| // Copyright 2020 The Tint Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "src/reader/spirv/function.h" |
| |
| #include <algorithm> |
| #include <array> |
| |
| #include "src/ast/assignment_statement.h" |
| #include "src/ast/bitcast_expression.h" |
| #include "src/ast/break_statement.h" |
| #include "src/ast/builtin.h" |
| #include "src/ast/builtin_decoration.h" |
| #include "src/ast/call_statement.h" |
| #include "src/ast/continue_statement.h" |
| #include "src/ast/discard_statement.h" |
| #include "src/ast/fallthrough_statement.h" |
| #include "src/ast/if_statement.h" |
| #include "src/ast/loop_statement.h" |
| #include "src/ast/return_statement.h" |
| #include "src/ast/stage_decoration.h" |
| #include "src/ast/switch_statement.h" |
| #include "src/ast/unary_op_expression.h" |
| #include "src/ast/variable_decl_statement.h" |
| #include "src/sem/depth_texture_type.h" |
| #include "src/sem/intrinsic_type.h" |
| #include "src/sem/sampled_texture_type.h" |
| |
| // Terms: |
| // CFG: the control flow graph of the function, where basic blocks are the |
| // nodes, and branches form the directed arcs. The function entry block is |
| // the root of the CFG. |
| // |
| // Suppose H is a header block (i.e. has an OpSelectionMerge or OpLoopMerge). |
| // Then: |
| // - Let M(H) be the merge block named by the merge instruction in H. |
| // - If H is a loop header, i.e. has an OpLoopMerge instruction, then let |
| // CT(H) be the continue target block named by the OpLoopMerge |
| // instruction. |
| // - If H is a selection construct whose header ends in |
| // OpBranchConditional with true target %then and false target %else, |
| // then TT(H) = %then and FT(H) = %else |
| // |
| // Determining output block order: |
| // The "structured post-order traversal" of the CFG is a post-order traversal |
| // of the basic blocks in the CFG, where: |
| // We visit the entry node of the function first. |
| // When visiting a header block: |
| // We next visit its merge block |
| // Then if it's a loop header, we next visit the continue target, |
| // Then we visit the block's successors (whether it's a header or not) |
| // If the block ends in an OpBranchConditional, we visit the false target |
| // before the true target. |
| // |
| // The "reverse structured post-order traversal" of the CFG is the reverse |
| // of the structured post-order traversal. |
| // This is the order of basic blocks as they should be emitted to the WGSL |
| // function. It is the order computed by ComputeBlockOrder, and stored in |
| // the |FunctionEmiter::block_order_|. |
| // Blocks not in this ordering are ignored by the rest of the algorithm. |
| // |
| // Note: |
| // - A block D in the function might not appear in this order because |
| // no block in the order branches to D. |
| // - An unreachable block D might still be in the order because some header |
| // block in the order names D as its continue target, or merge block, |
| // or D is reachable from one of those otherwise-unreachable continue |
| // targets or merge blocks. |
| // |
| // Terms: |
| // Let Pos(B) be the index position of a block B in the computed block order. |
| // |
| // CFG intervals and valid nesting: |
| // |
| // A correctly structured CFG satisfies nesting rules that we can check by |
| // comparing positions of related blocks. |
| // |
| // If header block H is in the block order, then the following holds: |
| // |
| // Pos(H) < Pos(M(H)) |
| // |
| // If CT(H) exists, then: |
| // |
| // Pos(H) <= Pos(CT(H)) |
| // Pos(CT(H)) < Pos(M) |
| // |
| // This gives us the fundamental ordering of blocks in relation to a |
| // structured construct: |
| // The blocks before H in the block order, are not in the construct |
| // The blocks at M(H) or later in the block order, are not in the construct |
| // The blocks in a selection headed at H are in positions [ Pos(H), |
| // Pos(M(H)) ) The blocks in a loop construct headed at H are in positions |
| // [ Pos(H), Pos(CT(H)) ) The blocks in the continue construct for loop |
| // headed at H are in |
| // positions [ Pos(CT(H)), Pos(M(H)) ) |
| // |
| // Schematically, for a selection construct headed by H, the blocks are in |
| // order from left to right: |
| // |
| // ...a-b-c H d-e-f M(H) n-o-p... |
| // |
| // where ...a-b-c: blocks before the selection construct |
| // where H and d-e-f: blocks in the selection construct |
| // where M(H) and n-o-p...: blocks after the selection construct |
| // |
| // Schematically, for a loop construct headed by H that is its own |
| // continue construct, the blocks in order from left to right: |
| // |
| // ...a-b-c H=CT(H) d-e-f M(H) n-o-p... |
| // |
| // where ...a-b-c: blocks before the loop |
| // where H is the continue construct; CT(H)=H, and the loop construct |
| // is *empty* |
| // where d-e-f... are other blocks in the continue construct |
| // where M(H) and n-o-p...: blocks after the continue construct |
| // |
| // Schematically, for a multi-block loop construct headed by H, there are |
| // blocks in order from left to right: |
| // |
| // ...a-b-c H d-e-f CT(H) j-k-l M(H) n-o-p... |
| // |
| // where ...a-b-c: blocks before the loop |
| // where H and d-e-f: blocks in the loop construct |
| // where CT(H) and j-k-l: blocks in the continue construct |
| // where M(H) and n-o-p...: blocks after the loop and continue |
| // constructs |
| // |
| |
| namespace tint { |
| namespace reader { |
| namespace spirv { |
| |
| namespace { |
| |
| constexpr uint32_t kMaxVectorLen = 4; |
| |
| // Gets the AST unary opcode for the given SPIR-V opcode, if any |
| // @param opcode SPIR-V opcode |
| // @param ast_unary_op return parameter |
| // @returns true if it was a unary operation |
| bool GetUnaryOp(SpvOp opcode, ast::UnaryOp* ast_unary_op) { |
| switch (opcode) { |
| case SpvOpSNegate: |
| case SpvOpFNegate: |
| *ast_unary_op = ast::UnaryOp::kNegation; |
| return true; |
| case SpvOpLogicalNot: |
| *ast_unary_op = ast::UnaryOp::kNot; |
| return true; |
| case SpvOpNot: |
| *ast_unary_op = ast::UnaryOp::kComplement; |
| return true; |
| default: |
| break; |
| } |
| return false; |
| } |
| |
| /// Converts a SPIR-V opcode for a WGSL builtin function, if there is a |
| /// direct translation. Returns nullptr otherwise. |
| /// @returns the WGSL builtin function name for the given opcode, or nullptr. |
| const char* GetUnaryBuiltInFunctionName(SpvOp opcode) { |
| switch (opcode) { |
| case SpvOpAny: |
| return "any"; |
| case SpvOpAll: |
| return "all"; |
| case SpvOpIsNan: |
| return "isNan"; |
| case SpvOpIsInf: |
| return "isInf"; |
| case SpvOpTranspose: |
| return "transpose"; |
| default: |
| break; |
| } |
| return nullptr; |
| } |
| |
| // Converts a SPIR-V opcode to its corresponding AST binary opcode, if any |
| // @param opcode SPIR-V opcode |
| // @returns the AST binary op for the given opcode, or kNone |
| ast::BinaryOp ConvertBinaryOp(SpvOp opcode) { |
| switch (opcode) { |
| case SpvOpIAdd: |
| case SpvOpFAdd: |
| return ast::BinaryOp::kAdd; |
| case SpvOpISub: |
| case SpvOpFSub: |
| return ast::BinaryOp::kSubtract; |
| case SpvOpIMul: |
| case SpvOpFMul: |
| case SpvOpVectorTimesScalar: |
| case SpvOpMatrixTimesScalar: |
| case SpvOpVectorTimesMatrix: |
| case SpvOpMatrixTimesVector: |
| case SpvOpMatrixTimesMatrix: |
| return ast::BinaryOp::kMultiply; |
| case SpvOpUDiv: |
| case SpvOpSDiv: |
| case SpvOpFDiv: |
| return ast::BinaryOp::kDivide; |
| case SpvOpUMod: |
| case SpvOpSMod: |
| case SpvOpFRem: |
| return ast::BinaryOp::kModulo; |
| case SpvOpLogicalEqual: |
| case SpvOpIEqual: |
| case SpvOpFOrdEqual: |
| return ast::BinaryOp::kEqual; |
| case SpvOpLogicalNotEqual: |
| case SpvOpINotEqual: |
| case SpvOpFOrdNotEqual: |
| return ast::BinaryOp::kNotEqual; |
| case SpvOpBitwiseAnd: |
| return ast::BinaryOp::kAnd; |
| case SpvOpBitwiseOr: |
| return ast::BinaryOp::kOr; |
| case SpvOpBitwiseXor: |
| return ast::BinaryOp::kXor; |
| case SpvOpLogicalAnd: |
| return ast::BinaryOp::kAnd; |
| case SpvOpLogicalOr: |
| return ast::BinaryOp::kOr; |
| case SpvOpUGreaterThan: |
| case SpvOpSGreaterThan: |
| case SpvOpFOrdGreaterThan: |
| return ast::BinaryOp::kGreaterThan; |
| case SpvOpUGreaterThanEqual: |
| case SpvOpSGreaterThanEqual: |
| case SpvOpFOrdGreaterThanEqual: |
| return ast::BinaryOp::kGreaterThanEqual; |
| case SpvOpULessThan: |
| case SpvOpSLessThan: |
| case SpvOpFOrdLessThan: |
| return ast::BinaryOp::kLessThan; |
| case SpvOpULessThanEqual: |
| case SpvOpSLessThanEqual: |
| case SpvOpFOrdLessThanEqual: |
| return ast::BinaryOp::kLessThanEqual; |
| default: |
| break; |
| } |
| // It's not clear what OpSMod should map to. |
| // https://bugs.chromium.org/p/tint/issues/detail?id=52 |
| return ast::BinaryOp::kNone; |
| } |
| |
| // If the given SPIR-V opcode is a floating point unordered comparison, |
| // then returns the binary float comparison for which it is the negation. |
| // Othewrise returns BinaryOp::kNone. |
| // @param opcode SPIR-V opcode |
| // @returns operation corresponding to negated version of the SPIR-V opcode |
| ast::BinaryOp NegatedFloatCompare(SpvOp opcode) { |
| switch (opcode) { |
| case SpvOpFUnordEqual: |
| return ast::BinaryOp::kNotEqual; |
| case SpvOpFUnordNotEqual: |
| return ast::BinaryOp::kEqual; |
| case SpvOpFUnordLessThan: |
| return ast::BinaryOp::kGreaterThanEqual; |
| case SpvOpFUnordLessThanEqual: |
| return ast::BinaryOp::kGreaterThan; |
| case SpvOpFUnordGreaterThan: |
| return ast::BinaryOp::kLessThanEqual; |
| case SpvOpFUnordGreaterThanEqual: |
| return ast::BinaryOp::kLessThan; |
| default: |
| break; |
| } |
| return ast::BinaryOp::kNone; |
| } |
| |
| // Returns the WGSL standard library function for the given |
| // GLSL.std.450 extended instruction operation code. Unknown |
| // and invalid opcodes map to the empty string. |
| // @returns the WGSL standard function name, or an empty string. |
| std::string GetGlslStd450FuncName(uint32_t ext_opcode) { |
| switch (ext_opcode) { |
| case GLSLstd450FAbs: |
| case GLSLstd450SAbs: |
| return "abs"; |
| case GLSLstd450Acos: |
| return "acos"; |
| case GLSLstd450Asin: |
| return "asin"; |
| case GLSLstd450Atan: |
| return "atan"; |
| case GLSLstd450Atan2: |
| return "atan2"; |
| case GLSLstd450Ceil: |
| return "ceil"; |
| case GLSLstd450UClamp: |
| case GLSLstd450SClamp: |
| case GLSLstd450NClamp: |
| case GLSLstd450FClamp: // FClamp is less prescriptive about NaN operands |
| return "clamp"; |
| case GLSLstd450Cos: |
| return "cos"; |
| case GLSLstd450Cosh: |
| return "cosh"; |
| case GLSLstd450Cross: |
| return "cross"; |
| case GLSLstd450Degrees: |
| return "degrees"; |
| case GLSLstd450Distance: |
| return "distance"; |
| case GLSLstd450Exp: |
| return "exp"; |
| case GLSLstd450Exp2: |
| return "exp2"; |
| case GLSLstd450FaceForward: |
| return "faceForward"; |
| case GLSLstd450Floor: |
| return "floor"; |
| case GLSLstd450Fma: |
| return "fma"; |
| case GLSLstd450Fract: |
| return "fract"; |
| case GLSLstd450InverseSqrt: |
| return "inverseSqrt"; |
| case GLSLstd450Ldexp: |
| return "ldexp"; |
| case GLSLstd450Length: |
| return "length"; |
| case GLSLstd450Log: |
| return "log"; |
| case GLSLstd450Log2: |
| return "log2"; |
| case GLSLstd450NMax: |
| case GLSLstd450FMax: // FMax is less prescriptive about NaN operands |
| case GLSLstd450UMax: |
| case GLSLstd450SMax: |
| return "max"; |
| case GLSLstd450NMin: |
| case GLSLstd450FMin: // FMin is less prescriptive about NaN operands |
| case GLSLstd450UMin: |
| case GLSLstd450SMin: |
| return "min"; |
| case GLSLstd450FMix: |
| return "mix"; |
| case GLSLstd450Normalize: |
| return "normalize"; |
| case GLSLstd450PackSnorm4x8: |
| return "pack4x8snorm"; |
| case GLSLstd450PackUnorm4x8: |
| return "pack4x8unorm"; |
| case GLSLstd450PackSnorm2x16: |
| return "pack2x16snorm"; |
| case GLSLstd450PackUnorm2x16: |
| return "pack2x16unorm"; |
| case GLSLstd450PackHalf2x16: |
| return "pack2x16float"; |
| case GLSLstd450Pow: |
| return "pow"; |
| case GLSLstd450FSign: |
| return "sign"; |
| case GLSLstd450Radians: |
| return "radians"; |
| case GLSLstd450Reflect: |
| return "reflect"; |
| case GLSLstd450Refract: |
| return "refract"; |
| case GLSLstd450Round: |
| case GLSLstd450RoundEven: |
| return "round"; |
| case GLSLstd450Sin: |
| return "sin"; |
| case GLSLstd450Sinh: |
| return "sinh"; |
| case GLSLstd450SmoothStep: |
| return "smoothStep"; |
| case GLSLstd450Sqrt: |
| return "sqrt"; |
| case GLSLstd450Step: |
| return "step"; |
| case GLSLstd450Tan: |
| return "tan"; |
| case GLSLstd450Tanh: |
| return "tanh"; |
| case GLSLstd450Trunc: |
| return "trunc"; |
| case GLSLstd450UnpackSnorm4x8: |
| return "unpack4x8snorm"; |
| case GLSLstd450UnpackUnorm4x8: |
| return "unpack4x8unorm"; |
| case GLSLstd450UnpackSnorm2x16: |
| return "unpack2x16snorm"; |
| case GLSLstd450UnpackUnorm2x16: |
| return "unpack2x16unorm"; |
| case GLSLstd450UnpackHalf2x16: |
| return "unpack2x16float"; |
| |
| default: |
| // TODO(dneto) - The following are not implemented. |
| // They are grouped semantically, as in GLSL.std.450.h. |
| |
| case GLSLstd450SSign: |
| |
| case GLSLstd450Asinh: |
| case GLSLstd450Acosh: |
| case GLSLstd450Atanh: |
| |
| case GLSLstd450Determinant: |
| case GLSLstd450MatrixInverse: |
| |
| case GLSLstd450Modf: |
| case GLSLstd450ModfStruct: |
| case GLSLstd450IMix: |
| |
| case GLSLstd450Frexp: |
| case GLSLstd450FrexpStruct: |
| |
| case GLSLstd450PackDouble2x32: |
| case GLSLstd450UnpackDouble2x32: |
| |
| case GLSLstd450FindILsb: |
| case GLSLstd450FindSMsb: |
| case GLSLstd450FindUMsb: |
| |
| case GLSLstd450InterpolateAtCentroid: |
| case GLSLstd450InterpolateAtSample: |
| case GLSLstd450InterpolateAtOffset: |
| break; |
| } |
| return ""; |
| } |
| |
| // Returns the WGSL standard library function intrinsic for the |
| // given instruction, or sem::IntrinsicType::kNone |
| sem::IntrinsicType GetIntrinsic(SpvOp opcode) { |
| switch (opcode) { |
| case SpvOpBitCount: |
| return sem::IntrinsicType::kCountOneBits; |
| case SpvOpBitReverse: |
| return sem::IntrinsicType::kReverseBits; |
| case SpvOpDot: |
| return sem::IntrinsicType::kDot; |
| case SpvOpDPdx: |
| return sem::IntrinsicType::kDpdx; |
| case SpvOpDPdy: |
| return sem::IntrinsicType::kDpdy; |
| case SpvOpFwidth: |
| return sem::IntrinsicType::kFwidth; |
| case SpvOpDPdxFine: |
| return sem::IntrinsicType::kDpdxFine; |
| case SpvOpDPdyFine: |
| return sem::IntrinsicType::kDpdyFine; |
| case SpvOpFwidthFine: |
| return sem::IntrinsicType::kFwidthFine; |
| case SpvOpDPdxCoarse: |
| return sem::IntrinsicType::kDpdxCoarse; |
| case SpvOpDPdyCoarse: |
| return sem::IntrinsicType::kDpdyCoarse; |
| case SpvOpFwidthCoarse: |
| return sem::IntrinsicType::kFwidthCoarse; |
| default: |
| break; |
| } |
| return sem::IntrinsicType::kNone; |
| } |
| |
| // @param opcode a SPIR-V opcode |
| // @returns true if the given instruction is an image access instruction |
| // whose first input operand is an OpSampledImage value. |
| bool IsSampledImageAccess(SpvOp opcode) { |
| switch (opcode) { |
| case SpvOpImageSampleImplicitLod: |
| case SpvOpImageSampleExplicitLod: |
| case SpvOpImageSampleDrefImplicitLod: |
| case SpvOpImageSampleDrefExplicitLod: |
| // WGSL doesn't have *Proj* texturing; spirv reader emulates it. |
| case SpvOpImageSampleProjImplicitLod: |
| case SpvOpImageSampleProjExplicitLod: |
| case SpvOpImageSampleProjDrefImplicitLod: |
| case SpvOpImageSampleProjDrefExplicitLod: |
| case SpvOpImageGather: |
| case SpvOpImageDrefGather: |
| case SpvOpImageQueryLod: |
| return true; |
| default: |
| break; |
| } |
| return false; |
| } |
| |
| // @param opcode a SPIR-V opcode |
| // @returns true if the given instruction is an image sampling, gather, |
| // or gather-compare operation. |
| bool IsImageSamplingOrGatherOrDrefGather(SpvOp opcode) { |
| switch (opcode) { |
| case SpvOpImageSampleImplicitLod: |
| case SpvOpImageSampleExplicitLod: |
| case SpvOpImageSampleDrefImplicitLod: |
| case SpvOpImageSampleDrefExplicitLod: |
| // WGSL doesn't have *Proj* texturing; spirv reader emulates it. |
| case SpvOpImageSampleProjImplicitLod: |
| case SpvOpImageSampleProjExplicitLod: |
| case SpvOpImageSampleProjDrefImplicitLod: |
| case SpvOpImageSampleProjDrefExplicitLod: |
| case SpvOpImageGather: |
| case SpvOpImageDrefGather: |
| return true; |
| default: |
| break; |
| } |
| return false; |
| } |
| |
| // @param opcode a SPIR-V opcode |
| // @returns true if the given instruction is an image access instruction |
| // whose first input operand is an OpImage value. |
| bool IsRawImageAccess(SpvOp opcode) { |
| switch (opcode) { |
| case SpvOpImageRead: |
| case SpvOpImageWrite: |
| case SpvOpImageFetch: |
| return true; |
| default: |
| break; |
| } |
| return false; |
| } |
| |
| // @param opcode a SPIR-V opcode |
| // @returns true if the given instruction is an image query instruction |
| bool IsImageQuery(SpvOp opcode) { |
| switch (opcode) { |
| case SpvOpImageQuerySize: |
| case SpvOpImageQuerySizeLod: |
| case SpvOpImageQueryLevels: |
| case SpvOpImageQuerySamples: |
| case SpvOpImageQueryLod: |
| return true; |
| default: |
| break; |
| } |
| return false; |
| } |
| |
| // @returns the merge block ID for the given basic block, or 0 if there is none. |
| uint32_t MergeFor(const spvtools::opt::BasicBlock& bb) { |
| // Get the OpSelectionMerge or OpLoopMerge instruction, if any. |
| auto* inst = bb.GetMergeInst(); |
| return inst == nullptr ? 0 : inst->GetSingleWordInOperand(0); |
| } |
| |
| // @returns the continue target ID for the given basic block, or 0 if there |
| // is none. |
| uint32_t ContinueTargetFor(const spvtools::opt::BasicBlock& bb) { |
| // Get the OpLoopMerge instruction, if any. |
| auto* inst = bb.GetLoopMergeInst(); |
| return inst == nullptr ? 0 : inst->GetSingleWordInOperand(1); |
| } |
| |
| // A structured traverser produces the reverse structured post-order of the |
| // CFG of a function. The blocks traversed are the transitive closure (minimum |
| // fixed point) of: |
| // - the entry block |
| // - a block reached by a branch from another block in the set |
| // - a block mentioned as a merge block or continue target for a block in the |
| // set |
| class StructuredTraverser { |
| public: |
| explicit StructuredTraverser(const spvtools::opt::Function& function) |
| : function_(function) { |
| for (auto& block : function_) { |
| id_to_block_[block.id()] = █ |
| } |
| } |
| |
| // Returns the reverse postorder traversal of the CFG, where: |
| // - a merge block always follows its associated constructs |
| // - a continue target always follows the associated loop construct, if any |
| // @returns the IDs of blocks in reverse structured post order |
| std::vector<uint32_t> ReverseStructuredPostOrder() { |
| visit_order_.clear(); |
| visited_.clear(); |
| VisitBackward(function_.entry()->id()); |
| |
| std::vector<uint32_t> order(visit_order_.rbegin(), visit_order_.rend()); |
| return order; |
| } |
| |
| private: |
| // Executes a depth first search of the CFG, where right after we visit a |
| // header, we will visit its merge block, then its continue target (if any). |
| // Also records the post order ordering. |
| void VisitBackward(uint32_t id) { |
| if (id == 0) |
| return; |
| if (visited_.count(id)) |
| return; |
| visited_.insert(id); |
| |
| const spvtools::opt::BasicBlock* bb = |
| id_to_block_[id]; // non-null for valid modules |
| VisitBackward(MergeFor(*bb)); |
| VisitBackward(ContinueTargetFor(*bb)); |
| |
| // Visit successors. We will naturally skip the continue target and merge |
| // blocks. |
| auto* terminator = bb->terminator(); |
| auto opcode = terminator->opcode(); |
| if (opcode == SpvOpBranchConditional) { |
| // Visit the false branch, then the true branch, to make them come |
| // out in the natural order for an "if". |
| VisitBackward(terminator->GetSingleWordInOperand(2)); |
| VisitBackward(terminator->GetSingleWordInOperand(1)); |
| } else if (opcode == SpvOpBranch) { |
| VisitBackward(terminator->GetSingleWordInOperand(0)); |
| } else if (opcode == SpvOpSwitch) { |
| // TODO(dneto): Consider visiting the labels in literal-value order. |
| std::vector<uint32_t> successors; |
| bb->ForEachSuccessorLabel([&successors](const uint32_t succ_id) { |
| successors.push_back(succ_id); |
| }); |
| for (auto succ_id : successors) { |
| VisitBackward(succ_id); |
| } |
| } |
| |
| visit_order_.push_back(id); |
| } |
| |
| const spvtools::opt::Function& function_; |
| std::unordered_map<uint32_t, const spvtools::opt::BasicBlock*> id_to_block_; |
| std::vector<uint32_t> visit_order_; |
| std::unordered_set<uint32_t> visited_; |
| }; |
| |
| /// A StatementBuilder for ast::SwitchStatement |
| /// @see StatementBuilder |
| struct SwitchStatementBuilder |
| : public Castable<SwitchStatementBuilder, StatementBuilder> { |
| /// Constructor |
| /// @param cond the switch statement condition |
| explicit SwitchStatementBuilder(const ast::Expression* cond) |
| : condition(cond) {} |
| |
| /// @param builder the program builder |
| /// @returns the built ast::SwitchStatement |
| const ast::SwitchStatement* Build(ProgramBuilder* builder) const override { |
| // We've listed cases in reverse order in the switch statement. |
| // Reorder them to match the presentation order in WGSL. |
| auto reversed_cases = cases; |
| std::reverse(reversed_cases.begin(), reversed_cases.end()); |
| |
| return builder->create<ast::SwitchStatement>(Source{}, condition, |
| reversed_cases); |
| } |
| |
| /// Switch statement condition |
| const ast::Expression* const condition; |
| /// Switch statement cases |
| ast::CaseStatementList cases; |
| }; |
| |
| /// A StatementBuilder for ast::IfStatement |
| /// @see StatementBuilder |
| struct IfStatementBuilder |
| : public Castable<IfStatementBuilder, StatementBuilder> { |
| /// Constructor |
| /// @param c the if-statement condition |
| explicit IfStatementBuilder(const ast::Expression* c) : cond(c) {} |
| |
| /// @param builder the program builder |
| /// @returns the built ast::IfStatement |
| const ast::IfStatement* Build(ProgramBuilder* builder) const override { |
| return builder->create<ast::IfStatement>(Source{}, cond, body, else_stmts); |
| } |
| |
| /// If-statement condition |
| const ast::Expression* const cond; |
| /// If-statement block body |
| const ast::BlockStatement* body = nullptr; |
| /// Optional if-statement else statements |
| ast::ElseStatementList else_stmts; |
| }; |
| |
| /// A StatementBuilder for ast::LoopStatement |
| /// @see StatementBuilder |
| struct LoopStatementBuilder |
| : public Castable<LoopStatementBuilder, StatementBuilder> { |
| /// @param builder the program builder |
| /// @returns the built ast::LoopStatement |
| ast::LoopStatement* Build(ProgramBuilder* builder) const override { |
| return builder->create<ast::LoopStatement>(Source{}, body, continuing); |
| } |
| |
| /// Loop-statement block body |
| const ast::BlockStatement* body = nullptr; |
| /// Loop-statement continuing body |
| /// @note the mutable keyword here is required as all non-StatementBuilders |
| /// `ast::Node`s are immutable and are referenced with `const` pointers. |
| /// StatementBuilders however exist to provide mutable state while the |
| /// FunctionEmitter is building the function. All StatementBuilders are |
| /// replaced with immutable AST nodes when Finalize() is called. |
| mutable const ast::BlockStatement* continuing = nullptr; |
| }; |
| |
| /// @param decos a list of parsed decorations |
| /// @returns true if the decorations include a SampleMask builtin |
| bool HasBuiltinSampleMask(const ast::DecorationList& decos) { |
| if (auto* builtin = ast::GetDecoration<ast::BuiltinDecoration>(decos)) { |
| return builtin->builtin == ast::Builtin::kSampleMask; |
| } |
| return false; |
| } |
| |
| } // namespace |
| |
| BlockInfo::BlockInfo(const spvtools::opt::BasicBlock& bb) |
| : basic_block(&bb), id(bb.id()) {} |
| |
| BlockInfo::~BlockInfo() = default; |
| |
| DefInfo::DefInfo(const spvtools::opt::Instruction& def_inst, |
| uint32_t the_block_pos, |
| size_t the_index) |
| : inst(def_inst), block_pos(the_block_pos), index(the_index) {} |
| |
| DefInfo::~DefInfo() = default; |
| |
| ast::Node* StatementBuilder::Clone(CloneContext*) const { |
| return nullptr; |
| } |
| |
| FunctionEmitter::FunctionEmitter(ParserImpl* pi, |
| const spvtools::opt::Function& function, |
| const EntryPointInfo* ep_info) |
| : parser_impl_(*pi), |
| ty_(pi->type_manager()), |
| builder_(pi->builder()), |
| ir_context_(*(pi->ir_context())), |
| def_use_mgr_(ir_context_.get_def_use_mgr()), |
| constant_mgr_(ir_context_.get_constant_mgr()), |
| type_mgr_(ir_context_.get_type_mgr()), |
| fail_stream_(pi->fail_stream()), |
| namer_(pi->namer()), |
| function_(function), |
| sample_mask_in_id(0u), |
| sample_mask_out_id(0u), |
| ep_info_(ep_info) { |
| PushNewStatementBlock(nullptr, 0, nullptr); |
| } |
| |
| FunctionEmitter::FunctionEmitter(ParserImpl* pi, |
| const spvtools::opt::Function& function) |
| : FunctionEmitter(pi, function, nullptr) {} |
| |
| FunctionEmitter::FunctionEmitter(FunctionEmitter&& other) |
| : parser_impl_(other.parser_impl_), |
| ty_(other.ty_), |
| builder_(other.builder_), |
| ir_context_(other.ir_context_), |
| def_use_mgr_(ir_context_.get_def_use_mgr()), |
| constant_mgr_(ir_context_.get_constant_mgr()), |
| type_mgr_(ir_context_.get_type_mgr()), |
| fail_stream_(other.fail_stream_), |
| namer_(other.namer_), |
| function_(other.function_), |
| sample_mask_in_id(other.sample_mask_out_id), |
| sample_mask_out_id(other.sample_mask_in_id), |
| ep_info_(other.ep_info_) { |
| other.statements_stack_.clear(); |
| PushNewStatementBlock(nullptr, 0, nullptr); |
| } |
| |
| FunctionEmitter::~FunctionEmitter() = default; |
| |
| FunctionEmitter::StatementBlock::StatementBlock( |
| const Construct* construct, |
| uint32_t end_id, |
| FunctionEmitter::CompletionAction completion_action) |
| : construct_(construct), |
| end_id_(end_id), |
| completion_action_(completion_action) {} |
| |
| FunctionEmitter::StatementBlock::StatementBlock(StatementBlock&& other) = |
| default; |
| |
| FunctionEmitter::StatementBlock::~StatementBlock() = default; |
| |
| void FunctionEmitter::StatementBlock::Finalize(ProgramBuilder* pb) { |
| TINT_ASSERT(Reader, !finalized_ /* Finalize() must only be called once */); |
| |
| for (size_t i = 0; i < statements_.size(); i++) { |
| if (auto* sb = statements_[i]->As<StatementBuilder>()) { |
| statements_[i] = sb->Build(pb); |
| } |
| } |
| |
| if (completion_action_ != nullptr) { |
| completion_action_(statements_); |
| } |
| |
| finalized_ = true; |
| } |
| |
| void FunctionEmitter::StatementBlock::Add(const ast::Statement* statement) { |
| TINT_ASSERT(Reader, |
| !finalized_ /* Add() must not be called after Finalize() */); |
| statements_.emplace_back(statement); |
| } |
| |
| void FunctionEmitter::PushNewStatementBlock(const Construct* construct, |
| uint32_t end_id, |
| CompletionAction action) { |
| statements_stack_.emplace_back(StatementBlock{construct, end_id, action}); |
| } |
| |
| void FunctionEmitter::PushGuard(const std::string& guard_name, |
| uint32_t end_id) { |
| TINT_ASSERT(Reader, !statements_stack_.empty()); |
| TINT_ASSERT(Reader, !guard_name.empty()); |
| // Guard control flow by the guard variable. Introduce a new |
| // if-selection with a then-clause ending at the same block |
| // as the statement block at the top of the stack. |
| const auto& top = statements_stack_.back(); |
| |
| auto* cond = create<ast::IdentifierExpression>( |
| Source{}, builder_.Symbols().Register(guard_name)); |
| auto* builder = AddStatementBuilder<IfStatementBuilder>(cond); |
| |
| PushNewStatementBlock( |
| top.GetConstruct(), end_id, [=](const ast::StatementList& stmts) { |
| builder->body = create<ast::BlockStatement>(Source{}, stmts); |
| }); |
| } |
| |
| void FunctionEmitter::PushTrueGuard(uint32_t end_id) { |
| TINT_ASSERT(Reader, !statements_stack_.empty()); |
| const auto& top = statements_stack_.back(); |
| |
| auto* cond = MakeTrue(Source{}); |
| auto* builder = AddStatementBuilder<IfStatementBuilder>(cond); |
| |
| PushNewStatementBlock( |
| top.GetConstruct(), end_id, [=](const ast::StatementList& stmts) { |
| builder->body = create<ast::BlockStatement>(Source{}, stmts); |
| }); |
| } |
| |
| const ast::StatementList FunctionEmitter::ast_body() { |
| TINT_ASSERT(Reader, !statements_stack_.empty()); |
| auto& entry = statements_stack_[0]; |
| entry.Finalize(&builder_); |
| return entry.GetStatements(); |
| } |
| |
| const ast::Statement* FunctionEmitter::AddStatement( |
| const ast::Statement* statement) { |
| TINT_ASSERT(Reader, !statements_stack_.empty()); |
| if (statement != nullptr) { |
| statements_stack_.back().Add(statement); |
| } |
| return statement; |
| } |
| |
| const ast::Statement* FunctionEmitter::LastStatement() { |
| TINT_ASSERT(Reader, !statements_stack_.empty()); |
| auto& statement_list = statements_stack_.back().GetStatements(); |
| TINT_ASSERT(Reader, !statement_list.empty()); |
| return statement_list.back(); |
| } |
| |
| bool FunctionEmitter::Emit() { |
| if (failed()) { |
| return false; |
| } |
| // We only care about functions with bodies. |
| if (function_.cbegin() == function_.cend()) { |
| return true; |
| } |
| |
| // The function declaration, corresponding to how it's written in SPIR-V, |
| // and without regard to whether it's an entry point. |
| FunctionDeclaration decl; |
| if (!ParseFunctionDeclaration(&decl)) { |
| return false; |
| } |
| |
| bool make_body_function = true; |
| if (ep_info_) { |
| TINT_ASSERT(Reader, !ep_info_->inner_name.empty()); |
| if (ep_info_->owns_inner_implementation) { |
| // This is an entry point, and we want to emit it as a wrapper around |
| // an implementation function. |
| decl.name = ep_info_->inner_name; |
| } else { |
| // This is a second entry point that shares an inner implementation |
| // function. |
| make_body_function = false; |
| } |
| } |
| |
| if (make_body_function) { |
| auto* body = MakeFunctionBody(); |
| if (!body) { |
| return false; |
| } |
| |
| builder_.AST().AddFunction(create<ast::Function>( |
| decl.source, builder_.Symbols().Register(decl.name), |
| std::move(decl.params), decl.return_type->Build(builder_), body, |
| std::move(decl.decorations), ast::DecorationList{})); |
| } |
| |
| if (ep_info_ && !ep_info_->inner_name.empty()) { |
| return EmitEntryPointAsWrapper(); |
| } |
| |
| return success(); |
| } |
| |
| const ast::BlockStatement* FunctionEmitter::MakeFunctionBody() { |
| TINT_ASSERT(Reader, statements_stack_.size() == 1); |
| |
| if (!EmitBody()) { |
| return nullptr; |
| } |
| |
| // Set the body of the AST function node. |
| if (statements_stack_.size() != 1) { |
| Fail() << "internal error: statement-list stack should have 1 " |
| "element but has " |
| << statements_stack_.size(); |
| return nullptr; |
| } |
| |
| statements_stack_[0].Finalize(&builder_); |
| auto& statements = statements_stack_[0].GetStatements(); |
| auto* body = create<ast::BlockStatement>(Source{}, statements); |
| |
| // Maintain the invariant by repopulating the one and only element. |
| statements_stack_.clear(); |
| PushNewStatementBlock(constructs_[0].get(), 0, nullptr); |
| |
| return body; |
| } |
| |
| bool FunctionEmitter::EmitPipelineInput(std::string var_name, |
| const Type* var_type, |
| ast::DecorationList* decos, |
| std::vector<int> index_prefix, |
| const Type* tip_type, |
| const Type* forced_param_type, |
| ast::VariableList* params, |
| ast::StatementList* statements) { |
| // TODO(dneto): Handle structs where the locations are annotated on members. |
| tip_type = tip_type->UnwrapAlias(); |
| if (auto* ref_type = tip_type->As<Reference>()) { |
| tip_type = ref_type->type; |
| } |
| |
| // Recursively flatten matrices, arrays, and structures. |
| if (auto* matrix_type = tip_type->As<Matrix>()) { |
| index_prefix.push_back(0); |
| const auto num_columns = static_cast<int>(matrix_type->columns); |
| const Type* vec_ty = ty_.Vector(matrix_type->type, matrix_type->rows); |
| for (int col = 0; col < num_columns; col++) { |
| index_prefix.back() = col; |
| if (!EmitPipelineInput(var_name, var_type, decos, index_prefix, vec_ty, |
| forced_param_type, params, statements)) { |
| return false; |
| } |
| } |
| return success(); |
| } else if (auto* array_type = tip_type->As<Array>()) { |
| if (array_type->size == 0) { |
| return Fail() << "runtime-size array not allowed on pipeline IO"; |
| } |
| index_prefix.push_back(0); |
| const Type* elem_ty = array_type->type; |
| for (int i = 0; i < static_cast<int>(array_type->size); i++) { |
| index_prefix.back() = i; |
| if (!EmitPipelineInput(var_name, var_type, decos, index_prefix, elem_ty, |
| forced_param_type, params, statements)) { |
| return false; |
| } |
| } |
| return success(); |
| } else if (auto* struct_type = tip_type->As<Struct>()) { |
| const auto& members = struct_type->members; |
| index_prefix.push_back(0); |
| for (int i = 0; i < static_cast<int>(members.size()); ++i) { |
| index_prefix.back() = i; |
| ast::DecorationList member_decos(*decos); |
| if (!parser_impl_.ConvertPipelineDecorations( |
| struct_type, |
| parser_impl_.GetMemberPipelineDecorations(*struct_type, i), |
| &member_decos)) { |
| return false; |
| } |
| if (!EmitPipelineInput(var_name, var_type, &member_decos, index_prefix, |
| members[i], forced_param_type, params, |
| statements)) { |
| return false; |
| } |
| // Copy the location as updated by nested expansion of the member. |
| parser_impl_.SetLocation(decos, GetLocation(member_decos)); |
| } |
| return success(); |
| } |
| |
| const bool is_builtin = ast::HasDecoration<ast::BuiltinDecoration>(*decos); |
| |
| const Type* param_type = is_builtin ? forced_param_type : tip_type; |
| |
| const auto param_name = namer_.MakeDerivedName(var_name + "_param"); |
| // Create the parameter. |
| // TODO(dneto): Note: If the parameter has non-location decorations, |
| // then those decoration AST nodes will be reused between multiple elements |
| // of a matrix, array, or structure. Normally that's disallowed but currently |
| // the SPIR-V reader will make duplicates when the entire AST is cloned |
| // at the top level of the SPIR-V reader flow. Consider rewriting this |
| // to avoid this node-sharing. |
| params->push_back( |
| builder_.Param(param_name, param_type->Build(builder_), *decos)); |
| |
| // Add a body statement to copy the parameter to the corresponding private |
| // variable. |
| const ast::Expression* param_value = builder_.Expr(param_name); |
| const ast::Expression* store_dest = builder_.Expr(var_name); |
| |
| // Index into the LHS as needed. |
| auto* current_type = var_type->UnwrapAlias()->UnwrapRef()->UnwrapAlias(); |
| for (auto index : index_prefix) { |
| if (auto* matrix_type = current_type->As<Matrix>()) { |
| store_dest = builder_.IndexAccessor(store_dest, builder_.Expr(index)); |
| current_type = ty_.Vector(matrix_type->type, matrix_type->rows); |
| } else if (auto* array_type = current_type->As<Array>()) { |
| store_dest = builder_.IndexAccessor(store_dest, builder_.Expr(index)); |
| current_type = array_type->type->UnwrapAlias(); |
| } else if (auto* struct_type = current_type->As<Struct>()) { |
| store_dest = builder_.MemberAccessor( |
| store_dest, |
| builder_.Expr(parser_impl_.GetMemberName(*struct_type, index))); |
| current_type = struct_type->members[index]; |
| } |
| } |
| |
| if (is_builtin && (tip_type != forced_param_type)) { |
| // The parameter will have the WGSL type, but we need bitcast to |
| // the variable store type. |
| param_value = |
| create<ast::BitcastExpression>(tip_type->Build(builder_), param_value); |
| } |
| |
| statements->push_back(builder_.Assign(store_dest, param_value)); |
| |
| // Increment the location attribute, in case more parameters will follow. |
| IncrementLocation(decos); |
| |
| return success(); |
| } |
| |
| void FunctionEmitter::IncrementLocation(ast::DecorationList* decos) { |
| for (auto*& deco : *decos) { |
| if (auto* loc_deco = deco->As<ast::LocationDecoration>()) { |
| // Replace this location decoration with a new one with one higher index. |
| // The old one doesn't leak because it's kept in the builder's AST node |
| // list. |
| deco = builder_.Location(loc_deco->source, loc_deco->value + 1); |
| } |
| } |
| } |
| |
| const ast::Decoration* FunctionEmitter::GetLocation( |
| const ast::DecorationList& decos) { |
| for (auto* const& deco : decos) { |
| if (deco->Is<ast::LocationDecoration>()) { |
| return deco; |
| } |
| } |
| return nullptr; |
| } |
| |
| bool FunctionEmitter::EmitPipelineOutput(std::string var_name, |
| const Type* var_type, |
| ast::DecorationList* decos, |
| std::vector<int> index_prefix, |
| const Type* tip_type, |
| const Type* forced_member_type, |
| ast::StructMemberList* return_members, |
| ast::ExpressionList* return_exprs) { |
| tip_type = tip_type->UnwrapAlias(); |
| if (auto* ref_type = tip_type->As<Reference>()) { |
| tip_type = ref_type->type; |
| } |
| |
| // Recursively flatten matrices, arrays, and structures. |
| if (auto* matrix_type = tip_type->As<Matrix>()) { |
| index_prefix.push_back(0); |
| const auto num_columns = static_cast<int>(matrix_type->columns); |
| const Type* vec_ty = ty_.Vector(matrix_type->type, matrix_type->rows); |
| for (int col = 0; col < num_columns; col++) { |
| index_prefix.back() = col; |
| if (!EmitPipelineOutput(var_name, var_type, decos, index_prefix, vec_ty, |
| forced_member_type, return_members, |
| return_exprs)) { |
| return false; |
| } |
| } |
| return success(); |
| } else if (auto* array_type = tip_type->As<Array>()) { |
| if (array_type->size == 0) { |
| return Fail() << "runtime-size array not allowed on pipeline IO"; |
| } |
| index_prefix.push_back(0); |
| const Type* elem_ty = array_type->type; |
| for (int i = 0; i < static_cast<int>(array_type->size); i++) { |
| index_prefix.back() = i; |
| if (!EmitPipelineOutput(var_name, var_type, decos, index_prefix, elem_ty, |
| forced_member_type, return_members, |
| return_exprs)) { |
| return false; |
| } |
| } |
| return success(); |
| } else if (auto* struct_type = tip_type->As<Struct>()) { |
| const auto& members = struct_type->members; |
| index_prefix.push_back(0); |
| for (int i = 0; i < static_cast<int>(members.size()); ++i) { |
| index_prefix.back() = i; |
| ast::DecorationList member_decos(*decos); |
| if (!parser_impl_.ConvertPipelineDecorations( |
| struct_type, |
| parser_impl_.GetMemberPipelineDecorations(*struct_type, i), |
| &member_decos)) { |
| return false; |
| } |
| if (!EmitPipelineOutput(var_name, var_type, &member_decos, index_prefix, |
| members[i], forced_member_type, return_members, |
| return_exprs)) { |
| return false; |
| } |
| // Copy the location as updated by nested expansion of the member. |
| parser_impl_.SetLocation(decos, GetLocation(member_decos)); |
| } |
| return success(); |
| } |
| |
| const bool is_builtin = ast::HasDecoration<ast::BuiltinDecoration>(*decos); |
| |
| const Type* member_type = is_builtin ? forced_member_type : tip_type; |
| // Derive the member name directly from the variable name. They can't |
| // collide. |
| const auto member_name = namer_.MakeDerivedName(var_name); |
| // Create the member. |
| // TODO(dneto): Note: If the parameter has non-location decorations, |
| // then those decoration AST nodes will be reused between multiple elements |
| // of a matrix, array, or structure. Normally that's disallowed but currently |
| // the SPIR-V reader will make duplicates when the entire AST is cloned |
| // at the top level of the SPIR-V reader flow. Consider rewriting this |
| // to avoid this node-sharing. |
| return_members->push_back( |
| builder_.Member(member_name, member_type->Build(builder_), *decos)); |
| |
| // Create an expression to evaluate the part of the variable indexed by |
| // the index_prefix. |
| const ast::Expression* load_source = builder_.Expr(var_name); |
| |
| // Index into the variable as needed to pick out the flattened member. |
| auto* current_type = var_type->UnwrapAlias()->UnwrapRef()->UnwrapAlias(); |
| for (auto index : index_prefix) { |
| if (auto* matrix_type = current_type->As<Matrix>()) { |
| load_source = builder_.IndexAccessor(load_source, builder_.Expr(index)); |
| current_type = ty_.Vector(matrix_type->type, matrix_type->rows); |
| } else if (auto* array_type = current_type->As<Array>()) { |
| load_source = builder_.IndexAccessor(load_source, builder_.Expr(index)); |
| current_type = array_type->type->UnwrapAlias(); |
| } else if (auto* struct_type = current_type->As<Struct>()) { |
| load_source = builder_.MemberAccessor( |
| load_source, |
| builder_.Expr(parser_impl_.GetMemberName(*struct_type, index))); |
| current_type = struct_type->members[index]; |
| } |
| } |
| |
| if (is_builtin && (tip_type != forced_member_type)) { |
| // The member will have the WGSL type, but we need bitcast to |
| // the variable store type. |
| load_source = create<ast::BitcastExpression>( |
| forced_member_type->Build(builder_), load_source); |
| } |
| return_exprs->push_back(load_source); |
| |
| // Increment the location attribute, in case more parameters will follow. |
| IncrementLocation(decos); |
| |
| return success(); |
| } |
| |
| bool FunctionEmitter::EmitEntryPointAsWrapper() { |
| Source source; |
| |
| // The statements in the body. |
| ast::StatementList stmts; |
| |
| FunctionDeclaration decl; |
| decl.source = source; |
| decl.name = ep_info_->name; |
| const ast::Type* return_type = nullptr; // Populated below. |
| |
| // Pipeline inputs become parameters to the wrapper function, and |
| // their values are saved into the corresponding private variables that |
| // have already been created. |
| for (uint32_t var_id : ep_info_->inputs) { |
| const auto* var = def_use_mgr_->GetDef(var_id); |
| TINT_ASSERT(Reader, var != nullptr); |
| TINT_ASSERT(Reader, var->opcode() == SpvOpVariable); |
| auto* store_type = GetVariableStoreType(*var); |
| auto* forced_param_type = store_type; |
| ast::DecorationList param_decos; |
| if (!parser_impl_.ConvertDecorationsForVariable(var_id, &forced_param_type, |
| ¶m_decos, true)) { |
| // This occurs, and is not an error, for the PointSize builtin. |
| if (!success()) { |
| // But exit early if an error was logged. |
| return false; |
| } |
| continue; |
| } |
| |
| // We don't have to handle initializers because in Vulkan SPIR-V, Input |
| // variables must not have them. |
| |
| const auto var_name = namer_.GetName(var_id); |
| |
| bool ok = true; |
| if (HasBuiltinSampleMask(param_decos)) { |
| // In Vulkan SPIR-V, the sample mask is an array. In WGSL it's a scalar. |
| // Use the first element only. |
| auto* sample_mask_array_type = |
| store_type->UnwrapRef()->UnwrapAlias()->As<Array>(); |
| TINT_ASSERT(Reader, sample_mask_array_type); |
| ok = EmitPipelineInput(var_name, store_type, ¶m_decos, {0}, |
| sample_mask_array_type->type, forced_param_type, |
| &(decl.params), &stmts); |
| } else { |
| // The normal path. |
| ok = EmitPipelineInput(var_name, store_type, ¶m_decos, {}, store_type, |
| forced_param_type, &(decl.params), &stmts); |
| } |
| if (!ok) { |
| return false; |
| } |
| } |
| |
| // Call the inner function. It has no parameters. |
| stmts.push_back(create<ast::CallStatement>( |
| source, |
| create<ast::CallExpression>( |
| source, |
| create<ast::IdentifierExpression>( |
| source, builder_.Symbols().Register(ep_info_->inner_name)), |
| ast::ExpressionList{}))); |
| |
| // Pipeline outputs are mapped to the return value. |
| if (ep_info_->outputs.empty()) { |
| // There is nothing to return. |
| return_type = ty_.Void()->Build(builder_); |
| } else { |
| // Pipeline outputs are converted to a structure that is written |
| // to just before returning. |
| |
| const auto return_struct_name = |
| namer_.MakeDerivedName(ep_info_->name + "_out"); |
| const auto return_struct_sym = |
| builder_.Symbols().Register(return_struct_name); |
| |
| // Define the structure. |
| std::vector<const ast::StructMember*> return_members; |
| ast::ExpressionList return_exprs; |
| |
| const auto& builtin_position_info = parser_impl_.GetBuiltInPositionInfo(); |
| |
| for (uint32_t var_id : ep_info_->outputs) { |
| if (var_id == builtin_position_info.per_vertex_var_id) { |
| // The SPIR-V gl_PerVertex variable has already been remapped to |
| // a gl_Position variable. Substitute the type. |
| const Type* param_type = ty_.Vector(ty_.F32(), 4); |
| ast::DecorationList out_decos{ |
| create<ast::BuiltinDecoration>(source, ast::Builtin::kPosition)}; |
| |
| const auto var_name = namer_.GetName(var_id); |
| return_members.push_back( |
| builder_.Member(var_name, param_type->Build(builder_), out_decos)); |
| return_exprs.push_back(builder_.Expr(var_name)); |
| |
| } else { |
| const auto* var = def_use_mgr_->GetDef(var_id); |
| TINT_ASSERT(Reader, var != nullptr); |
| TINT_ASSERT(Reader, var->opcode() == SpvOpVariable); |
| const Type* store_type = GetVariableStoreType(*var); |
| const Type* forced_member_type = store_type; |
| ast::DecorationList out_decos; |
| if (!parser_impl_.ConvertDecorationsForVariable( |
| var_id, &forced_member_type, &out_decos, true)) { |
| // This occurs, and is not an error, for the PointSize builtin. |
| if (!success()) { |
| // But exit early if an error was logged. |
| return false; |
| } |
| continue; |
| } |
| |
| const auto var_name = namer_.GetName(var_id); |
| bool ok = true; |
| if (HasBuiltinSampleMask(out_decos)) { |
| // In Vulkan SPIR-V, the sample mask is an array. In WGSL it's a |
| // scalar. Use the first element only. |
| auto* sample_mask_array_type = |
| store_type->UnwrapRef()->UnwrapAlias()->As<Array>(); |
| TINT_ASSERT(Reader, sample_mask_array_type); |
| ok = EmitPipelineOutput(var_name, store_type, &out_decos, {0}, |
| sample_mask_array_type->type, |
| forced_member_type, &return_members, |
| &return_exprs); |
| } else { |
| // The normal path. |
| ok = EmitPipelineOutput(var_name, store_type, &out_decos, {}, |
| store_type, forced_member_type, |
| &return_members, &return_exprs); |
| } |
| if (!ok) { |
| return false; |
| } |
| } |
| } |
| |
| if (return_members.empty()) { |
| // This can occur if only the PointSize member is accessed, because we |
| // never emit it. |
| return_type = ty_.Void()->Build(builder_); |
| } else { |
| // Create and register the result type. |
| auto* str = create<ast::Struct>(Source{}, return_struct_sym, |
| return_members, ast::DecorationList{}); |
| parser_impl_.AddTypeDecl(return_struct_sym, str); |
| return_type = builder_.ty.Of(str); |
| |
| // Add the return-value statement. |
| stmts.push_back(create<ast::ReturnStatement>( |
| source, |
| builder_.Construct(source, return_type, std::move(return_exprs)))); |
| } |
| } |
| |
| auto* body = create<ast::BlockStatement>(source, stmts); |
| ast::DecorationList fn_decos; |
| fn_decos.emplace_back(create<ast::StageDecoration>(source, ep_info_->stage)); |
| |
| if (ep_info_->stage == ast::PipelineStage::kCompute) { |
| auto& size = ep_info_->workgroup_size; |
| if (size.x != 0 && size.y != 0 && size.z != 0) { |
| const ast::Expression* x = builder_.Expr(static_cast<int>(size.x)); |
| const ast::Expression* y = |
| size.y ? builder_.Expr(static_cast<int>(size.y)) : nullptr; |
| const ast::Expression* z = |
| size.z ? builder_.Expr(static_cast<int>(size.z)) : nullptr; |
| fn_decos.emplace_back( |
| create<ast::WorkgroupDecoration>(Source{}, x, y, z)); |
| } |
| } |
| |
| builder_.AST().AddFunction( |
| create<ast::Function>(source, builder_.Symbols().Register(ep_info_->name), |
| std::move(decl.params), return_type, body, |
| std::move(fn_decos), ast::DecorationList{})); |
| |
| return true; |
| } |
| |
| bool FunctionEmitter::ParseFunctionDeclaration(FunctionDeclaration* decl) { |
| if (failed()) { |
| return false; |
| } |
| |
| const std::string name = namer_.Name(function_.result_id()); |
| |
| // Surprisingly, the "type id" on an OpFunction is the result type of the |
| // function, not the type of the function. This is the one exceptional case |
| // in SPIR-V where the type ID is not the type of the result ID. |
| auto* ret_ty = parser_impl_.ConvertType(function_.type_id()); |
| if (failed()) { |
| return false; |
| } |
| if (ret_ty == nullptr) { |
| return Fail() |
| << "internal error: unregistered return type for function with ID " |
| << function_.result_id(); |
| } |
| |
| ast::VariableList ast_params; |
| function_.ForEachParam( |
| [this, &ast_params](const spvtools::opt::Instruction* param) { |
| auto* type = parser_impl_.ConvertType(param->type_id()); |
| if (type != nullptr) { |
| auto* ast_param = parser_impl_.MakeVariable( |
| param->result_id(), ast::StorageClass::kNone, type, true, nullptr, |
| ast::DecorationList{}); |
| // Parameters are treated as const declarations. |
| ast_params.emplace_back(ast_param); |
| // The value is accessible by name. |
| identifier_types_.emplace(param->result_id(), type); |
| } else { |
| // We've already logged an error and emitted a diagnostic. Do nothing |
| // here. |
| } |
| }); |
| if (failed()) { |
| return false; |
| } |
| decl->name = name; |
| decl->params = std::move(ast_params); |
| decl->return_type = ret_ty; |
| decl->decorations.clear(); |
| |
| return success(); |
| } |
| |
| const Type* FunctionEmitter::GetVariableStoreType( |
| const spvtools::opt::Instruction& var_decl_inst) { |
| const auto type_id = var_decl_inst.type_id(); |
| // Normally we use the SPIRV-Tools optimizer to manage types. |
| // But when two struct types have the same member types and decorations, |
| // but differ only in member names, the two struct types will be |
| // represented by a single common internal struct type. |
| // So avoid the optimizer's representation and instead follow the |
| // SPIR-V instructions themselves. |
| const auto* ptr_ty = def_use_mgr_->GetDef(type_id); |
| const auto store_ty_id = ptr_ty->GetSingleWordInOperand(1); |
| const auto* result = parser_impl_.ConvertType(store_ty_id); |
| return result; |
| } |
| |
| bool FunctionEmitter::EmitBody() { |
| RegisterBasicBlocks(); |
| |
| if (!TerminatorsAreValid()) { |
| return false; |
| } |
| if (!RegisterMerges()) { |
| return false; |
| } |
| |
| ComputeBlockOrderAndPositions(); |
| if (!VerifyHeaderContinueMergeOrder()) { |
| return false; |
| } |
| if (!LabelControlFlowConstructs()) { |
| return false; |
| } |
| if (!FindSwitchCaseHeaders()) { |
| return false; |
| } |
| if (!ClassifyCFGEdges()) { |
| return false; |
| } |
| if (!FindIfSelectionInternalHeaders()) { |
| return false; |
| } |
| |
| if (!RegisterSpecialBuiltInVariables()) { |
| return false; |
| } |
| if (!RegisterLocallyDefinedValues()) { |
| return false; |
| } |
| FindValuesNeedingNamedOrHoistedDefinition(); |
| |
| if (!EmitFunctionVariables()) { |
| return false; |
| } |
| if (!EmitFunctionBodyStatements()) { |
| return false; |
| } |
| return success(); |
| } |
| |
| void FunctionEmitter::RegisterBasicBlocks() { |
| for (auto& block : function_) { |
| block_info_[block.id()] = std::make_unique<BlockInfo>(block); |
| } |
| } |
| |
| bool FunctionEmitter::TerminatorsAreValid() { |
| if (failed()) { |
| return false; |
| } |
| |
| const auto entry_id = function_.begin()->id(); |
| for (const auto& block : function_) { |
| if (!block.terminator()) { |
| return Fail() << "Block " << block.id() << " has no terminator"; |
| } |
| } |
| for (const auto& block : function_) { |
| block.WhileEachSuccessorLabel( |
| [this, &block, entry_id](const uint32_t succ_id) -> bool { |
| if (succ_id == entry_id) { |
| return Fail() << "Block " << block.id() |
| << " branches to function entry block " << entry_id; |
| } |
| if (!GetBlockInfo(succ_id)) { |
| return Fail() << "Block " << block.id() << " in function " |
| << function_.DefInst().result_id() << " branches to " |
| << succ_id << " which is not a block in the function"; |
| } |
| return true; |
| }); |
| } |
| return success(); |
| } |
| |
| bool FunctionEmitter::RegisterMerges() { |
| if (failed()) { |
| return false; |
| } |
| |
| const auto entry_id = function_.begin()->id(); |
| for (const auto& block : function_) { |
| const auto block_id = block.id(); |
| auto* block_info = GetBlockInfo(block_id); |
| if (!block_info) { |
| return Fail() << "internal error: block " << block_id |
| << " missing; blocks should already " |
| "have been registered"; |
| } |
| |
| if (const auto* inst = block.GetMergeInst()) { |
| auto terminator_opcode = block.terminator()->opcode(); |
| switch (inst->opcode()) { |
| case SpvOpSelectionMerge: |
| if ((terminator_opcode != SpvOpBranchConditional) && |
| (terminator_opcode != SpvOpSwitch)) { |
| return Fail() << "Selection header " << block_id |
| << " does not end in an OpBranchConditional or " |
| "OpSwitch instruction"; |
| } |
| break; |
| case SpvOpLoopMerge: |
| if ((terminator_opcode != SpvOpBranchConditional) && |
| (terminator_opcode != SpvOpBranch)) { |
| return Fail() << "Loop header " << block_id |
| << " does not end in an OpBranch or " |
| "OpBranchConditional instruction"; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| const uint32_t header = block.id(); |
| auto* header_info = block_info; |
| const uint32_t merge = inst->GetSingleWordInOperand(0); |
| auto* merge_info = GetBlockInfo(merge); |
| if (!merge_info) { |
| return Fail() << "Structured header block " << header |
| << " declares invalid merge block " << merge; |
| } |
| if (merge == header) { |
| return Fail() << "Structured header block " << header |
| << " cannot be its own merge block"; |
| } |
| if (merge_info->header_for_merge) { |
| return Fail() << "Block " << merge |
| << " declared as merge block for more than one header: " |
| << merge_info->header_for_merge << ", " << header; |
| } |
| merge_info->header_for_merge = header; |
| header_info->merge_for_header = merge; |
| |
| if (inst->opcode() == SpvOpLoopMerge) { |
| if (header == entry_id) { |
| return Fail() << "Function entry block " << entry_id |
| << " cannot be a loop header"; |
| } |
| const uint32_t ct = inst->GetSingleWordInOperand(1); |
| auto* ct_info = GetBlockInfo(ct); |
| if (!ct_info) { |
| return Fail() << "Structured header " << header |
| << " declares invalid continue target " << ct; |
| } |
| if (ct == merge) { |
| return Fail() << "Invalid structured header block " << header |
| << ": declares block " << ct |
| << " as both its merge block and continue target"; |
| } |
| if (ct_info->header_for_continue) { |
| return Fail() |
| << "Block " << ct |
| << " declared as continue target for more than one header: " |
| << ct_info->header_for_continue << ", " << header; |
| } |
| ct_info->header_for_continue = header; |
| header_info->continue_for_header = ct; |
| } |
| } |
| |
| // Check single-block loop cases. |
| bool is_single_block_loop = false; |
| block_info->basic_block->ForEachSuccessorLabel( |
| [&is_single_block_loop, block_id](const uint32_t succ) { |
| if (block_id == succ) |
| is_single_block_loop = true; |
| }); |
| const auto ct = block_info->continue_for_header; |
| block_info->is_continue_entire_loop = ct == block_id; |
| if (is_single_block_loop && !block_info->is_continue_entire_loop) { |
| return Fail() << "Block " << block_id |
| << " branches to itself but is not its own continue target"; |
| } |
| // It's valid for a the header of a multi-block loop header to declare |
| // itself as its own continue target. |
| } |
| return success(); |
| } |
| |
| void FunctionEmitter::ComputeBlockOrderAndPositions() { |
| block_order_ = StructuredTraverser(function_).ReverseStructuredPostOrder(); |
| |
| for (uint32_t i = 0; i < block_order_.size(); ++i) { |
| GetBlockInfo(block_order_[i])->pos = i; |
| } |
| // The invalid block position is not the position of any block that is in the |
| // order. |
| assert(block_order_.size() <= kInvalidBlockPos); |
| } |
| |
| bool FunctionEmitter::VerifyHeaderContinueMergeOrder() { |
| // Verify interval rules for a structured header block: |
| // |
| // If the CFG satisfies structured control flow rules, then: |
| // If header H is reachable, then the following "interval rules" hold, |
| // where M(H) is H's merge block, and CT(H) is H's continue target: |
| // |
| // Pos(H) < Pos(M(H)) |
| // |
| // If CT(H) exists, then: |
| // Pos(H) <= Pos(CT(H)) |
| // Pos(CT(H)) < Pos(M) |
| // |
| for (auto block_id : block_order_) { |
| const auto* block_info = GetBlockInfo(block_id); |
| const auto merge = block_info->merge_for_header; |
| if (merge == 0) { |
| continue; |
| } |
| // This is a header. |
| const auto header = block_id; |
| const auto* header_info = block_info; |
| const auto header_pos = header_info->pos; |
| const auto merge_pos = GetBlockInfo(merge)->pos; |
| |
| // Pos(H) < Pos(M(H)) |
| // Note: When recording merges we made sure H != M(H) |
| if (merge_pos <= header_pos) { |
| return Fail() << "Header " << header |
| << " does not strictly dominate its merge block " << merge; |
| // TODO(dneto): Report a path from the entry block to the merge block |
| // without going through the header block. |
| } |
| |
| const auto ct = block_info->continue_for_header; |
| if (ct == 0) { |
| continue; |
| } |
| // Furthermore, this is a loop header. |
| const auto* ct_info = GetBlockInfo(ct); |
| const auto ct_pos = ct_info->pos; |
| // Pos(H) <= Pos(CT(H)) |
| if (ct_pos < header_pos) { |
| Fail() << "Loop header " << header |
| << " does not dominate its continue target " << ct; |
| } |
| // Pos(CT(H)) < Pos(M(H)) |
| // Note: When recording merges we made sure CT(H) != M(H) |
| if (merge_pos <= ct_pos) { |
| return Fail() << "Merge block " << merge << " for loop headed at block " |
| << header |
| << " appears at or before the loop's continue " |
| "construct headed by " |
| "block " |
| << ct; |
| } |
| } |
| return success(); |
| } |
| |
| bool FunctionEmitter::LabelControlFlowConstructs() { |
| // Label each block in the block order with its nearest enclosing structured |
| // control flow construct. Populates the |construct| member of BlockInfo. |
| |
| // Keep a stack of enclosing structured control flow constructs. Start |
| // with the synthetic construct representing the entire function. |
| // |
| // Scan from left to right in the block order, and check conditions |
| // on each block in the following order: |
| // |
| // a. When you reach a merge block, the top of the stack should |
| // be the associated header. Pop it off. |
| // b. When you reach a header, push it on the stack. |
| // c. When you reach a continue target, push it on the stack. |
| // (A block can be both a header and a continue target.) |
| // c. When you reach a block with an edge branching backward (in the |
| // structured order) to block T: |
| // T should be a loop header, and the top of the stack should be a |
| // continue target associated with T. |
| // This is the end of the continue construct. Pop the continue |
| // target off the stack. |
| // |
| // Note: A loop header can declare itself as its own continue target. |
| // |
| // Note: For a single-block loop, that block is a header, its own |
| // continue target, and its own backedge block. |
| // |
| // Note: We pop the merge off first because a merge block that marks |
| // the end of one construct can be a single-block loop. So that block |
| // is a merge, a header, a continue target, and a backedge block. |
| // But we want to finish processing of the merge before dealing with |
| // the loop. |
| // |
| // In the same scan, mark each basic block with the nearest enclosing |
| // header: the most recent header for which we haven't reached its merge |
| // block. Also mark the the most recent continue target for which we |
| // haven't reached the backedge block. |
| |
| TINT_ASSERT(Reader, block_order_.size() > 0); |
| constructs_.clear(); |
| const auto entry_id = block_order_[0]; |
| |
| // The stack of enclosing constructs. |
| std::vector<Construct*> enclosing; |
| |
| // Creates a control flow construct and pushes it onto the stack. |
| // Its parent is the top of the stack, or nullptr if the stack is empty. |
| // Returns the newly created construct. |
| auto push_construct = [this, &enclosing](size_t depth, Construct::Kind k, |
| uint32_t begin_id, |
| uint32_t end_id) -> Construct* { |
| const auto begin_pos = GetBlockInfo(begin_id)->pos; |
| const auto end_pos = |
| end_id == 0 ? uint32_t(block_order_.size()) : GetBlockInfo(end_id)->pos; |
| const auto* parent = enclosing.empty() ? nullptr : enclosing.back(); |
| auto scope_end_pos = end_pos; |
| // A loop construct is added right after its associated continue construct. |
| // In that case, adjust the parent up. |
| if (k == Construct::kLoop) { |
| TINT_ASSERT(Reader, parent); |
| TINT_ASSERT(Reader, parent->kind == Construct::kContinue); |
| scope_end_pos = parent->end_pos; |
| parent = parent->parent; |
| } |
| constructs_.push_back(std::make_unique<Construct>( |
| parent, static_cast<int>(depth), k, begin_id, end_id, begin_pos, |
| end_pos, scope_end_pos)); |
| Construct* result = constructs_.back().get(); |
| enclosing.push_back(result); |
| return result; |
| }; |
| |
| // Make a synthetic kFunction construct to enclose all blocks in the function. |
| push_construct(0, Construct::kFunction, entry_id, 0); |
| // The entry block can be a selection construct, so be sure to process |
| // it anyway. |
| |
| for (uint32_t i = 0; i < block_order_.size(); ++i) { |
| const auto block_id = block_order_[i]; |
| TINT_ASSERT(Reader, block_id > 0); |
| auto* block_info = GetBlockInfo(block_id); |
| TINT_ASSERT(Reader, block_info); |
| |
| if (enclosing.empty()) { |
| return Fail() << "internal error: too many merge blocks before block " |
| << block_id; |
| } |
| const Construct* top = enclosing.back(); |
| |
| while (block_id == top->end_id) { |
| // We've reached a predeclared end of the construct. Pop it off the |
| // stack. |
| enclosing.pop_back(); |
| if (enclosing.empty()) { |
| return Fail() << "internal error: too many merge blocks before block " |
| << block_id; |
| } |
| top = enclosing.back(); |
| } |
| |
| const auto merge = block_info->merge_for_header; |
| if (merge != 0) { |
| // The current block is a header. |
| const auto header = block_id; |
| const auto* header_info = block_info; |
| const auto depth = 1 + top->depth; |
| const auto ct = header_info->continue_for_header; |
| if (ct != 0) { |
| // The current block is a loop header. |
| // We should see the continue construct after the loop construct, so |
| // push the loop construct last. |
| |
| // From the interval rule, the continue construct consists of blocks |
| // in the block order, starting at the continue target, until just |
| // before the merge block. |
| top = push_construct(depth, Construct::kContinue, ct, merge); |
| // A loop header that is its own continue target will have an |
| // empty loop construct. Only create a loop construct when |
| // the continue target is *not* the same as the loop header. |
| if (header != ct) { |
| // From the interval rule, the loop construct consists of blocks |
| // in the block order, starting at the header, until just |
| // before the continue target. |
| top = push_construct(depth, Construct::kLoop, header, ct); |
| |
| // If the loop header branches to two different blocks inside the loop |
| // construct, then the loop body should be modeled as an if-selection |
| // construct |
| std::vector<uint32_t> targets; |
| header_info->basic_block->ForEachSuccessorLabel( |
| [&targets](const uint32_t target) { targets.push_back(target); }); |
| if ((targets.size() == 2u) && targets[0] != targets[1]) { |
| const auto target0_pos = GetBlockInfo(targets[0])->pos; |
| const auto target1_pos = GetBlockInfo(targets[1])->pos; |
| if (top->ContainsPos(target0_pos) && |
| top->ContainsPos(target1_pos)) { |
| // Insert a synthetic if-selection |
| top = push_construct(depth + 1, Construct::kIfSelection, header, |
| ct); |
| } |
| } |
| } |
| } else { |
| // From the interval rule, the selection construct consists of blocks |
| // in the block order, starting at the header, until just before the |
| // merge block. |
| const auto branch_opcode = |
| header_info->basic_block->terminator()->opcode(); |
| const auto kind = (branch_opcode == SpvOpBranchConditional) |
| ? Construct::kIfSelection |
| : Construct::kSwitchSelection; |
| top = push_construct(depth, kind, header, merge); |
| } |
| } |
| |
| TINT_ASSERT(Reader, top); |
| block_info->construct = top; |
| } |
| |
| // At the end of the block list, we should only have the kFunction construct |
| // left. |
| if (enclosing.size() != 1) { |
| return Fail() << "internal error: unbalanced structured constructs when " |
| "labeling structured constructs: ended with " |
| << enclosing.size() - 1 << " unterminated constructs"; |
| } |
| const auto* top = enclosing[0]; |
| if (top->kind != Construct::kFunction || top->depth != 0) { |
| return Fail() << "internal error: outermost construct is not a function?!"; |
| } |
| |
| return success(); |
| } |
| |
| bool FunctionEmitter::FindSwitchCaseHeaders() { |
| if (failed()) { |
| return false; |
| } |
| for (auto& construct : constructs_) { |
| if (construct->kind != Construct::kSwitchSelection) { |
| continue; |
| } |
| const auto* branch = |
| GetBlockInfo(construct->begin_id)->basic_block->terminator(); |
| |
| // Mark the default block |
| const auto default_id = branch->GetSingleWordInOperand(1); |
| auto* default_block = GetBlockInfo(default_id); |
| // A default target can't be a backedge. |
| if (construct->begin_pos >= default_block->pos) { |
| // An OpSwitch must dominate its cases. Also, it can't be a self-loop |
| // as that would be a backedge, and backedges can only target a loop, |
| // and loops use an OpLoopMerge instruction, which can't precede an |
| // OpSwitch. |
| return Fail() << "Switch branch from block " << construct->begin_id |
| << " to default target block " << default_id |
| << " can't be a back-edge"; |
| } |
| // A default target can be the merge block, but can't go past it. |
| if (construct->end_pos < default_block->pos) { |
| return Fail() << "Switch branch from block " << construct->begin_id |
| << " to default block " << default_id |
| << " escapes the selection construct"; |
| } |
| if (default_block->default_head_for) { |
| // An OpSwitch must dominate its cases, including the default target. |
| return Fail() << "Block " << default_id |
| << " is declared as the default target for two OpSwitch " |
| "instructions, at blocks " |
| << default_block->default_head_for->begin_id << " and " |
| << construct->begin_id; |
| } |
| if ((default_block->header_for_merge != 0) && |
| (default_block->header_for_merge != construct->begin_id)) { |
| // The switch instruction for this default block is an alternate path to |
| // the merge block, and hence the merge block is not dominated by its own |
| // (different) header. |
| return Fail() << "Block " << default_block->id |
| << " is the default block for switch-selection header " |
| << construct->begin_id << " and also the merge block for " |
| << default_block->header_for_merge |
| << " (violates dominance rule)"; |
| } |
| |
| default_block->default_head_for = construct.get(); |
| default_block->default_is_merge = default_block->pos == construct->end_pos; |
| |
| // Map a case target to the list of values selecting that case. |
| std::unordered_map<uint32_t, std::vector<uint64_t>> block_to_values; |
| std::vector<uint32_t> case_targets; |
| std::unordered_set<uint64_t> case_values; |
| |
| // Process case targets. |
| for (uint32_t iarg = 2; iarg + 1 < branch->NumInOperands(); iarg += 2) { |
| const auto value = branch->GetInOperand(iarg).AsLiteralUint64(); |
| const auto case_target_id = branch->GetSingleWordInOperand(iarg + 1); |
| |
| if (case_values.count(value)) { |
| return Fail() << "Duplicate case value " << value |
| << " in OpSwitch in block " << construct->begin_id; |
| } |
| case_values.insert(value); |
| if (block_to_values.count(case_target_id) == 0) { |
| case_targets.push_back(case_target_id); |
| } |
| block_to_values[case_target_id].push_back(value); |
| } |
| |
| for (uint32_t case_target_id : case_targets) { |
| auto* case_block = GetBlockInfo(case_target_id); |
| |
| case_block->case_values = std::make_unique<std::vector<uint64_t>>( |
| std::move(block_to_values[case_target_id])); |
| |
| // A case target can't be a back-edge. |
| if (construct->begin_pos >= case_block->pos) { |
| // An OpSwitch must dominate its cases. Also, it can't be a self-loop |
| // as that would be a backedge, and backedges can only target a loop, |
| // and loops use an OpLoopMerge instruction, which can't preceded an |
| // OpSwitch. |
| return Fail() << "Switch branch from block " << construct->begin_id |
| << " to case target block " << case_target_id |
| << " can't be a back-edge"; |
| } |
| // A case target can be the merge block, but can't go past it. |
| if (construct->end_pos < case_block->pos) { |
| return Fail() << "Switch branch from block " << construct->begin_id |
| << " to case target block " << case_target_id |
| << " escapes the selection construct"; |
| } |
| if (case_block->header_for_merge != 0 && |
| case_block->header_for_merge != construct->begin_id) { |
| // The switch instruction for this case block is an alternate path to |
| // the merge block, and hence the merge block is not dominated by its |
| // own (different) header. |
| return Fail() << "Block " << case_block->id |
| << " is a case block for switch-selection header " |
| << construct->begin_id << " and also the merge block for " |
| << case_block->header_for_merge |
| << " (violates dominance rule)"; |
| } |
| |
| // Mark the target as a case target. |
| if (case_block->case_head_for) { |
| // An OpSwitch must dominate its cases. |
| return Fail() |
| << "Block " << case_target_id |
| << " is declared as the switch case target for two OpSwitch " |
| "instructions, at blocks " |
| << case_block->case_head_for->begin_id << " and " |
| << construct->begin_id; |
| } |
| case_block->case_head_for = construct.get(); |
| } |
| } |
| return success(); |
| } |
| |
| BlockInfo* FunctionEmitter::HeaderIfBreakable(const Construct* c) { |
| if (c == nullptr) { |
| return nullptr; |
| } |
| switch (c->kind) { |
| case Construct::kLoop: |
| case Construct::kSwitchSelection: |
| return GetBlockInfo(c->begin_id); |
| case Construct::kContinue: { |
| const auto* continue_target = GetBlockInfo(c->begin_id); |
| return GetBlockInfo(continue_target->header_for_continue); |
| } |
| default: |
| break; |
| } |
| return nullptr; |
| } |
| |
| const Construct* FunctionEmitter::SiblingLoopConstruct( |
| const Construct* c) const { |
| if (c == nullptr || c->kind != Construct::kContinue) { |
| return nullptr; |
| } |
| const uint32_t continue_target_id = c->begin_id; |
| const auto* continue_target = GetBlockInfo(continue_target_id); |
| const uint32_t header_id = continue_target->header_for_continue; |
| if (continue_target_id == header_id) { |
| // The continue target is the whole loop. |
| return nullptr; |
| } |
| const auto* candidate = GetBlockInfo(header_id)->construct; |
| // Walk up the construct tree until we hit the loop. In future |
| // we might handle the corner case where the same block is both a |
| // loop header and a selection header. For example, where the |
| // loop header block has a conditional branch going to distinct |
| // targets inside the loop body. |
| while (candidate && candidate->kind != Construct::kLoop) { |
| candidate = candidate->parent; |
| } |
| return candidate; |
| } |
| |
| bool FunctionEmitter::ClassifyCFGEdges() { |
| if (failed()) { |
| return false; |
| } |
| |
| // Checks validity of CFG edges leaving each basic block. This implicitly |
| // checks dominance rules for headers and continue constructs. |
| // |
| // For each branch encountered, classify each edge (S,T) as: |
| // - a back-edge |
| // - a structured exit (specific ways of branching to enclosing construct) |
| // - a normal (forward) edge, either natural control flow or a case |
| // fallthrough |
| // |
| // If more than one block is targeted by a normal edge, then S must be a |
| // structured header. |
| // |
| // Term: NEC(B) is the nearest enclosing construct for B. |
| // |
| // If edge (S,T) is a normal edge, and NEC(S) != NEC(T), then |
| // T is the header block of its NEC(T), and |
| // NEC(S) is the parent of NEC(T). |
| |
| for (const auto src : block_order_) { |
| TINT_ASSERT(Reader, src > 0); |
| auto* src_info = GetBlockInfo(src); |
| TINT_ASSERT(Reader, src_info); |
| const auto src_pos = src_info->pos; |
| const auto& src_construct = *(src_info->construct); |
| |
| // Compute the ordered list of unique successors. |
| std::vector<uint32_t> successors; |
| { |
| std::unordered_set<uint32_t> visited; |
| src_info->basic_block->ForEachSuccessorLabel( |
| [&successors, &visited](const uint32_t succ) { |
| if (visited.count(succ) == 0) { |
| successors.push_back(succ); |
| visited.insert(succ); |
| } |
| }); |
| } |
| |
| // There should only be one backedge per backedge block. |
| uint32_t num_backedges = 0; |
| |
| // Track destinations for normal forward edges, either kForward |
| // or kCaseFallThrough. These count toward the need |
| // to have a merge instruction. We also track kIfBreak edges |
| // because when used with normal forward edges, we'll need |
| // to generate a flow guard variable. |
| std::vector<uint32_t> normal_forward_edges; |
| std::vector<uint32_t> if_break_edges; |
| |
| if (successors.empty() && src_construct.enclosing_continue) { |
| // Kill and return are not allowed in a continue construct. |
| return Fail() << "Invalid function exit at block " << src |
| << " from continue construct starting at " |
| << src_construct.enclosing_continue->begin_id; |
| } |
| |
| for (const auto dest : successors) { |
| const auto* dest_info = GetBlockInfo(dest); |
| // We've already checked terminators are valid. |
| TINT_ASSERT(Reader, dest_info); |
| const auto dest_pos = dest_info->pos; |
| |
| // Insert the edge kind entry and keep a handle to update |
| // its classification. |
| EdgeKind& edge_kind = src_info->succ_edge[dest]; |
| |
| if (src_pos >= dest_pos) { |
| // This is a backedge. |
| edge_kind = EdgeKind::kBack; |
| num_backedges++; |
| const auto* continue_construct = src_construct.enclosing_continue; |
| if (!continue_construct) { |
| return Fail() << "Invalid backedge (" << src << "->" << dest |
| << "): " << src << " is not in a continue construct"; |
| } |
| if (src_pos != continue_construct->end_pos - 1) { |
| return Fail() << "Invalid exit (" << src << "->" << dest |
| << ") from continue construct: " << src |
| << " is not the last block in the continue construct " |
| "starting at " |
| << src_construct.begin_id |
| << " (violates post-dominance rule)"; |
| } |
| const auto* ct_info = GetBlockInfo(continue_construct->begin_id); |
| TINT_ASSERT(Reader, ct_info); |
| if (ct_info->header_for_continue != dest) { |
| return Fail() |
| << "Invalid backedge (" << src << "->" << dest |
| << "): does not branch to the corresponding loop header, " |
| "expected " |
| << ct_info->header_for_continue; |
| } |
| } else { |
| // This is a forward edge. |
| // For now, classify it that way, but we might update it. |
| edge_kind = EdgeKind::kForward; |
| |
| // Exit from a continue construct can only be from the last block. |
| const auto* continue_construct = src_construct.enclosing_continue; |
| if (continue_construct != nullptr) { |
| if (continue_construct->ContainsPos(src_pos) && |
| !continue_construct->ContainsPos(dest_pos) && |
| (src_pos != continue_construct->end_pos - 1)) { |
| return Fail() << "Invalid exit (" << src << "->" << dest |
| << ") from continue construct: " << src |
| << " is not the last block in the continue construct " |
| "starting at " |
| << continue_construct->begin_id |
| << " (violates post-dominance rule)"; |
| } |
| } |
| |
| // Check valid structured exit cases. |
| |
| if (edge_kind == EdgeKind::kForward) { |
| // Check for a 'break' from a loop or from a switch. |
| const auto* breakable_header = HeaderIfBreakable( |
| src_construct.enclosing_loop_or_continue_or_switch); |
| if (breakable_header != nullptr) { |
| if (dest == breakable_header->merge_for_header) { |
| // It's a break. |
| edge_kind = (breakable_header->construct->kind == |
| Construct::kSwitchSelection) |
| ? EdgeKind::kSwitchBreak |
| : EdgeKind::kLoopBreak; |
| } |
| } |
| } |
| |
| if (edge_kind == EdgeKind::kForward) { |
| // Check for a 'continue' from within a loop. |
| const auto* loop_header = |
| HeaderIfBreakable(src_construct.enclosing_loop); |
| if (loop_header != nullptr) { |
| if (dest == loop_header->continue_for_header) { |
| // It's a continue. |
| edge_kind = EdgeKind::kLoopContinue; |
| } |
| } |
| } |
| |
| if (edge_kind == EdgeKind::kForward) { |
| const auto& header_info = *GetBlockInfo(src_construct.begin_id); |
| if (dest == header_info.merge_for_header) { |
| // Branch to construct's merge block. The loop break and |
| // switch break cases have already been covered. |
| edge_kind = EdgeKind::kIfBreak; |
| } |
| } |
| |
| // A forward edge into a case construct that comes from something |
| // other than the OpSwitch is actually a fallthrough. |
| if (edge_kind == EdgeKind::kForward) { |
| const auto* switch_construct = |
| (dest_info->case_head_for ? dest_info->case_head_for |
| : dest_info->default_head_for); |
| if (switch_construct != nullptr) { |
| if (src != switch_construct->begin_id) { |
| edge_kind = EdgeKind::kCaseFallThrough; |
| } |
| } |
| } |
| |
| // The edge-kind has been finalized. |
| |
| if ((edge_kind == EdgeKind::kForward) || |
| (edge_kind == EdgeKind::kCaseFallThrough)) { |
| normal_forward_edges.push_back(dest); |
| } |
| if (edge_kind == EdgeKind::kIfBreak) { |
| if_break_edges.push_back(dest); |
| } |
| |
| if ((edge_kind == EdgeKind::kForward) || |
| (edge_kind == EdgeKind::kCaseFallThrough)) { |
| // Check for an invalid forward exit out of this construct. |
| if (dest_info->pos > src_construct.end_pos) { |
| // In most cases we're bypassing the merge block for the source |
| // construct. |
| auto end_block = src_construct.end_id; |
| const char* end_block_desc = "merge block"; |
| if (src_construct.kind == Construct::kLoop) { |
| // For a loop construct, we have two valid places to go: the |
| // continue target or the merge for the loop header, which is |
| // further down. |
| const auto loop_merge = |
| GetBlockInfo(src_construct.begin_id)->merge_for_header; |
| if (dest_info->pos >= GetBlockInfo(loop_merge)->pos) { |
| // We're bypassing the loop's merge block. |
| end_block = loop_merge; |
| } else { |
| // We're bypassing the loop's continue target, and going into |
| // the middle of the continue construct. |
| end_block_desc = "continue target"; |
| } |
| } |
| return Fail() |
| << "Branch from block " << src << " to block " << dest |
| << " is an invalid exit from construct starting at block " |
| << src_construct.begin_id << "; branch bypasses " |
| << end_block_desc << " " << end_block; |
| } |
| |
| // Check dominance. |
| |
| // Look for edges that violate the dominance condition: a branch |
| // from X to Y where: |
| // If Y is in a nearest enclosing continue construct headed by |
| // CT: |
| // Y is not CT, and |
| // In the structured order, X appears before CT order or |
| // after CT's backedge block. |
| // Otherwise, if Y is in a nearest enclosing construct |
| // headed by H: |
| // Y is not H, and |
| // In the structured order, X appears before H or after H's |
| // merge block. |
| |
| const auto& dest_construct = *(dest_info->construct); |
| if (dest != dest_construct.begin_id && |
| !dest_construct.ContainsPos(src_pos)) { |
| return Fail() << "Branch from " << src << " to " << dest |
| << " bypasses " |
| << (dest_construct.kind == Construct::kContinue |
| ? "continue target " |
| : "header ") |
| << dest_construct.begin_id |
| << " (dominance rule violated)"; |
| } |
| } |
| } // end forward edge |
| } // end successor |
| |
| if (num_backedges > 1) { |
| return Fail() << "Block " << src |
| << " has too many backedges: " << num_backedges; |
| } |
| if ((normal_forward_edges.size() > 1) && |
| (src_info->merge_for_header == 0)) { |
| return Fail() << "Control flow diverges at block " << src << " (to " |
| << normal_forward_edges[0] << ", " |
| << normal_forward_edges[1] |
| << ") but it is not a structured header (it has no merge " |
| "instruction)"; |
| } |
| if ((normal_forward_edges.size() + if_break_edges.size() > 1) && |
| (src_info->merge_for_header == 0)) { |
| // There is a branch to the merge of an if-selection combined |
| // with an other normal forward branch. Control within the |
| // if-selection needs to be gated by a flow predicate. |
| for (auto if_break_dest : if_break_edges) { |
| auto* head_info = |
| GetBlockInfo(GetBlockInfo(if_break_dest)->header_for_merge); |
| // Generate a guard name, but only once. |
| if (head_info->flow_guard_name.empty()) { |
| const std::string guard = "guard" + std::to_string(head_info->id); |
| head_info->flow_guard_name = namer_.MakeDerivedName(guard); |
| } |
| } |
| } |
| } |
| |
| return success(); |
| } |
| |
| bool FunctionEmitter::FindIfSelectionInternalHeaders() { |
| if (failed()) { |
| return false; |
| } |
| for (auto& construct : constructs_) { |
| if (construct->kind != Construct::kIfSelection) { |
| continue; |
| } |
| auto* if_header_info = GetBlockInfo(construct->begin_id); |
| const auto* branch = if_header_info->basic_block->terminator(); |
| const auto true_head = branch->GetSingleWordInOperand(1); |
| const auto false_head = branch->GetSingleWordInOperand(2); |
| |
| auto* true_head_info = GetBlockInfo(true_head); |
| auto* false_head_info = GetBlockInfo(false_head); |
| const auto true_head_pos = true_head_info->pos; |
| const auto false_head_pos = false_head_info->pos; |
| |
| const bool contains_true = construct->ContainsPos(true_head_pos); |
| const bool contains_false = construct->ContainsPos(false_head_pos); |
| |
| // The cases for each edge are: |
| // - kBack: invalid because it's an invalid exit from the selection |
| // - kSwitchBreak ; record this for later special processing |
| // - kLoopBreak ; record this for later special processing |
| // - kLoopContinue ; record this for later special processing |
| // - kIfBreak; normal case, may require a guard variable. |
| // - kFallThrough; invalid exit from the selection |
| // - kForward; normal case |
| |
| if_header_info->true_kind = if_header_info->succ_edge[true_head]; |
| if_header_info->false_kind = if_header_info->succ_edge[false_head]; |
| if (contains_true) { |
| if_header_info->true_head = true_head; |
| } |
| if (contains_false) { |
| if_header_info->false_head = false_head; |
| } |
| |
| if (contains_true && (true_head_info->header_for_merge != 0) && |
| (true_head_info->header_for_merge != construct->begin_id)) { |
| // The OpBranchConditional instruction for the true head block is an |
| // alternate path to the merge block of a construct nested inside the |
| // selection, and hence the merge block is not dominated by its own |
| // (different) header. |
| return Fail() << "Block " << true_head |
| << " is the true branch for if-selection header " |
| << construct->begin_id |
| << " and also the merge block for header block " |
| << true_head_info->header_for_merge |
| << " (violates dominance rule)"; |
| } |
| if (contains_false && (false_head_info->header_for_merge != 0) && |
| (false_head_info->header_for_merge != construct->begin_id)) { |
| // The OpBranchConditional instruction for the false head block is an |
| // alternate path to the merge block of a construct nested inside the |
| // selection, and hence the merge block is not dominated by its own |
| // (different) header. |
| return Fail() << "Block " << false_head |
| << " is the false branch for if-selection header " |
| << construct->begin_id |
| << " and also the merge block for header block " |
| << false_head_info->header_for_merge |
| << " (violates dominance rule)"; |
| } |
| |
| if (contains_true && contains_false && (true_head_pos != false_head_pos)) { |
| // This construct has both a "then" clause and an "else" clause. |
| // |
| // We have this structure: |
| // |
| // Option 1: |
| // |
| // * condbranch |
| // * true-head (start of then-clause) |
| // ... |
| // * end-then-clause |
| // * false-head (start of else-clause) |
| // ... |
| // * end-false-clause |
| // * premerge-head |
| // ... |
| // * selection merge |
| // |
| // Option 2: |
| // |
| // * condbranch |
| // * true-head (start of then-clause) |
| // ... |
| // * end-then-clause |
| // * false-head (start of else-clause) and also premerge-head |
| // ... |
| // * end-false-clause |
| // * selection merge |
| // |
| // Option 3: |
| // |
| // * condbranch |
| // * false-head (start of else-clause) |
| // ... |
| // * end-else-clause |
| // * true-head (start of then-clause) and also premerge-head |
| // ... |
| // * end-then-clause |
| // * selection merge |
| // |
| // The premerge-head exists if there is a kForward branch from the end |
| // of the first clause to a block within the surrounding selection. |
| // The first clause might be a then-clause or an else-clause. |
| const auto second_head = std::max(true_head_pos, false_head_pos); |
| const auto end_first_clause_pos = second_head - 1; |
| TINT_ASSERT(Reader, end_first_clause_pos < block_order_.size()); |
| const auto end_first_clause = block_order_[end_first_clause_pos]; |
| uint32_t premerge_id = 0; |
| uint32_t if_break_id = 0; |
| for (auto& then_succ_iter : GetBlockInfo(end_first_clause)->succ_edge) { |
| const uint32_t dest_id = then_succ_iter.first; |
| const auto edge_kind = then_succ_iter.second; |
| switch (edge_kind) { |
| case EdgeKind::kIfBreak: |
| if_break_id = dest_id; |
| break; |
| case EdgeKind::kForward: { |
| if (construct->ContainsPos(GetBlockInfo(dest_id)->pos)) { |
| // It's a premerge. |
| if (premerge_id != 0) { |
| // TODO(dneto): I think this is impossible to trigger at this |
| // point in the flow. It would require a merge instruction to |
| // get past the check of "at-most-one-forward-edge". |
| return Fail() |
| << "invalid structure: then-clause headed by block " |
| << true_head << " ending at block " << end_first_clause |
| << " has two forward edges to within selection" |
| << " going to " << premerge_id << " and " << dest_id; |
| } |
| premerge_id = dest_id; |
| auto* dest_block_info = GetBlockInfo(dest_id); |
| if_header_info->premerge_head = dest_id; |
| if (dest_block_info->header_for_merge != 0) { |
| // Premerge has two edges coming into it, from the then-clause |
| // and the else-clause. It's also, by construction, not the |
| // merge block of the if-selection. So it must not be a merge |
| // block itself. The OpBranchConditional instruction for the |
| // false head block is an alternate path to the merge block, and |
| // hence the merge block is not dominated by its own (different) |
| // header. |
| return Fail() |
| << "Block " << premerge_id << " is the merge block for " |
| << dest_block_info->header_for_merge |
| << " but has alternate paths reaching it, starting from" |
| << " blocks " << true_head << " and " << false_head |
| << " which are the true and false branches for the" |
| << " if-selection header block " << construct->begin_id |
| << " (violates dominance rule)"; |
| } |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| if (if_break_id != 0 && premerge_id != 0) { |
| return Fail() << "Block " << end_first_clause |
| << " in if-selection headed at block " |
| << construct->begin_id |
| << " branches to both the merge block " << if_break_id |
| << " and also to block " << premerge_id |
| << " later in the selection"; |
| } |
| } |
| } |
| return success(); |
| } |
| |
| bool FunctionEmitter::EmitFunctionVariables() { |
| if (failed()) { |
| return false; |
| } |
| for (auto& inst : *function_.entry()) { |
| if (inst.opcode() != SpvOpVariable) { |
| continue; |
| } |
| auto* var_store_type = GetVariableStoreType(inst); |
| if (failed()) { |
| return false; |
| } |
| const ast::Expression* constructor = nullptr; |
| if (inst.NumInOperands() > 1) { |
| // SPIR-V initializers are always constants. |
| // (OpenCL also allows the ID of an OpVariable, but we don't handle that |
| // here.) |
| constructor = |
| parser_impl_.MakeConstantExpression(inst.GetSingleWordInOperand(1)) |
| .expr; |
| if (!constructor) { |
| return false; |
| } |
| } |
| auto* var = parser_impl_.MakeVariable( |
| inst.result_id(), ast::StorageClass::kNone, var_store_type, false, |
| constructor, ast::DecorationList{}); |
| auto* var_decl_stmt = create<ast::VariableDeclStatement>(Source{}, var); |
| AddStatement(var_decl_stmt); |
| auto* var_type = ty_.Reference(var_store_type, ast::StorageClass::kNone); |
| identifier_types_.emplace(inst.result_id(), var_type); |
| } |
| return success(); |
| } |
| |
| TypedExpression FunctionEmitter::AddressOfIfNeeded( |
| TypedExpression expr, |
| const spvtools::opt::Instruction* inst) { |
| if (inst && expr) { |
| if (auto* spirv_type = type_mgr_->GetType(inst->type_id())) { |
| if (expr.type->Is<Reference>() && spirv_type->AsPointer()) { |
| return AddressOf(expr); |
| } |
| } |
| } |
| return expr; |
| } |
| |
| TypedExpression FunctionEmitter::MakeExpression(uint32_t id) { |
| if (failed()) { |
| return {}; |
| } |
| switch (GetSkipReason(id)) { |
| case SkipReason::kDontSkip: |
| break; |
| case SkipReason::kOpaqueObject: |
| Fail() << "internal error: unhandled use of opaque object with ID: " |
| << id; |
| return {}; |
| case SkipReason::kSinkPointerIntoUse: { |
| // Replace the pointer with its source reference expression. |
| auto source_expr = GetDefInfo(id)->sink_pointer_source_expr; |
| TINT_ASSERT(Reader, source_expr.type->Is<Reference>()); |
| return source_expr; |
| } |
| case SkipReason::kPointSizeBuiltinValue: { |
| return {ty_.F32(), create<ast::FloatLiteralExpression>(Source{}, 1.0f)}; |
| } |
| case SkipReason::kPointSizeBuiltinPointer: |
| Fail() << "unhandled use of a pointer to the PointSize builtin, with ID: " |
| << id; |
| return {}; |
| case SkipReason::kSampleMaskInBuiltinPointer: |
| Fail() |
| << "unhandled use of a pointer to the SampleMask builtin, with ID: " |
| << id; |
| return {}; |
| case SkipReason::kSampleMaskOutBuiltinPointer: { |
| // The result type is always u32. |
| auto name = namer_.Name(sample_mask_out_id); |
| return TypedExpression{ty_.U32(), |
| create<ast::IdentifierExpression>( |
| Source{}, builder_.Symbols().Register(name))}; |
| } |
| } |
| auto type_it = identifier_types_.find(id); |
| if (type_it != identifier_types_.end()) { |
| auto name = namer_.Name(id); |
| auto* type = type_it->second; |
| return TypedExpression{type, |
| create<ast::IdentifierExpression>( |
| Source{}, builder_.Symbols().Register(name))}; |
| } |
| if (parser_impl_.IsScalarSpecConstant(id)) { |
| auto name = namer_.Name(id); |
| return TypedExpression{ |
| parser_impl_.ConvertType(def_use_mgr_->GetDef(id)->type_id()), |
| create<ast::IdentifierExpression>(Source{}, |
| builder_.Symbols().Register(name))}; |
| } |
| if (singly_used_values_.count(id)) { |
| auto expr = std::move(singly_used_values_[id]); |
| singly_used_values_.erase(id); |
| return expr; |
| } |
| const auto* spirv_constant = constant_mgr_->FindDeclaredConstant(id); |
| if (spirv_constant) { |
| return parser_impl_.MakeConstantExpression(id); |
| } |
| const auto* inst = def_use_mgr_->GetDef(id); |
| if (inst == nullptr) { |
| Fail() << "ID " << id << " does not have a defining SPIR-V instruction"; |
| return {}; |
| } |
| switch (inst->opcode()) { |
| case SpvOpVariable: { |
| // This occurs for module-scope variables. |
| auto name = namer_.Name(inst->result_id()); |
| return TypedExpression{ |
| parser_impl_.ConvertType(inst->type_id(), PtrAs::Ref), |
| create<ast::IdentifierExpression>(Source{}, |
| builder_.Symbols().Register(name))}; |
| } |
| case SpvOpUndef: |
| // Substitute a null value for undef. |
| // This case occurs when OpUndef appears at module scope, as if it were |
| // a constant. |
| return parser_impl_.MakeNullExpression( |
| parser_impl_.ConvertType(inst->type_id())); |
| |
| default: |
| break; |
| } |
| if (const spvtools::opt::BasicBlock* const bb = |
| ir_context_.get_instr_block(id)) { |
| if (auto* block = GetBlockInfo(bb->id())) { |
| if (block->pos == kInvalidBlockPos) { |
| // The value came from a block not in the block order. |
| // Substitute a null value. |
| return parser_impl_.MakeNullExpression( |
| parser_impl_.ConvertType(inst->type_id())); |
| } |
| } |
| } |
| Fail() << "unhandled expression for ID " << id << "\n" << inst->PrettyPrint(); |
| return {}; |
| } |
| |
| bool FunctionEmitter::EmitFunctionBodyStatements() { |
| // Dump the basic blocks in order, grouped by construct. |
| |
| // We maintain a stack of StatementBlock objects, where new statements |
| // are always written to the topmost entry of the stack. By this point in |
| // processing, we have already recorded the interesting control flow |
| // boundaries in the BlockInfo and associated Construct objects. As we |
| // enter a new statement grouping, we push onto the stack, and also schedule |
| // the statement block's completion and removal at a future block's ID. |
| |
| // Upon entry, the statement stack has one entry representing the whole |
| // function. |
| TINT_ASSERT(Reader, !constructs_.empty()); |
| Construct* function_construct = constructs_[0].get(); |
| TINT_ASSERT(Reader, function_construct != nullptr); |
| TINT_ASSERT(Reader, function_construct->kind == Construct::kFunction); |
| // Make the first entry valid by filling in the construct field, which |
| // had not been computed at the time the entry was first created. |
| // TODO(dneto): refactor how the first construct is created vs. |
| // this statements stack entry is populated. |
| TINT_ASSERT(Reader, statements_stack_.size() == 1); |
| statements_stack_[0].SetConstruct(function_construct); |
| |
| for (auto block_id : block_order()) { |
| if (!EmitBasicBlock(*GetBlockInfo(block_id))) { |
| return false; |
| } |
| } |
| return success(); |
| } |
| |
| bool FunctionEmitter::EmitBasicBlock(const BlockInfo& block_info) { |
| // Close off previous constructs. |
| while (!statements_stack_.empty() && |
| (statements_stack_.back().GetEndId() == block_info.id)) { |
| statements_stack_.back().Finalize(&builder_); |
| statements_stack_.pop_back(); |
| } |
| if (statements_stack_.empty()) { |
| return Fail() << "internal error: statements stack empty at block " |
| << block_info.id; |
| } |
| |
| // Enter new constructs. |
| |
| std::vector<const Construct*> entering_constructs; // inner most comes first |
| { |
| auto* here = block_info.construct; |
| auto* const top_construct = statements_stack_.back().GetConstruct(); |
| while (here != top_construct) { |
| // Only enter a construct at its header block. |
| if (here->begin_id == block_info.id) { |
| entering_constructs.push_back(here); |
| } |
| here = here->parent; |
| } |
| } |
| // What constructs can we have entered? |
| // - It can't be kFunction, because there is only one of those, and it was |
| // already on the stack at the outermost level. |
| // - We have at most one of kSwitchSelection, or kLoop because each of those |
| // is headed by a block with a merge instruction (OpLoopMerge for kLoop, |
| // and OpSelectionMerge for kSwitchSelection). |
| // - When there is a kIfSelection, it can't contain another construct, |
| // because both would have to have their own distinct merge instructions |
| // and distinct terminators. |
| // - A kContinue can contain a kContinue |
| // This is possible in Vulkan SPIR-V, but Tint disallows this by the rule |
| // that a block can be continue target for at most one header block. See |
| // test DISABLED_BlockIsContinueForMoreThanOneHeader. If we generalize this, |
| // then by a dominance argument, the inner loop continue target can only be |
| // a single-block loop. |
| // TODO(dneto): Handle this case. |
| // - If a kLoop is on the outside, its terminator is either: |
| // - an OpBranch, in which case there is no other construct. |
| // - an OpBranchConditional, in which case there is either an kIfSelection |
| // (when both branch targets are different and are inside the loop), |
| // or no other construct (because the branch targets are the same, |
| // or one of them is a break or continue). |
| // - All that's left is a kContinue on the outside, and one of |
| // kIfSelection, kSwitchSelection, kLoop on the inside. |
| // |
| // The kContinue can be the parent of the other. For example, a selection |
| // starting at the first block of a continue construct. |
| // |
| // The kContinue can't be the child of the other because either: |
| // - The other can't be kLoop because: |
| // - If the kLoop is for a different loop then the kContinue, then |
| // the kContinue must be its own loop header, and so the same |
| // block is two different loops. That's a contradiction. |
| // - If the kLoop is for a the same loop, then this is a contradiction |
| // because a kContinue and its kLoop have disjoint block sets. |
| // - The other construct can't be a selection because: |
| // - The kContinue construct is the entire loop, i.e. the continue |
| // target is its own loop header block. But then the continue target |
| // has an OpLoopMerge instruction, which contradicts this block being |
| // a selection header. |
| // - The kContinue is in a multi-block loop that is has a non-empty |
| // kLoop; and the selection contains the kContinue block but not the |
| // loop block. That breaks dominance rules. That is, the continue |
| // target is dominated by that loop header, and so gets found by the |
| // block traversal on the outside before the selection is found. The |
| // selection is inside the outer loop. |
| // |
| // So we fall into one of the following cases: |
| // - We are entering 0 or 1 constructs, or |
| // - We are entering 2 constructs, with the outer one being a kContinue or |
| // kLoop, the inner one is not a continue. |
| if (entering_constructs.size() > 2) { |
| return Fail() << "internal error: bad construct nesting found"; |
| } |
| if (entering_constructs.size() == 2) { |
| auto inner_kind = entering_constructs[0]->kind; |
| auto outer_kind = entering_constructs[1]->kind; |
| if (outer_kind != Construct::kContinue && outer_kind != Construct::kLoop) { |
| return Fail() |
| << "internal error: bad construct nesting. Only a Continue " |
| "or a Loop construct can be outer construct on same block. " |
| "Got outer kind " |
| << int(outer_kind) << " inner kind " << int(inner_kind); |
| } |
| if (inner_kind == Construct::kContinue) { |
| return Fail() << "internal error: unsupported construct nesting: " |
| "Continue around Continue"; |
| } |
| if (inner_kind != Construct::kIfSelection && |
| inner_kind != Construct::kSwitchSelection && |
| inner_kind != Construct::kLoop) { |
| return Fail() << "internal error: bad construct nesting. Continue around " |
| "something other than if, switch, or loop"; |
| } |
| } |
| |
| // Enter constructs from outermost to innermost. |
| // kLoop and kContinue push a new statement-block onto the stack before |
| // emitting statements in the block. |
| // kIfSelection and kSwitchSelection emit statements in the block and then |
| // emit push a new statement-block. Only emit the statements in the block |
| // once. |
| |
| // Have we emitted the statements for this block? |
| bool emitted = false; |
| |
| // When entering an if-selection or switch-selection, we will emit the WGSL |
| // construct to cause the divergent branching. But otherwise, we will |
| // emit a "normal" block terminator, which occurs at the end of this method. |
| bool has_normal_terminator = true; |
| |
| for (auto iter = entering_constructs.rbegin(); |
| iter != entering_constructs.rend(); ++iter) { |
| const Construct* construct = *iter; |
| |
| switch (construct->kind) { |
| case Construct::kFunction: |
| return Fail() << "internal error: nested function construct"; |
| |
| case Construct::kLoop: |
| if (!EmitLoopStart(construct)) { |
| return false; |
| } |
| if (!EmitStatementsInBasicBlock(block_info, &emitted)) { |
| return false; |
| } |
| break; |
| |
| case Construct::kContinue: |
| if (block_info.is_continue_entire_loop) { |
| if (!EmitLoopStart(construct)) { |
| return false; |
| } |
| if (!EmitStatementsInBasicBlock(block_info, &emitted)) { |
| return false; |
| } |
| } else { |
| if (!EmitContinuingStart(construct)) { |
| return false; |
| } |
| } |
| break; |
| |
| case Construct::kIfSelection: |
| if (!EmitStatementsInBasicBlock(block_info, &emitted)) { |
| return false; |
| } |
| if (!EmitIfStart(block_info)) { |
| return false; |
| } |
| has_normal_terminator = false; |
| break; |
| |
| case Construct::kSwitchSelection: |
| if (!EmitStatementsInBasicBlock(block_info, &emitted)) { |
| return false; |
| } |
| if (!EmitSwitchStart(block_info)) { |
| return false; |
| } |
| has_normal_terminator = false; |
| break; |
| } |
| } |
| |
| // If we aren't starting or transitioning, then emit the normal |
| // statements now. |
| if (!EmitStatementsInBasicBlock(block_info, &emitted)) { |
| return false; |
| } |
| |
| if (has_normal_terminator) { |
| if (!EmitNormalTerminator(block_info)) { |
| return false; |
| } |
| } |
| return success(); |
| } |
| |
| bool FunctionEmitter::EmitIfStart(const BlockInfo& block_info) { |
| // The block is the if-header block. So its construct is the if construct. |
| auto* construct = block_info.construct; |
| TINT_ASSERT(Reader, construct->kind == Construct::kIfSelection); |
| TINT_ASSERT(Reader, construct->begin_id == block_info.id); |
| |
| const uint32_t true_head = block_info.true_head; |
| const uint32_t false_head = block_info.false_head; |
| const uint32_t premerge_head = block_info.premerge_head; |
| |
| const std::string guard_name = block_info.flow_guard_name; |
| if (!guard_name.empty()) { |
| // Declare the guard variable just before the "if", initialized to true. |
| auto* guard_var = |
| builder_.Var(guard_name, builder_.ty.bool_(), MakeTrue(Source{})); |
| auto* guard_decl = create<ast::VariableDeclStatement>(Source{}, guard_var); |
| AddStatement(guard_decl); |
| } |
| |
| const auto condition_id = |
| block_info.basic_block->terminator()->GetSingleWordInOperand(0); |
| auto* cond = MakeExpression(condition_id).expr; |
| if (!cond) { |
| return false; |
| } |
| // Generate the code for the condition. |
| auto* builder = AddStatementBuilder<IfStatementBuilder>(cond); |
| |
|