32
}
}
If{
(
Identifier[not set]{x_101}
)
{
Break{}
}
}
If{
(
Identifier[not set]{x_102}
)
{
Assignment{
Identifier[not set]{x_2_phi}
ScalarConstructor[not set]{0}
}
Continue{}
}
}
Else{
{
Assignment{
Identifier[not set]{x_2_phi}
ScalarConstructor[not set]{1}
}
}
}
continuing {
VariableDeclStatement{
VariableConst{
x_2
none
__u32
{
Identifier[not set]{x_2_phi}
}
}
}
Assignment{
Identifier[not set]{x_1}
Identifier[not set]{x_2}
}
}
}
Return{}
)";
EXPECT_EQ(expect, got) << got;
}
TEST_F(SpvParserTest, EmitStatement_Phi_FromHeaderAndThen) {
auto assembly = Preamble() + R"(
%pty = OpTypePointer Private %uint
%1 = OpVariable %pty Private
%boolpty = OpTypePointer Private %bool
%7 = OpVariable %boolpty Private
%8 = OpVariable %boolpty Private
%100 = OpFunction %void None %voidfn
%5 = OpLabel
%101 = OpLoad %bool %7
%102 = OpLoad %bool %8
OpBranch %10
; Use an outer loop to show we put the new variable in the
; smallest enclosing scope.
%10 = OpLabel
OpLoopMerge %99 %89 None
OpBranchConditional %101 %99 %20
%20 = OpLabel ; if seleciton
OpSelectionMerge %89 None
OpBranchConditional %102 %30 %89
%30 = OpLabel
OpBranch %89
%89 = OpLabel
%2 = OpPhi %uint %uint_0 %20 %uint_1 %30
OpStore %1 %2
OpBranch %10
%99 = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto got = ToString(p->builder(), fe.ast_body());
auto* expect = R"(VariableDeclStatement{
VariableConst{
x_101
none
__bool
{
Identifier[not set]{x_7}
}
}
}
VariableDeclStatement{
VariableConst{
x_102
none
__bool
{
Identifier[not set]{x_8}
}
}
}
Loop{
VariableDeclStatement{
Variable{
x_2_phi
function
__u32
}
}
If{
(
Identifier[not set]{x_101}
)
{
Break{}
}
}
Assignment{
Identifier[not set]{x_2_phi}
ScalarConstructor[not set]{0}
}
If{
(
Identifier[not set]{x_102}
)
{
Assignment{
Identifier[not set]{x_2_phi}
ScalarConstructor[not set]{1}
}
}
}
Else{
{
Continue{}
}
}
continuing {
VariableDeclStatement{
VariableConst{
x_2
none
__u32
{
Identifier[not set]{x_2_phi}
}
}
}
Assignment{
Identifier[not set]{x_1}
Identifier[not set]{x_2}
}
}
}
Return{}
)";
EXPECT_EQ(expect, got) << got;
}
TEST_F(SpvParserTest,
EmitStatement_Phi_InMerge_PredecessorsDominatdByNestedSwitchCase) {
// This is the essence of the bug report from crbug.com/tint/495
auto assembly = Preamble() + R"(
%cond = OpConstantTrue %bool
%pty = OpTypePointer Private %uint
%1 = OpVariable %pty Private
%boolpty = OpTypePointer Private %bool
%7 = OpVariable %boolpty Private
%8 = OpVariable %boolpty Private
%100 = OpFunction %void None %voidfn
%10 = OpLabel
OpSelectionMerge %99 None
OpSwitch %uint_1 %20 0 %20 1 %30
%20 = OpLabel ; case 0
OpBranch %30 ;; fall through
%30 = OpLabel ; case 1
OpSelectionMerge %50 None
OpBranchConditional %true %40 %45
%40 = OpLabel
OpBranch %50
%45 = OpLabel
OpBranch %99 ; break
%50 = OpLabel ; end the case
OpBranch %99
%99 = OpLabel
; predecessors are all dominated by case construct head at %30
%phi = OpPhi %uint %uint_0 %45 %uint_1 %50
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto got = ToString(p->builder(), fe.ast_body());
auto* expect = R"(VariableDeclStatement{
Variable{
x_35_phi
function
__u32
}
}
Switch{
ScalarConstructor[not set]{1}
{
Default{
Fallthrough{}
}
Case 0{
Fallthrough{}
}
Case 1{
If{
(
ScalarConstructor[not set]{true}
)
{
}
}
Else{
{
Assignment{
Identifier[not set]{x_35_phi}
ScalarConstructor[not set]{0}
}
Break{}
}
}
Assignment{
Identifier[not set]{x_35_phi}
ScalarConstructor[not set]{1}
}
}
}
}
VariableDeclStatement{
VariableConst{
x_35
none
__u32
{
Identifier[not set]{x_35_phi}
}
}
}
Return{}
)";
EXPECT_EQ(expect, got) << got << assembly;
}
TEST_F(SpvParserTest, EmitStatement_UseInPhiCountsAsUse) {
// From crbug.com/215
// If the only use of a combinatorially computed ID is as the value
// in an OpPhi, then we still have to emit it. The algorithm fix
// is to always count uses in Phis.
// This is the reduced case from the bug report.
//
// The only use of %12 is in the phi.
// The only use of %11 is in %12.
// Both definintions need to be emitted to the output.
auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
%11 = OpLogicalAnd %bool %true %true
%12 = OpLogicalNot %bool %11 ;
OpSelectionMerge %99 None
OpBranchConditional %true %20 %99
%20 = OpLabel
OpBranch %99
%99 = OpLabel
%101 = OpPhi %bool %11 %10 %12 %20
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto got = ToString(p->builder(), fe.ast_body());
auto* expect = R"(VariableDeclStatement{
Variable{
x_101_phi
function
__bool
}
}
VariableDeclStatement{
VariableConst{
x_11
none
__bool
{
Binary[not set]{
ScalarConstructor[not set]{true}
logical_and
ScalarConstructor[not set]{true}
}
}
}
}
VariableDeclStatement{
VariableConst{
x_12
none
__bool
{
UnaryOp[not set]{
not
Identifier[not set]{x_11}
}
}
}
}
Assignment{
Identifier[not set]{x_101_phi}
Identifier[not set]{x_11}
}
If{
(
ScalarConstructor[not set]{true}
)
{
Assignment{
Identifier[not set]{x_101_phi}
Identifier[not set]{x_12}
}
}
}
VariableDeclStatement{
VariableConst{
x_101
none
__bool
{
Identifier[not set]{x_101_phi}
}
}
}
Return{}
)";
EXPECT_EQ(expect, got);
}
} // namespace
} // namespace spirv
} // namespace reader
} // namespace tint