blob: 1e6a26dae94c2f088ffba8b3b8eba5801bf14ea3 [file] [log] [blame]
// Copyright 2022 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/tint/ir/test_helper.h"
#include "gmock/gmock.h"
#include "src/tint/ast/case_selector.h"
#include "src/tint/ast/int_literal_expression.h"
#include "src/tint/constant/scalar.h"
namespace tint::ir {
namespace {
using namespace tint::number_suffixes; // NOLINT
using IR_BuilderImplTest = TestHelper;
TEST_F(IR_BuilderImplTest, Func) {
Func("f", utils::Empty, ty.void_(), utils::Empty);
auto r = Build();
ASSERT_TRUE(r) << Error();
auto m = r.Move();
ASSERT_EQ(0u, m.entry_points.Length());
ASSERT_EQ(1u, m.functions.Length());
auto* f = m.functions[0];
ASSERT_NE(f->start_target, nullptr);
ASSERT_NE(f->end_target, nullptr);
EXPECT_EQ(1u, f->start_target->inbound_branches.Length());
EXPECT_EQ(1u, f->end_target->inbound_branches.Length());
EXPECT_EQ(Disassemble(m), R"(%fn0 = func f
%fn1 = block
ret
func_end
)");
}
TEST_F(IR_BuilderImplTest, EntryPoint) {
Func("f", utils::Empty, ty.void_(), utils::Empty,
utils::Vector{Stage(ast::PipelineStage::kFragment)});
auto r = Build();
ASSERT_TRUE(r) << Error();
auto m = r.Move();
ASSERT_EQ(1u, m.entry_points.Length());
EXPECT_EQ(m.functions[0], m.entry_points[0]);
}
TEST_F(IR_BuilderImplTest, IfStatement) {
auto* ast_if = If(true, Block(), Else(Block()));
WrapInFunction(ast_if);
auto r = Build();
ASSERT_TRUE(r) << Error();
auto m = r.Move();
auto* ir_if = FlowNodeForAstNode(ast_if);
ASSERT_NE(ir_if, nullptr);
EXPECT_TRUE(ir_if->Is<ir::If>());
auto* flow = ir_if->As<ir::If>();
ASSERT_NE(flow->true_.target, nullptr);
ASSERT_NE(flow->false_.target, nullptr);
ASSERT_NE(flow->merge.target, nullptr);
ASSERT_EQ(1u, m.functions.Length());
auto* func = m.functions[0];
EXPECT_EQ(1u, flow->inbound_branches.Length());
EXPECT_EQ(1u, flow->true_.target->inbound_branches.Length());
EXPECT_EQ(1u, flow->false_.target->inbound_branches.Length());
EXPECT_EQ(2u, flow->merge.target->inbound_branches.Length());
EXPECT_EQ(1u, func->start_target->inbound_branches.Length());
EXPECT_EQ(1u, func->end_target->inbound_branches.Length());
EXPECT_EQ(Disassemble(m), R"(%fn0 = func test_function
%fn1 = block
branch %fn2
%fn2 = if true [t: %fn3, f: %fn4, m: %fn5]
# true branch
%fn3 = block
branch %fn5
# false branch
%fn4 = block
branch %fn5
# if merge
%fn5 = block
ret
func_end
)");
}
TEST_F(IR_BuilderImplTest, IfStatement_TrueReturns) {
auto* ast_if = If(true, Block(Return()));
WrapInFunction(ast_if);
auto r = Build();
ASSERT_TRUE(r) << Error();
auto m = r.Move();
auto* ir_if = FlowNodeForAstNode(ast_if);
ASSERT_NE(ir_if, nullptr);
EXPECT_TRUE(ir_if->Is<ir::If>());
auto* flow = ir_if->As<ir::If>();
ASSERT_NE(flow->true_.target, nullptr);
ASSERT_NE(flow->false_.target, nullptr);
ASSERT_NE(flow->merge.target, nullptr);
ASSERT_EQ(1u, m.functions.Length());
auto* func = m.functions[0];
EXPECT_EQ(1u, flow->inbound_branches.Length());
EXPECT_EQ(1u, flow->true_.target->inbound_branches.Length());
EXPECT_EQ(1u, flow->false_.target->inbound_branches.Length());
EXPECT_EQ(1u, flow->merge.target->inbound_branches.Length());
EXPECT_EQ(1u, func->start_target->inbound_branches.Length());
EXPECT_EQ(2u, func->end_target->inbound_branches.Length());
EXPECT_EQ(Disassemble(m), R"(%fn0 = func test_function
%fn1 = block
branch %fn2
%fn2 = if true [t: %fn3, f: %fn4, m: %fn5]
# true branch
%fn3 = block
ret
# false branch
%fn4 = block
branch %fn5
# if merge
%fn5 = block
ret
func_end
)");
}
TEST_F(IR_BuilderImplTest, IfStatement_FalseReturns) {
auto* ast_if = If(true, Block(), Else(Block(Return())));
WrapInFunction(ast_if);
auto r = Build();
ASSERT_TRUE(r) << Error();
auto m = r.Move();
auto* ir_if = FlowNodeForAstNode(ast_if);
ASSERT_NE(ir_if, nullptr);
EXPECT_TRUE(ir_if->Is<ir::If>());
auto* flow = ir_if->As<ir::If>();
ASSERT_NE(flow->true_.target, nullptr);
ASSERT_NE(flow->false_.target, nullptr);
ASSERT_NE(flow->merge.target, nullptr);
ASSERT_EQ(1u, m.functions.Length());
auto* func = m.functions[0];
EXPECT_EQ(1u, flow->inbound_branches.Length());
EXPECT_EQ(1u, flow->true_.target->inbound_branches.Length());
EXPECT_EQ(1u, flow->false_.target->inbound_branches.Length());
EXPECT_EQ(1u, flow->merge.target->inbound_branches.Length());
EXPECT_EQ(1u, func->start_target->inbound_branches.Length());
EXPECT_EQ(2u, func->end_target->inbound_branches.Length());
EXPECT_EQ(Disassemble(m), R"(%fn0 = func test_function
%fn1 = block
branch %fn2
%fn2 = if true [t: %fn3, f: %fn4, m: %fn5]
# true branch
%fn3 = block
branch %fn5
# false branch
%fn4 = block
ret
# if merge
%fn5 = block
ret
func_end
)");
}
TEST_F(IR_BuilderImplTest, IfStatement_BothReturn) {
auto* ast_if = If(true, Block(Return()), Else(Block(Return())));
WrapInFunction(ast_if);
auto r = Build();
ASSERT_TRUE(r) << Error();
auto m = r.Move();
auto* ir_if = FlowNodeForAstNode(ast_if);
ASSERT_NE(ir_if, nullptr);
EXPECT_TRUE(ir_if->Is<ir::If>());
auto* flow = ir_if->As<ir::If>();
ASSERT_NE(flow->true_.target, nullptr);
ASSERT_NE(flow->false_.target, nullptr);
ASSERT_NE(flow->merge.target, nullptr);
ASSERT_EQ(1u, m.functions.Length());
auto* func = m.functions[0];
EXPECT_EQ(1u, flow->inbound_branches.Length());
EXPECT_EQ(1u, flow->true_.target->inbound_branches.Length());
EXPECT_EQ(1u, flow->false_.target->inbound_branches.Length());
EXPECT_EQ(0u, flow->merge.target->inbound_branches.Length());
EXPECT_EQ(1u, func->start_target->inbound_branches.Length());
EXPECT_EQ(2u, func->end_target->inbound_branches.Length());
EXPECT_EQ(Disassemble(m), R"(%fn0 = func test_function
%fn1 = block
branch %fn2
%fn2 = if true [t: %fn3, f: %fn4]
# true branch
%fn3 = block
ret
# false branch
%fn4 = block
ret
func_end
)");
}
TEST_F(IR_BuilderImplTest, IfStatement_JumpChainToMerge) {
auto* ast_loop = Loop(Block(Break()));
auto* ast_if = If(true, Block(ast_loop));
WrapInFunction(ast_if);
auto r = Build();
ASSERT_TRUE(r) << Error();
auto m = r.Move();
auto* ir_if = FlowNodeForAstNode(ast_if);
ASSERT_NE(ir_if, nullptr);
EXPECT_TRUE(ir_if->Is<ir::If>());
auto* if_flow = ir_if->As<ir::If>();
ASSERT_NE(if_flow->true_.target, nullptr);
ASSERT_NE(if_flow->false_.target, nullptr);
ASSERT_NE(if_flow->merge.target, nullptr);
auto* ir_loop = FlowNodeForAstNode(ast_loop);
ASSERT_NE(ir_loop, nullptr);
EXPECT_TRUE(ir_loop->Is<ir::Loop>());
auto* loop_flow = ir_loop->As<ir::Loop>();
ASSERT_NE(loop_flow->start.target, nullptr);
ASSERT_NE(loop_flow->continuing.target, nullptr);
ASSERT_NE(loop_flow->merge.target, nullptr);
EXPECT_EQ(Disassemble(m), R"(%fn0 = func test_function
%fn1 = block
branch %fn2
%fn2 = if true [t: %fn3, f: %fn4, m: %fn5]
# true branch
%fn3 = block
branch %fn6
%fn6 = loop [s: %fn7, m: %fn8]
# loop start
%fn7 = block
branch %fn8
# loop merge
%fn8 = block
branch %fn5
# false branch
%fn4 = block
branch %fn5
# if merge
%fn5 = block
ret
func_end
)");
}
TEST_F(IR_BuilderImplTest, Loop_WithBreak) {
auto* ast_loop = Loop(Block(Break()));
WrapInFunction(ast_loop);
auto r = Build();
ASSERT_TRUE(r) << Error();
auto m = r.Move();
auto* ir_loop = FlowNodeForAstNode(ast_loop);
ASSERT_NE(ir_loop, nullptr);
EXPECT_TRUE(ir_loop->Is<ir::Loop>());
auto* flow = ir_loop->As<ir::Loop>();
ASSERT_NE(flow->start.target, nullptr);
ASSERT_NE(flow->continuing.target, nullptr);
ASSERT_NE(flow->merge.target, nullptr);
ASSERT_EQ(1u, m.functions.Length());
auto* func = m.functions[0];
EXPECT_EQ(1u, flow->inbound_branches.Length());
EXPECT_EQ(2u, flow->start.target->inbound_branches.Length());
EXPECT_EQ(0u, flow->continuing.target->inbound_branches.Length());
EXPECT_EQ(1u, flow->merge.target->inbound_branches.Length());
EXPECT_EQ(1u, func->start_target->inbound_branches.Length());
EXPECT_EQ(1u, func->end_target->inbound_branches.Length());
EXPECT_EQ(Disassemble(m), R"(%fn0 = func test_function
%fn1 = block
branch %fn2
%fn2 = loop [s: %fn3, m: %fn4]
# loop start
%fn3 = block
branch %fn4
# loop merge
%fn4 = block
ret
func_end
)");
}
TEST_F(IR_BuilderImplTest, Loop_WithContinue) {
auto* ast_if = If(true, Block(Break()));
auto* ast_loop = Loop(Block(ast_if, Continue()));
WrapInFunction(ast_loop);
auto r = Build();
ASSERT_TRUE(r) << Error();
auto m = r.Move();
auto* ir_loop = FlowNodeForAstNode(ast_loop);
ASSERT_NE(ir_loop, nullptr);
EXPECT_TRUE(ir_loop->Is<ir::Loop>());
auto* loop_flow = ir_loop->As<ir::Loop>();
ASSERT_NE(loop_flow->start.target, nullptr);
ASSERT_NE(loop_flow->continuing.target, nullptr);
ASSERT_NE(loop_flow->merge.target, nullptr);
auto* ir_if = FlowNodeForAstNode(ast_if);
ASSERT_NE(ir_if, nullptr);
ASSERT_TRUE(ir_if->Is<ir::If>());
auto* if_flow = ir_if->As<ir::If>();
ASSERT_NE(if_flow->true_.target, nullptr);
ASSERT_NE(if_flow->false_.target, nullptr);
ASSERT_NE(if_flow->merge.target, nullptr);
ASSERT_EQ(1u, m.functions.Length());
auto* func = m.functions[0];
EXPECT_EQ(1u, loop_flow->inbound_branches.Length());
EXPECT_EQ(2u, loop_flow->start.target->inbound_branches.Length());
EXPECT_EQ(1u, loop_flow->continuing.target->inbound_branches.Length());
EXPECT_EQ(1u, loop_flow->merge.target->inbound_branches.Length());
EXPECT_EQ(1u, if_flow->inbound_branches.Length());
EXPECT_EQ(1u, if_flow->true_.target->inbound_branches.Length());
EXPECT_EQ(1u, if_flow->false_.target->inbound_branches.Length());
EXPECT_EQ(1u, if_flow->merge.target->inbound_branches.Length());
EXPECT_EQ(1u, func->start_target->inbound_branches.Length());
EXPECT_EQ(1u, func->end_target->inbound_branches.Length());
EXPECT_EQ(Disassemble(m), R"(%fn0 = func test_function
%fn1 = block
branch %fn2
%fn2 = loop [s: %fn3, c: %fn4, m: %fn5]
# loop start
%fn3 = block
branch %fn6
%fn6 = if true [t: %fn7, f: %fn8, m: %fn9]
# true branch
%fn7 = block
branch %fn5
# false branch
%fn8 = block
branch %fn9
# if merge
%fn9 = block
branch %fn4
# loop continuing
%fn4 = block
branch %fn3
# loop merge
%fn5 = block
ret
func_end
)");
}
TEST_F(IR_BuilderImplTest, Loop_WithContinuing_BreakIf) {
auto* ast_break_if = BreakIf(true);
auto* ast_loop = Loop(Block(), Block(ast_break_if));
WrapInFunction(ast_loop);
auto r = Build();
ASSERT_TRUE(r) << Error();
auto m = r.Move();
auto* ir_loop = FlowNodeForAstNode(ast_loop);
ASSERT_NE(ir_loop, nullptr);
EXPECT_TRUE(ir_loop->Is<ir::Loop>());
auto* loop_flow = ir_loop->As<ir::Loop>();
ASSERT_NE(loop_flow->start.target, nullptr);
ASSERT_NE(loop_flow->continuing.target, nullptr);
ASSERT_NE(loop_flow->merge.target, nullptr);
auto* ir_break_if = FlowNodeForAstNode(ast_break_if);
ASSERT_NE(ir_break_if, nullptr);
ASSERT_TRUE(ir_break_if->Is<ir::If>());
auto* break_if_flow = ir_break_if->As<ir::If>();
ASSERT_NE(break_if_flow->true_.target, nullptr);
ASSERT_NE(break_if_flow->false_.target, nullptr);
ASSERT_NE(break_if_flow->merge.target, nullptr);
ASSERT_EQ(1u, m.functions.Length());
auto* func = m.functions[0];
EXPECT_EQ(1u, loop_flow->inbound_branches.Length());
EXPECT_EQ(2u, loop_flow->start.target->inbound_branches.Length());
EXPECT_EQ(1u, loop_flow->continuing.target->inbound_branches.Length());
EXPECT_EQ(1u, loop_flow->merge.target->inbound_branches.Length());
EXPECT_EQ(1u, break_if_flow->inbound_branches.Length());
EXPECT_EQ(1u, break_if_flow->true_.target->inbound_branches.Length());
EXPECT_EQ(1u, break_if_flow->false_.target->inbound_branches.Length());
EXPECT_EQ(1u, break_if_flow->merge.target->inbound_branches.Length());
EXPECT_EQ(1u, func->start_target->inbound_branches.Length());
EXPECT_EQ(1u, func->end_target->inbound_branches.Length());
EXPECT_EQ(Disassemble(m), R"(%fn0 = func test_function
%fn1 = block
branch %fn2
%fn2 = loop [s: %fn3, c: %fn4, m: %fn5]
# loop start
%fn3 = block
branch %fn4
# loop continuing
%fn4 = block
branch %fn6
%fn6 = if true [t: %fn7, f: %fn8, m: %fn9]
# true branch
%fn7 = block
branch %fn5
# false branch
%fn8 = block
branch %fn9
# if merge
%fn9 = block
branch %fn3
# loop merge
%fn5 = block
ret
func_end
)");
}
TEST_F(IR_BuilderImplTest, Loop_WithReturn) {
auto* ast_if = If(true, Block(Return()));
auto* ast_loop = Loop(Block(ast_if, Continue()));
WrapInFunction(ast_loop);
auto r = Build();
ASSERT_TRUE(r) << Error();
auto m = r.Move();
auto* ir_loop = FlowNodeForAstNode(ast_loop);
ASSERT_NE(ir_loop, nullptr);
EXPECT_TRUE(ir_loop->Is<ir::Loop>());
auto* loop_flow = ir_loop->As<ir::Loop>();
ASSERT_NE(loop_flow->start.target, nullptr);
ASSERT_NE(loop_flow->continuing.target, nullptr);
ASSERT_NE(loop_flow->merge.target, nullptr);
auto* ir_if = FlowNodeForAstNode(ast_if);
ASSERT_NE(ir_if, nullptr);
ASSERT_TRUE(ir_if->Is<ir::If>());
auto* if_flow = ir_if->As<ir::If>();
ASSERT_NE(if_flow->true_.target, nullptr);
ASSERT_NE(if_flow->false_.target, nullptr);
ASSERT_NE(if_flow->merge.target, nullptr);
ASSERT_EQ(1u, m.functions.Length());
auto* func = m.functions[0];
EXPECT_EQ(1u, loop_flow->inbound_branches.Length());
EXPECT_EQ(2u, loop_flow->start.target->inbound_branches.Length());
EXPECT_EQ(1u, loop_flow->continuing.target->inbound_branches.Length());
EXPECT_EQ(0u, loop_flow->merge.target->inbound_branches.Length());
EXPECT_EQ(1u, if_flow->inbound_branches.Length());
EXPECT_EQ(1u, if_flow->true_.target->inbound_branches.Length());
EXPECT_EQ(1u, if_flow->false_.target->inbound_branches.Length());
EXPECT_EQ(1u, if_flow->merge.target->inbound_branches.Length());
EXPECT_EQ(1u, func->start_target->inbound_branches.Length());
EXPECT_EQ(1u, func->end_target->inbound_branches.Length());
EXPECT_EQ(Disassemble(m), R"(%fn0 = func test_function
%fn1 = block
branch %fn2
%fn2 = loop [s: %fn3, c: %fn4]
# loop start
%fn3 = block
branch %fn5
%fn5 = if true [t: %fn6, f: %fn7, m: %fn8]
# true branch
%fn6 = block
ret
# false branch
%fn7 = block
branch %fn8
# if merge
%fn8 = block
branch %fn4
# loop continuing
%fn4 = block
branch %fn3
func_end
)");
}
TEST_F(IR_BuilderImplTest, Loop_WithOnlyReturn) {
auto* ast_loop = Loop(Block(Return(), Continue()));
WrapInFunction(ast_loop, If(true, Block(Return())));
auto r = Build();
ASSERT_TRUE(r) << Error();
auto m = r.Move();
auto* ir_loop = FlowNodeForAstNode(ast_loop);
ASSERT_NE(ir_loop, nullptr);
EXPECT_TRUE(ir_loop->Is<ir::Loop>());
auto* loop_flow = ir_loop->As<ir::Loop>();
ASSERT_NE(loop_flow->start.target, nullptr);
ASSERT_NE(loop_flow->continuing.target, nullptr);
ASSERT_NE(loop_flow->merge.target, nullptr);
ASSERT_EQ(1u, m.functions.Length());
auto* func = m.functions[0];
EXPECT_EQ(1u, loop_flow->inbound_branches.Length());
EXPECT_EQ(2u, loop_flow->start.target->inbound_branches.Length());
EXPECT_EQ(0u, loop_flow->continuing.target->inbound_branches.Length());
EXPECT_EQ(0u, loop_flow->merge.target->inbound_branches.Length());
EXPECT_EQ(1u, func->start_target->inbound_branches.Length());
EXPECT_EQ(1u, func->end_target->inbound_branches.Length());
EXPECT_EQ(Disassemble(m), R"(%fn0 = func test_function
%fn1 = block
branch %fn2
%fn2 = loop [s: %fn3]
# loop start
%fn3 = block
ret
func_end
)");
}
TEST_F(IR_BuilderImplTest, Loop_WithOnlyReturn_ContinuingBreakIf) {
// Note, even though there is code in the loop merge (specifically, the
// `ast_if` below), it doesn't get emitted as there is no way to reach the
// loop merge due to the loop itself doing a `return`. This is why the
// loop merge gets marked as Dead and the `ast_if` doesn't appear.
//
// Similar, the continuing block goes away as there is no way to get there, so it's treated
// as dead code and dropped.
auto* ast_break_if = BreakIf(true);
auto* ast_loop = Loop(Block(Return()), Block(ast_break_if));
auto* ast_if = If(true, Block(Return()));
WrapInFunction(Block(ast_loop, ast_if));
auto r = Build();
ASSERT_TRUE(r) << Error();
auto m = r.Move();
auto* ir_loop = FlowNodeForAstNode(ast_loop);
ASSERT_NE(ir_loop, nullptr);
EXPECT_TRUE(ir_loop->Is<ir::Loop>());
auto* loop_flow = ir_loop->As<ir::Loop>();
ASSERT_NE(loop_flow->start.target, nullptr);
ASSERT_NE(loop_flow->continuing.target, nullptr);
ASSERT_NE(loop_flow->merge.target, nullptr);
auto* ir_if = FlowNodeForAstNode(ast_if);
EXPECT_EQ(ir_if, nullptr);
auto* ir_break_if = FlowNodeForAstNode(ast_break_if);
ASSERT_NE(ir_break_if, nullptr);
EXPECT_TRUE(ir_break_if->Is<ir::If>());
auto* break_if_flow = ir_break_if->As<ir::If>();
ASSERT_NE(break_if_flow->true_.target, nullptr);
ASSERT_NE(break_if_flow->false_.target, nullptr);
ASSERT_NE(break_if_flow->merge.target, nullptr);
ASSERT_EQ(1u, m.functions.Length());
auto* func = m.functions[0];
EXPECT_EQ(1u, loop_flow->inbound_branches.Length());
EXPECT_EQ(2u, loop_flow->start.target->inbound_branches.Length());
EXPECT_EQ(0u, loop_flow->continuing.target->inbound_branches.Length());
EXPECT_EQ(1u, loop_flow->merge.target->inbound_branches.Length());
EXPECT_EQ(1u, func->start_target->inbound_branches.Length());
// This is 1 because only the loop branch happens. The subsequent if return is dead code.
EXPECT_EQ(1u, func->end_target->inbound_branches.Length());
EXPECT_EQ(Disassemble(m), R"(%fn0 = func test_function
%fn1 = block
branch %fn2
%fn2 = loop [s: %fn3]
# loop start
%fn3 = block
ret
func_end
)");
}
TEST_F(IR_BuilderImplTest, Loop_WithIf_BothBranchesBreak) {
auto* ast_if = If(true, Block(Break()), Else(Block(Break())));
auto* ast_loop = Loop(Block(ast_if, Continue()));
WrapInFunction(ast_loop);
auto r = Build();
ASSERT_TRUE(r) << Error();
auto m = r.Move();
auto* ir_loop = FlowNodeForAstNode(ast_loop);
ASSERT_NE(ir_loop, nullptr);
EXPECT_TRUE(ir_loop->Is<ir::Loop>());
auto* loop_flow = ir_loop->As<ir::Loop>();
ASSERT_NE(loop_flow->start.target, nullptr);
ASSERT_NE(loop_flow->continuing.target, nullptr);
ASSERT_NE(loop_flow->merge.target, nullptr);
auto* ir_if = FlowNodeForAstNode(ast_if);
ASSERT_NE(ir_if, nullptr);
ASSERT_TRUE(ir_if->Is<ir::If>());
auto* if_flow = ir_if->As<ir::If>();
ASSERT_NE(if_flow->true_.target, nullptr);
ASSERT_NE(if_flow->false_.target, nullptr);
ASSERT_NE(if_flow->merge.target, nullptr);
ASSERT_EQ(1u, m.functions.Length());
auto* func = m.functions[0];
EXPECT_EQ(1u, loop_flow->inbound_branches.Length());
EXPECT_EQ(2u, loop_flow->start.target->inbound_branches.Length());
EXPECT_EQ(0u, loop_flow->continuing.target->inbound_branches.Length());
EXPECT_EQ(2u, loop_flow->merge.target->inbound_branches.Length());
EXPECT_EQ(1u, if_flow->inbound_branches.Length());
EXPECT_EQ(1u, if_flow->true_.target->inbound_branches.Length());
EXPECT_EQ(1u, if_flow->false_.target->inbound_branches.Length());
EXPECT_EQ(0u, if_flow->merge.target->inbound_branches.Length());
EXPECT_EQ(1u, func->start_target->inbound_branches.Length());
EXPECT_EQ(1u, func->end_target->inbound_branches.Length());
EXPECT_EQ(Disassemble(m), R"(%fn0 = func test_function
%fn1 = block
branch %fn2
%fn2 = loop [s: %fn3, m: %fn4]
# loop start
%fn3 = block
branch %fn5
%fn5 = if true [t: %fn6, f: %fn7]
# true branch
%fn6 = block
branch %fn4
# false branch
%fn7 = block
branch %fn4
# loop merge
%fn4 = block
ret
func_end
)");
}
TEST_F(IR_BuilderImplTest, Loop_Nested) {
auto* ast_if_a = If(true, Block(Break()));
auto* ast_if_b = If(true, Block(Continue()));
auto* ast_if_c = BreakIf(true);
auto* ast_if_d = If(true, Block(Break()));
auto* ast_loop_d = Loop(Block(), Block(ast_if_c));
auto* ast_loop_c = Loop(Block(Break()));
auto* ast_loop_b = Loop(Block(ast_if_a, ast_if_b), Block(ast_loop_c, ast_loop_d));
auto* ast_loop_a = Loop(Block(ast_loop_b, ast_if_d));
WrapInFunction(ast_loop_a);
auto r = Build();
ASSERT_TRUE(r) << Error();
auto m = r.Move();
auto* ir_loop_a = FlowNodeForAstNode(ast_loop_a);
ASSERT_NE(ir_loop_a, nullptr);
EXPECT_TRUE(ir_loop_a->Is<ir::Loop>());
auto* loop_flow_a = ir_loop_a->As<ir::Loop>();
ASSERT_NE(loop_flow_a->start.target, nullptr);
ASSERT_NE(loop_flow_a->continuing.target, nullptr);
ASSERT_NE(loop_flow_a->merge.target, nullptr);
auto* ir_loop_b = FlowNodeForAstNode(ast_loop_b);
ASSERT_NE(ir_loop_b, nullptr);
EXPECT_TRUE(ir_loop_b->Is<ir::Loop>());
auto* loop_flow_b = ir_loop_b->As<ir::Loop>();
ASSERT_NE(loop_flow_b->start.target, nullptr);
ASSERT_NE(loop_flow_b->continuing.target, nullptr);
ASSERT_NE(loop_flow_b->merge.target, nullptr);
auto* ir_loop_c = FlowNodeForAstNode(ast_loop_c);
ASSERT_NE(ir_loop_c, nullptr);
EXPECT_TRUE(ir_loop_c->Is<ir::Loop>());
auto* loop_flow_c = ir_loop_c->As<ir::Loop>();
ASSERT_NE(loop_flow_c->start.target, nullptr);
ASSERT_NE(loop_flow_c->continuing.target, nullptr);
ASSERT_NE(loop_flow_c->merge.target, nullptr);
auto* ir_loop_d = FlowNodeForAstNode(ast_loop_d);
ASSERT_NE(ir_loop_d, nullptr);
EXPECT_TRUE(ir_loop_d->Is<ir::Loop>());
auto* loop_flow_d = ir_loop_d->As<ir::Loop>();
ASSERT_NE(loop_flow_d->start.target, nullptr);
ASSERT_NE(loop_flow_d->continuing.target, nullptr);
ASSERT_NE(loop_flow_d->merge.target, nullptr);
auto* ir_if_a = FlowNodeForAstNode(ast_if_a);
ASSERT_NE(ir_if_a, nullptr);
EXPECT_TRUE(ir_if_a->Is<ir::If>());
auto* if_flow_a = ir_if_a->As<ir::If>();
ASSERT_NE(if_flow_a->true_.target, nullptr);
ASSERT_NE(if_flow_a->false_.target, nullptr);
ASSERT_NE(if_flow_a->merge.target, nullptr);
auto* ir_if_b = FlowNodeForAstNode(ast_if_b);
ASSERT_NE(ir_if_b, nullptr);
EXPECT_TRUE(ir_if_b->Is<ir::If>());
auto* if_flow_b = ir_if_b->As<ir::If>();
ASSERT_NE(if_flow_b->true_.target, nullptr);
ASSERT_NE(if_flow_b->false_.target, nullptr);
ASSERT_NE(if_flow_b->merge.target, nullptr);
auto* ir_if_c = FlowNodeForAstNode(ast_if_c);
ASSERT_NE(ir_if_c, nullptr);
EXPECT_TRUE(ir_if_c->Is<ir::If>());
auto* if_flow_c = ir_if_c->As<ir::If>();
ASSERT_NE(if_flow_c->true_.target, nullptr);
ASSERT_NE(if_flow_c->false_.target, nullptr);
ASSERT_NE(if_flow_c->merge.target, nullptr);
auto* ir_if_d = FlowNodeForAstNode(ast_if_d);
ASSERT_NE(ir_if_d, nullptr);
EXPECT_TRUE(ir_if_d->Is<ir::If>());
auto* if_flow_d = ir_if_d->As<ir::If>();
ASSERT_NE(if_flow_d->true_.target, nullptr);
ASSERT_NE(if_flow_d->false_.target, nullptr);
ASSERT_NE(if_flow_d->merge.target, nullptr);
ASSERT_EQ(1u, m.functions.Length());
auto* func = m.functions[0];
EXPECT_EQ(1u, loop_flow_a->inbound_branches.Length());
EXPECT_EQ(2u, loop_flow_a->start.target->inbound_branches.Length());
EXPECT_EQ(1u, loop_flow_a->continuing.target->inbound_branches.Length());
EXPECT_EQ(1u, loop_flow_a->merge.target->inbound_branches.Length());
EXPECT_EQ(1u, loop_flow_b->inbound_branches.Length());
EXPECT_EQ(2u, loop_flow_b->start.target->inbound_branches.Length());
EXPECT_EQ(2u, loop_flow_b->continuing.target->inbound_branches.Length());
EXPECT_EQ(1u, loop_flow_b->merge.target->inbound_branches.Length());
EXPECT_EQ(1u, loop_flow_c->inbound_branches.Length());
EXPECT_EQ(2u, loop_flow_c->start.target->inbound_branches.Length());
EXPECT_EQ(0u, loop_flow_c->continuing.target->inbound_branches.Length());
EXPECT_EQ(1u, loop_flow_c->merge.target->inbound_branches.Length());
EXPECT_EQ(1u, loop_flow_d->inbound_branches.Length());
EXPECT_EQ(2u, loop_flow_d->start.target->inbound_branches.Length());
EXPECT_EQ(1u, loop_flow_d->continuing.target->inbound_branches.Length());
EXPECT_EQ(1u, loop_flow_d->merge.target->inbound_branches.Length());
EXPECT_EQ(1u, if_flow_a->inbound_branches.Length());
EXPECT_EQ(1u, if_flow_a->true_.target->inbound_branches.Length());
EXPECT_EQ(1u, if_flow_a->false_.target->inbound_branches.Length());
EXPECT_EQ(1u, if_flow_a->merge.target->inbound_branches.Length());
EXPECT_EQ(1u, if_flow_b->inbound_branches.Length());
EXPECT_EQ(1u, if_flow_b->true_.target->inbound_branches.Length());
EXPECT_EQ(1u, if_flow_b->false_.target->inbound_branches.Length());
EXPECT_EQ(1u, if_flow_b->merge.target->inbound_branches.Length());
EXPECT_EQ(1u, if_flow_c->inbound_branches.Length());
EXPECT_EQ(1u, if_flow_c->true_.target->inbound_branches.Length());
EXPECT_EQ(1u, if_flow_c->false_.target->inbound_branches.Length());
EXPECT_EQ(1u, if_flow_c->merge.target->inbound_branches.Length());
EXPECT_EQ(1u, if_flow_d->inbound_branches.Length());
EXPECT_EQ(1u, if_flow_d->true_.target->inbound_branches.Length());
EXPECT_EQ(1u, if_flow_d->false_.target->inbound_branches.Length());
EXPECT_EQ(1u, if_flow_d->merge.target->inbound_branches.Length());
EXPECT_EQ(1u, func->start_target->inbound_branches.Length());
EXPECT_EQ(1u, func->end_target->inbound_branches.Length());
EXPECT_EQ(Disassemble(m), R"(%fn0 = func test_function
%fn1 = block
branch %fn2
%fn2 = loop [s: %fn3, c: %fn4, m: %fn5]
# loop start
%fn3 = block
branch %fn6
%fn6 = loop [s: %fn7, c: %fn8, m: %fn9]
# loop start
%fn7 = block
branch %fn10
%fn10 = if true [t: %fn11, f: %fn12, m: %fn13]
# true branch
%fn11 = block
branch %fn9
# false branch
%fn12 = block
branch %fn13
# if merge
%fn13 = block
branch %fn14
%fn14 = if true [t: %fn15, f: %fn16, m: %fn17]
# true branch
%fn15 = block
branch %fn8
# false branch
%fn16 = block
branch %fn17
# if merge
%fn17 = block
branch %fn8
# loop continuing
%fn8 = block
branch %fn18
%fn18 = loop [s: %fn19, m: %fn20]
# loop start
%fn19 = block
branch %fn20
# loop merge
%fn20 = block
branch %fn21
%fn21 = loop [s: %fn22, c: %fn23, m: %fn24]
# loop start
%fn22 = block
branch %fn23
# loop continuing
%fn23 = block
branch %fn25
%fn25 = if true [t: %fn26, f: %fn27, m: %fn28]
# true branch
%fn26 = block
branch %fn24
# false branch
%fn27 = block
branch %fn28
# if merge
%fn28 = block
branch %fn22
# loop merge
%fn24 = block
branch %fn7
# loop merge
%fn9 = block
branch %fn29
%fn29 = if true [t: %fn30, f: %fn31, m: %fn32]
# true branch
%fn30 = block
branch %fn5
# false branch
%fn31 = block
branch %fn32
# if merge
%fn32 = block
branch %fn4
# loop continuing
%fn4 = block
branch %fn3
# loop merge
%fn5 = block
ret
func_end
)");
}
TEST_F(IR_BuilderImplTest, While) {
auto* ast_while = While(false, Block());
WrapInFunction(ast_while);
auto r = Build();
ASSERT_TRUE(r) << Error();
auto m = r.Move();
auto* ir_while = FlowNodeForAstNode(ast_while);
ASSERT_NE(ir_while, nullptr);
ASSERT_TRUE(ir_while->Is<ir::Loop>());
auto* flow = ir_while->As<ir::Loop>();
ASSERT_NE(flow->start.target, nullptr);
ASSERT_NE(flow->continuing.target, nullptr);
ASSERT_NE(flow->merge.target, nullptr);
ASSERT_NE(flow->start.target->As<ir::Block>()->branch.target, nullptr);
ASSERT_TRUE(flow->start.target->As<ir::Block>()->branch.target->Is<ir::If>());
auto* if_flow = flow->start.target->As<ir::Block>()->branch.target->As<ir::If>();
ASSERT_NE(if_flow->true_.target, nullptr);
ASSERT_NE(if_flow->false_.target, nullptr);
ASSERT_NE(if_flow->merge.target, nullptr);
ASSERT_EQ(1u, m.functions.Length());
auto* func = m.functions[0];
EXPECT_EQ(1u, func->end_target->inbound_branches.Length());
EXPECT_EQ(1u, flow->inbound_branches.Length());
EXPECT_EQ(2u, flow->start.target->inbound_branches.Length());
EXPECT_EQ(1u, flow->continuing.target->inbound_branches.Length());
EXPECT_EQ(1u, flow->merge.target->inbound_branches.Length());
EXPECT_EQ(1u, if_flow->true_.target->inbound_branches.Length());
EXPECT_EQ(1u, if_flow->false_.target->inbound_branches.Length());
EXPECT_EQ(1u, if_flow->merge.target->inbound_branches.Length());
EXPECT_EQ(Disassemble(m), R"(%fn0 = func test_function
%fn1 = block
branch %fn2
%fn2 = loop [s: %fn3, c: %fn4, m: %fn5]
# loop start
%fn3 = block
branch %fn6
%fn6 = if false [t: %fn7, f: %fn8, m: %fn9]
# true branch
%fn7 = block
branch %fn9
# false branch
%fn8 = block
branch %fn5
# if merge
%fn9 = block
branch %fn4
# loop continuing
%fn4 = block
branch %fn3
# loop merge
%fn5 = block
ret
func_end
)");
}
TEST_F(IR_BuilderImplTest, While_Return) {
auto* ast_while = While(true, Block(Return()));
WrapInFunction(ast_while);
auto r = Build();
ASSERT_TRUE(r) << Error();
auto m = r.Move();
auto* ir_while = FlowNodeForAstNode(ast_while);
ASSERT_NE(ir_while, nullptr);
ASSERT_TRUE(ir_while->Is<ir::Loop>());
auto* flow = ir_while->As<ir::Loop>();
ASSERT_NE(flow->start.target, nullptr);
ASSERT_NE(flow->continuing.target, nullptr);
ASSERT_NE(flow->merge.target, nullptr);
ASSERT_NE(flow->start.target->As<ir::Block>()->branch.target, nullptr);
ASSERT_TRUE(flow->start.target->As<ir::Block>()->branch.target->Is<ir::If>());
auto* if_flow = flow->start.target->As<ir::Block>()->branch.target->As<ir::If>();
ASSERT_NE(if_flow->true_.target, nullptr);
ASSERT_NE(if_flow->false_.target, nullptr);
ASSERT_NE(if_flow->merge.target, nullptr);
ASSERT_EQ(1u, m.functions.Length());
auto* func = m.functions[0];
EXPECT_EQ(2u, func->end_target->inbound_branches.Length());
EXPECT_EQ(1u, flow->inbound_branches.Length());
EXPECT_EQ(2u, flow->start.target->inbound_branches.Length());
EXPECT_EQ(0u, flow->continuing.target->inbound_branches.Length());
EXPECT_EQ(1u, flow->merge.target->inbound_branches.Length());
EXPECT_EQ(1u, if_flow->true_.target->inbound_branches.Length());
EXPECT_EQ(1u, if_flow->false_.target->inbound_branches.Length());
EXPECT_EQ(1u, if_flow->merge.target->inbound_branches.Length());
EXPECT_EQ(Disassemble(m), R"(%fn0 = func test_function
%fn1 = block
branch %fn2
%fn2 = loop [s: %fn3, m: %fn4]
# loop start
%fn3 = block
branch %fn5
%fn5 = if true [t: %fn6, f: %fn7, m: %fn8]
# true branch
%fn6 = block
branch %fn8
# false branch
%fn7 = block
branch %fn4
# if merge
%fn8 = block
ret
# loop merge
%fn4 = block
ret
func_end
)");
}
// TODO(dsinclair): Enable when variable declarations and increment are supported
TEST_F(IR_BuilderImplTest, DISABLED_For) {
// for(var i: 0; i < 10; i++) {
// }
//
// func -> loop -> loop start -> if true
// -> if false
//
// [if true] -> if merge
// [if false] -> loop merge
// [if merge] -> loop continuing
// [loop continuing] -> loop start
// [loop merge] -> func end
//
auto* ast_for = For(Decl(Var("i", ty.i32())), LessThan("i", 10_a), Increment("i"), Block());
WrapInFunction(ast_for);
auto r = Build();
ASSERT_TRUE(r) << Error();
auto m = r.Move();
auto* ir_for = FlowNodeForAstNode(ast_for);
ASSERT_NE(ir_for, nullptr);
ASSERT_TRUE(ir_for->Is<ir::Loop>());
auto* flow = ir_for->As<ir::Loop>();
ASSERT_NE(flow->start.target, nullptr);
ASSERT_NE(flow->continuing.target, nullptr);
ASSERT_NE(flow->merge.target, nullptr);
ASSERT_NE(flow->start.target->As<ir::Block>()->branch.target, nullptr);
ASSERT_TRUE(flow->start.target->As<ir::Block>()->branch.target->Is<ir::If>());
auto* if_flow = flow->start.target->As<ir::Block>()->branch.target->As<ir::If>();
ASSERT_NE(if_flow->true_.target, nullptr);
ASSERT_NE(if_flow->false_.target, nullptr);
ASSERT_NE(if_flow->merge.target, nullptr);
ASSERT_EQ(1u, m.functions.Length());
auto* func = m.functions[0];
EXPECT_EQ(1u, func->end_target->inbound_branches.Length());
EXPECT_EQ(1u, flow->inbound_branches.Length());
EXPECT_EQ(2u, flow->start.target->inbound_branches.Length());
EXPECT_EQ(1u, flow->continuing.target->inbound_branches.Length());
EXPECT_EQ(1u, flow->merge.target->inbound_branches.Length());
EXPECT_EQ(1u, if_flow->true_.target->inbound_branches.Length());
EXPECT_EQ(1u, if_flow->false_.target->inbound_branches.Length());
EXPECT_EQ(1u, if_flow->merge.target->inbound_branches.Length());
EXPECT_EQ(Disassemble(m), R"()");
}
TEST_F(IR_BuilderImplTest, For_NoInitCondOrContinuing) {
auto* ast_for = For(nullptr, nullptr, nullptr, Block(Break()));
WrapInFunction(ast_for);
auto r = Build();
ASSERT_TRUE(r) << Error();
auto m = r.Move();
auto* ir_for = FlowNodeForAstNode(ast_for);
ASSERT_NE(ir_for, nullptr);
ASSERT_TRUE(ir_for->Is<ir::Loop>());
auto* flow = ir_for->As<ir::Loop>();
ASSERT_NE(flow->start.target, nullptr);
ASSERT_NE(flow->continuing.target, nullptr);
ASSERT_NE(flow->merge.target, nullptr);
ASSERT_EQ(1u, m.functions.Length());
auto* func = m.functions[0];
EXPECT_EQ(1u, flow->inbound_branches.Length());
EXPECT_EQ(2u, flow->start.target->inbound_branches.Length());
EXPECT_EQ(0u, flow->continuing.target->inbound_branches.Length());
EXPECT_EQ(1u, flow->merge.target->inbound_branches.Length());
EXPECT_EQ(1u, func->end_target->inbound_branches.Length());
EXPECT_EQ(Disassemble(m), R"(%fn0 = func test_function
%fn1 = block
branch %fn2
%fn2 = loop [s: %fn3, m: %fn4]
# loop start
%fn3 = block
branch %fn4
# loop merge
%fn4 = block
ret
func_end
)");
}
TEST_F(IR_BuilderImplTest, Switch) {
auto* ast_switch = Switch(
1_i, utils::Vector{Case(utils::Vector{CaseSelector(0_i)}, Block()),
Case(utils::Vector{CaseSelector(1_i)}, Block()), DefaultCase(Block())});
WrapInFunction(ast_switch);
auto r = Build();
ASSERT_TRUE(r) << Error();
auto m = r.Move();
auto* ir_switch = FlowNodeForAstNode(ast_switch);
ASSERT_NE(ir_switch, nullptr);
ASSERT_TRUE(ir_switch->Is<ir::Switch>());
auto* flow = ir_switch->As<ir::Switch>();
ASSERT_NE(flow->merge.target, nullptr);
ASSERT_EQ(3u, flow->cases.Length());
ASSERT_EQ(1u, m.functions.Length());
auto* func = m.functions[0];
ASSERT_EQ(1u, flow->cases[0].selectors.Length());
ASSERT_TRUE(flow->cases[0].selectors[0].val->value->Is<constant::Scalar<tint::i32>>());
EXPECT_EQ(0_i,
flow->cases[0].selectors[0].val->value->As<constant::Scalar<tint::i32>>()->ValueOf());
ASSERT_EQ(1u, flow->cases[1].selectors.Length());
ASSERT_TRUE(flow->cases[1].selectors[0].val->value->Is<constant::Scalar<tint::i32>>());
EXPECT_EQ(1_i,
flow->cases[1].selectors[0].val->value->As<constant::Scalar<tint::i32>>()->ValueOf());
ASSERT_EQ(1u, flow->cases[2].selectors.Length());
EXPECT_TRUE(flow->cases[2].selectors[0].IsDefault());
EXPECT_EQ(1u, flow->inbound_branches.Length());
EXPECT_EQ(1u, flow->cases[0].start.target->inbound_branches.Length());
EXPECT_EQ(1u, flow->cases[1].start.target->inbound_branches.Length());
EXPECT_EQ(1u, flow->cases[2].start.target->inbound_branches.Length());
EXPECT_EQ(3u, flow->merge.target->inbound_branches.Length());
EXPECT_EQ(1u, func->end_target->inbound_branches.Length());
EXPECT_EQ(Disassemble(m), R"(%fn0 = func test_function
%fn1 = block
branch %fn2
%fn2 = switch 1i [c: (0i, %fn3), c: (1i, %fn4), c: (default, %fn5), m: %fn6]
# case 0i
%fn3 = block
branch %fn6
# case 1i
%fn4 = block
branch %fn6
# case default
%fn5 = block
branch %fn6
# switch merge
%fn6 = block
ret
func_end
)");
}
TEST_F(IR_BuilderImplTest, Switch_MultiSelector) {
auto* ast_switch = Switch(
1_i,
utils::Vector{Case(
utils::Vector{CaseSelector(0_i), CaseSelector(1_i), DefaultCaseSelector()}, Block())});
WrapInFunction(ast_switch);
auto r = Build();
ASSERT_TRUE(r) << Error();
auto m = r.Move();
auto* ir_switch = FlowNodeForAstNode(ast_switch);
ASSERT_NE(ir_switch, nullptr);
ASSERT_TRUE(ir_switch->Is<ir::Switch>());
auto* flow = ir_switch->As<ir::Switch>();
ASSERT_NE(flow->merge.target, nullptr);
ASSERT_EQ(1u, flow->cases.Length());
ASSERT_EQ(1u, m.functions.Length());
auto* func = m.functions[0];
ASSERT_EQ(3u, flow->cases[0].selectors.Length());
ASSERT_TRUE(flow->cases[0].selectors[0].val->value->Is<constant::Scalar<tint::i32>>());
EXPECT_EQ(0_i,
flow->cases[0].selectors[0].val->value->As<constant::Scalar<tint::i32>>()->ValueOf());
ASSERT_TRUE(flow->cases[0].selectors[1].val->value->Is<constant::Scalar<tint::i32>>());
EXPECT_EQ(1_i,
flow->cases[0].selectors[1].val->value->As<constant::Scalar<tint::i32>>()->ValueOf());
EXPECT_TRUE(flow->cases[0].selectors[2].IsDefault());
EXPECT_EQ(1u, flow->inbound_branches.Length());
EXPECT_EQ(1u, flow->cases[0].start.target->inbound_branches.Length());
EXPECT_EQ(1u, flow->merge.target->inbound_branches.Length());
EXPECT_EQ(1u, func->end_target->inbound_branches.Length());
EXPECT_EQ(Disassemble(m), R"(%fn0 = func test_function
%fn1 = block
branch %fn2
%fn2 = switch 1i [c: (0i 1i default, %fn3), m: %fn4]
# case 0i 1i default
%fn3 = block
branch %fn4
# switch merge
%fn4 = block
ret
func_end
)");
}
TEST_F(IR_BuilderImplTest, Switch_OnlyDefault) {
auto* ast_switch = Switch(1_i, utils::Vector{DefaultCase(Block())});
WrapInFunction(ast_switch);
auto r = Build();
ASSERT_TRUE(r) << Error();
auto m = r.Move();
auto* ir_switch = FlowNodeForAstNode(ast_switch);
ASSERT_NE(ir_switch, nullptr);
ASSERT_TRUE(ir_switch->Is<ir::Switch>());
auto* flow = ir_switch->As<ir::Switch>();
ASSERT_NE(flow->merge.target, nullptr);
ASSERT_EQ(1u, flow->cases.Length());
ASSERT_EQ(1u, m.functions.Length());
auto* func = m.functions[0];
ASSERT_EQ(1u, flow->cases[0].selectors.Length());
EXPECT_TRUE(flow->cases[0].selectors[0].IsDefault());
EXPECT_EQ(1u, flow->inbound_branches.Length());
EXPECT_EQ(1u, flow->cases[0].start.target->inbound_branches.Length());
EXPECT_EQ(1u, flow->merge.target->inbound_branches.Length());
EXPECT_EQ(1u, func->end_target->inbound_branches.Length());
EXPECT_EQ(Disassemble(m), R"(%fn0 = func test_function
%fn1 = block
branch %fn2
%fn2 = switch 1i [c: (default, %fn3), m: %fn4]
# case default
%fn3 = block
branch %fn4
# switch merge
%fn4 = block
ret
func_end
)");
}
TEST_F(IR_BuilderImplTest, Switch_WithBreak) {
auto* ast_switch = Switch(1_i, utils::Vector{Case(utils::Vector{CaseSelector(0_i)},
Block(Break(), If(true, Block(Return())))),
DefaultCase(Block())});
WrapInFunction(ast_switch);
auto r = Build();
ASSERT_TRUE(r) << Error();
auto m = r.Move();
auto* ir_switch = FlowNodeForAstNode(ast_switch);
ASSERT_NE(ir_switch, nullptr);
ASSERT_TRUE(ir_switch->Is<ir::Switch>());
auto* flow = ir_switch->As<ir::Switch>();
ASSERT_NE(flow->merge.target, nullptr);
ASSERT_EQ(2u, flow->cases.Length());
ASSERT_EQ(1u, m.functions.Length());
auto* func = m.functions[0];
ASSERT_EQ(1u, flow->cases[0].selectors.Length());
ASSERT_TRUE(flow->cases[0].selectors[0].val->value->Is<constant::Scalar<tint::i32>>());
EXPECT_EQ(0_i,
flow->cases[0].selectors[0].val->value->As<constant::Scalar<tint::i32>>()->ValueOf());
ASSERT_EQ(1u, flow->cases[1].selectors.Length());
EXPECT_TRUE(flow->cases[1].selectors[0].IsDefault());
EXPECT_EQ(1u, flow->inbound_branches.Length());
EXPECT_EQ(1u, flow->cases[0].start.target->inbound_branches.Length());
EXPECT_EQ(1u, flow->cases[1].start.target->inbound_branches.Length());
EXPECT_EQ(2u, flow->merge.target->inbound_branches.Length());
// This is 1 because the if is dead-code eliminated and the return doesn't happen.
EXPECT_EQ(1u, func->end_target->inbound_branches.Length());
EXPECT_EQ(Disassemble(m), R"(%fn0 = func test_function
%fn1 = block
branch %fn2
%fn2 = switch 1i [c: (0i, %fn3), c: (default, %fn4), m: %fn5]
# case 0i
%fn3 = block
branch %fn5
# case default
%fn4 = block
branch %fn5
# switch merge
%fn5 = block
ret
func_end
)");
}
TEST_F(IR_BuilderImplTest, Switch_AllReturn) {
auto* ast_switch =
Switch(1_i, utils::Vector{Case(utils::Vector{CaseSelector(0_i)}, Block(Return())),
DefaultCase(Block(Return()))});
auto* ast_if = If(true, Block(Return()));
WrapInFunction(ast_switch, ast_if);
auto r = Build();
ASSERT_TRUE(r) << Error();
auto m = r.Move();
ASSERT_EQ(FlowNodeForAstNode(ast_if), nullptr);
auto* ir_switch = FlowNodeForAstNode(ast_switch);
ASSERT_NE(ir_switch, nullptr);
ASSERT_TRUE(ir_switch->Is<ir::Switch>());
auto* flow = ir_switch->As<ir::Switch>();
ASSERT_NE(flow->merge.target, nullptr);
ASSERT_EQ(2u, flow->cases.Length());
ASSERT_EQ(1u, m.functions.Length());
auto* func = m.functions[0];
ASSERT_EQ(1u, flow->cases[0].selectors.Length());
ASSERT_TRUE(flow->cases[0].selectors[0].val->value->Is<constant::Scalar<tint::i32>>());
EXPECT_EQ(0_i,
flow->cases[0].selectors[0].val->value->As<constant::Scalar<tint::i32>>()->ValueOf());
ASSERT_EQ(1u, flow->cases[1].selectors.Length());
EXPECT_TRUE(flow->cases[1].selectors[0].IsDefault());
EXPECT_EQ(1u, flow->inbound_branches.Length());
EXPECT_EQ(1u, flow->cases[0].start.target->inbound_branches.Length());
EXPECT_EQ(1u, flow->cases[1].start.target->inbound_branches.Length());
EXPECT_EQ(0u, flow->merge.target->inbound_branches.Length());
EXPECT_EQ(2u, func->end_target->inbound_branches.Length());
EXPECT_EQ(Disassemble(m), R"(%fn0 = func test_function
%fn1 = block
branch %fn2
%fn2 = switch 1i [c: (0i, %fn3), c: (default, %fn4)]
# case 0i
%fn3 = block
ret
# case default
%fn4 = block
ret
func_end
)");
}
TEST_F(IR_BuilderImplTest, EmitLiteral_Bool_True) {
auto* expr = Expr(true);
GlobalVar("a", ty.bool_(), builtin::AddressSpace::kPrivate, expr);
auto& b = CreateBuilder();
auto r = b.EmitLiteral(expr);
ASSERT_THAT(b.Diagnostics(), testing::IsEmpty());
ASSERT_TRUE(r.Get()->Is<Constant>());
auto* val = r.Get()->As<Constant>()->value;
EXPECT_TRUE(val->Is<constant::Scalar<bool>>());
EXPECT_TRUE(val->As<constant::Scalar<bool>>()->ValueAs<bool>());
}
TEST_F(IR_BuilderImplTest, EmitLiteral_Bool_False) {
auto* expr = Expr(false);
GlobalVar("a", ty.bool_(), builtin::AddressSpace::kPrivate, expr);
auto& b = CreateBuilder();
auto r = b.EmitLiteral(expr);
ASSERT_THAT(b.Diagnostics(), testing::IsEmpty());
ASSERT_TRUE(r.Get()->Is<Constant>());
auto* val = r.Get()->As<Constant>()->value;
EXPECT_TRUE(val->Is<constant::Scalar<bool>>());
EXPECT_FALSE(val->As<constant::Scalar<bool>>()->ValueAs<bool>());
}
TEST_F(IR_BuilderImplTest, EmitLiteral_F32) {
auto* expr = Expr(1.2_f);
GlobalVar("a", ty.f32(), builtin::AddressSpace::kPrivate, expr);
auto& b = CreateBuilder();
auto r = b.EmitLiteral(expr);
ASSERT_THAT(b.Diagnostics(), testing::IsEmpty());
ASSERT_TRUE(r.Get()->Is<Constant>());
auto* val = r.Get()->As<Constant>()->value;
EXPECT_TRUE(val->Is<constant::Scalar<f32>>());
EXPECT_EQ(1.2_f, val->As<constant::Scalar<f32>>()->ValueAs<f32>());
}
TEST_F(IR_BuilderImplTest, EmitLiteral_F16) {
Enable(builtin::Extension::kF16);
auto* expr = Expr(1.2_h);
GlobalVar("a", ty.f16(), builtin::AddressSpace::kPrivate, expr);
auto& b = CreateBuilder();
auto r = b.EmitLiteral(expr);
ASSERT_THAT(b.Diagnostics(), testing::IsEmpty());
ASSERT_TRUE(r.Get()->Is<Constant>());
auto* val = r.Get()->As<Constant>()->value;
EXPECT_TRUE(val->Is<constant::Scalar<f16>>());
EXPECT_EQ(1.2_h, val->As<constant::Scalar<f16>>()->ValueAs<f32>());
}
TEST_F(IR_BuilderImplTest, EmitLiteral_I32) {
auto* expr = Expr(-2_i);
GlobalVar("a", ty.i32(), builtin::AddressSpace::kPrivate, expr);
auto& b = CreateBuilder();
auto r = b.EmitLiteral(expr);
ASSERT_THAT(b.Diagnostics(), testing::IsEmpty());
ASSERT_TRUE(r.Get()->Is<Constant>());
auto* val = r.Get()->As<Constant>()->value;
EXPECT_TRUE(val->Is<constant::Scalar<i32>>());
EXPECT_EQ(-2_i, val->As<constant::Scalar<i32>>()->ValueAs<f32>());
}
TEST_F(IR_BuilderImplTest, EmitLiteral_U32) {
auto* expr = Expr(2_u);
GlobalVar("a", ty.u32(), builtin::AddressSpace::kPrivate, expr);
auto& b = CreateBuilder();
auto r = b.EmitLiteral(expr);
ASSERT_THAT(b.Diagnostics(), testing::IsEmpty());
ASSERT_TRUE(r.Get()->Is<Constant>());
auto* val = r.Get()->As<Constant>()->value;
EXPECT_TRUE(val->Is<constant::Scalar<u32>>());
EXPECT_EQ(2_u, val->As<constant::Scalar<u32>>()->ValueAs<f32>());
}
TEST_F(IR_BuilderImplTest, Emit_GlobalVar_NoInit) {
GlobalVar("a", ty.u32(), builtin::AddressSpace::kPrivate);
auto r = Build();
ASSERT_TRUE(r) << Error();
auto m = r.Move();
EXPECT_EQ(Disassemble(m), R"(%fn0 = block
%1(ref<private, u32, read_write>) = var private read_write
ret
)");
}
TEST_F(IR_BuilderImplTest, Emit_GlobalVar_Init) {
auto* expr = Expr(2_u);
GlobalVar("a", ty.u32(), builtin::AddressSpace::kPrivate, expr);
auto r = Build();
ASSERT_TRUE(r) << Error();
auto m = r.Move();
EXPECT_EQ(Disassemble(m), R"(%fn0 = block
%1(ref<private, u32, read_write>) = var private read_write
store %1(ref<private, u32, read_write>), 2u
ret
)");
}
TEST_F(IR_BuilderImplTest, Emit_Var_NoInit) {
auto* a = Var("a", ty.u32(), builtin::AddressSpace::kFunction);
WrapInFunction(a);
auto r = Build();
ASSERT_TRUE(r) << Error();
auto m = r.Move();
EXPECT_EQ(Disassemble(m), R"(%fn0 = func test_function
%fn1 = block
%1(ref<function, u32, read_write>) = var function read_write
ret
func_end
)");
}
TEST_F(IR_BuilderImplTest, Emit_Var_Init) {
auto* expr = Expr(2_u);
auto* a = Var("a", ty.u32(), builtin::AddressSpace::kFunction, expr);
WrapInFunction(a);
auto r = Build();
ASSERT_TRUE(r) << Error();
auto m = r.Move();
EXPECT_EQ(Disassemble(m), R"(%fn0 = func test_function
%fn1 = block
%1(ref<function, u32, read_write>) = var function read_write
store %1(ref<function, u32, read_write>), 2u
ret
func_end
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_Add) {
Func("my_func", utils::Empty, ty.u32(), utils::Vector{Return(0_u)});
auto* expr = Add(Call("my_func"), 4_u);
WrapInFunction(expr);
auto& b = CreateBuilder();
InjectFlowBlock();
auto r = b.EmitExpression(expr);
ASSERT_THAT(b.Diagnostics(), testing::IsEmpty());
ASSERT_TRUE(r);
Disassembler d(b.builder.ir);
d.EmitBlockInstructions(b.current_flow_block->As<ir::Block>());
EXPECT_EQ(d.AsString(), R"(%1(u32) = call my_func
%2(u32) = add %1(u32), 4u
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_Subtract) {
Func("my_func", utils::Empty, ty.u32(), utils::Vector{Return(0_u)});
auto* expr = Sub(Call("my_func"), 4_u);
WrapInFunction(expr);
auto& b = CreateBuilder();
InjectFlowBlock();
auto r = b.EmitExpression(expr);
ASSERT_THAT(b.Diagnostics(), testing::IsEmpty());
ASSERT_TRUE(r);
Disassembler d(b.builder.ir);
d.EmitBlockInstructions(b.current_flow_block->As<ir::Block>());
EXPECT_EQ(d.AsString(), R"(%1(u32) = call my_func
%2(u32) = sub %1(u32), 4u
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_Multiply) {
Func("my_func", utils::Empty, ty.u32(), utils::Vector{Return(0_u)});
auto* expr = Mul(Call("my_func"), 4_u);
WrapInFunction(expr);
auto& b = CreateBuilder();
InjectFlowBlock();
auto r = b.EmitExpression(expr);
ASSERT_THAT(b.Diagnostics(), testing::IsEmpty());
ASSERT_TRUE(r);
Disassembler d(b.builder.ir);
d.EmitBlockInstructions(b.current_flow_block->As<ir::Block>());
EXPECT_EQ(d.AsString(), R"(%1(u32) = call my_func
%2(u32) = mul %1(u32), 4u
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_Div) {
Func("my_func", utils::Empty, ty.u32(), utils::Vector{Return(0_u)});
auto* expr = Div(Call("my_func"), 4_u);
WrapInFunction(expr);
auto& b = CreateBuilder();
InjectFlowBlock();
auto r = b.EmitExpression(expr);
ASSERT_THAT(b.Diagnostics(), testing::IsEmpty());
ASSERT_TRUE(r);
Disassembler d(b.builder.ir);
d.EmitBlockInstructions(b.current_flow_block->As<ir::Block>());
EXPECT_EQ(d.AsString(), R"(%1(u32) = call my_func
%2(u32) = div %1(u32), 4u
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_Modulo) {
Func("my_func", utils::Empty, ty.u32(), utils::Vector{Return(0_u)});
auto* expr = Mod(Call("my_func"), 4_u);
WrapInFunction(expr);
auto& b = CreateBuilder();
InjectFlowBlock();
auto r = b.EmitExpression(expr);
ASSERT_THAT(b.Diagnostics(), testing::IsEmpty());
ASSERT_TRUE(r);
Disassembler d(b.builder.ir);
d.EmitBlockInstructions(b.current_flow_block->As<ir::Block>());
EXPECT_EQ(d.AsString(), R"(%1(u32) = call my_func
%2(u32) = mod %1(u32), 4u
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_And) {
Func("my_func", utils::Empty, ty.u32(), utils::Vector{Return(0_u)});
auto* expr = And(Call("my_func"), 4_u);
WrapInFunction(expr);
auto& b = CreateBuilder();
InjectFlowBlock();
auto r = b.EmitExpression(expr);
ASSERT_THAT(b.Diagnostics(), testing::IsEmpty());
ASSERT_TRUE(r);
Disassembler d(b.builder.ir);
d.EmitBlockInstructions(b.current_flow_block->As<ir::Block>());
EXPECT_EQ(d.AsString(), R"(%1(u32) = call my_func
%2(u32) = bit_and %1(u32), 4u
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_Or) {
Func("my_func", utils::Empty, ty.u32(), utils::Vector{Return(0_u)});
auto* expr = Or(Call("my_func"), 4_u);
WrapInFunction(expr);
auto& b = CreateBuilder();
InjectFlowBlock();
auto r = b.EmitExpression(expr);
ASSERT_THAT(b.Diagnostics(), testing::IsEmpty());
ASSERT_TRUE(r);
Disassembler d(b.builder.ir);
d.EmitBlockInstructions(b.current_flow_block->As<ir::Block>());
EXPECT_EQ(d.AsString(), R"(%1(u32) = call my_func
%2(u32) = bit_or %1(u32), 4u
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_Xor) {
Func("my_func", utils::Empty, ty.u32(), utils::Vector{Return(0_u)});
auto* expr = Xor(Call("my_func"), 4_u);
WrapInFunction(expr);
auto& b = CreateBuilder();
InjectFlowBlock();
auto r = b.EmitExpression(expr);
ASSERT_THAT(b.Diagnostics(), testing::IsEmpty());
ASSERT_TRUE(r);
Disassembler d(b.builder.ir);
d.EmitBlockInstructions(b.current_flow_block->As<ir::Block>());
EXPECT_EQ(d.AsString(), R"(%1(u32) = call my_func
%2(u32) = bit_xor %1(u32), 4u
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_LogicalAnd) {
Func("my_func", utils::Empty, ty.bool_(), utils::Vector{Return(true)});
auto* expr = LogicalAnd(Call("my_func"), false);
WrapInFunction(expr);
auto& b = CreateBuilder();
InjectFlowBlock();
auto r = b.EmitExpression(expr);
ASSERT_THAT(b.Diagnostics(), testing::IsEmpty());
ASSERT_TRUE(r);
Disassembler d(b.builder.ir);
d.EmitBlockInstructions(b.current_flow_block->As<ir::Block>());
EXPECT_EQ(d.AsString(), R"(%1(bool) = call my_func
%2(bool) = log_and %1(bool), false
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_LogicalOr) {
Func("my_func", utils::Empty, ty.bool_(), utils::Vector{Return(true)});
auto* expr = LogicalOr(Call("my_func"), true);
WrapInFunction(expr);
auto& b = CreateBuilder();
InjectFlowBlock();
auto r = b.EmitExpression(expr);
ASSERT_THAT(b.Diagnostics(), testing::IsEmpty());
ASSERT_TRUE(r);
Disassembler d(b.builder.ir);
d.EmitBlockInstructions(b.current_flow_block->As<ir::Block>());
EXPECT_EQ(d.AsString(), R"(%1(bool) = call my_func
%2(bool) = log_or %1(bool), true
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_Equal) {
Func("my_func", utils::Empty, ty.u32(), utils::Vector{Return(0_u)});
auto* expr = Equal(Call("my_func"), 4_u);
WrapInFunction(expr);
auto& b = CreateBuilder();
InjectFlowBlock();
auto r = b.EmitExpression(expr);
ASSERT_THAT(b.Diagnostics(), testing::IsEmpty());
ASSERT_TRUE(r);
Disassembler d(b.builder.ir);
d.EmitBlockInstructions(b.current_flow_block->As<ir::Block>());
EXPECT_EQ(d.AsString(), R"(%1(u32) = call my_func
%2(bool) = eq %1(u32), 4u
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_NotEqual) {
Func("my_func", utils::Empty, ty.u32(), utils::Vector{Return(0_u)});
auto* expr = NotEqual(Call("my_func"), 4_u);
WrapInFunction(expr);
auto& b = CreateBuilder();
InjectFlowBlock();
auto r = b.EmitExpression(expr);
ASSERT_THAT(b.Diagnostics(), testing::IsEmpty());
ASSERT_TRUE(r);
Disassembler d(b.builder.ir);
d.EmitBlockInstructions(b.current_flow_block->As<ir::Block>());
EXPECT_EQ(d.AsString(), R"(%1(u32) = call my_func
%2(bool) = neq %1(u32), 4u
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_LessThan) {
Func("my_func", utils::Empty, ty.u32(), utils::Vector{Return(0_u)});
auto* expr = LessThan(Call("my_func"), 4_u);
WrapInFunction(expr);
auto& b = CreateBuilder();
InjectFlowBlock();
auto r = b.EmitExpression(expr);
ASSERT_THAT(b.Diagnostics(), testing::IsEmpty());
ASSERT_TRUE(r);
Disassembler d(b.builder.ir);
d.EmitBlockInstructions(b.current_flow_block->As<ir::Block>());
EXPECT_EQ(d.AsString(), R"(%1(u32) = call my_func
%2(bool) = lt %1(u32), 4u
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_GreaterThan) {
Func("my_func", utils::Empty, ty.u32(), utils::Vector{Return(0_u)});
auto* expr = GreaterThan(Call("my_func"), 4_u);
WrapInFunction(expr);
auto& b = CreateBuilder();
InjectFlowBlock();
auto r = b.EmitExpression(expr);
ASSERT_THAT(b.Diagnostics(), testing::IsEmpty());
ASSERT_TRUE(r);
Disassembler d(b.builder.ir);
d.EmitBlockInstructions(b.current_flow_block->As<ir::Block>());
EXPECT_EQ(d.AsString(), R"(%1(u32) = call my_func
%2(bool) = gt %1(u32), 4u
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_LessThanEqual) {
Func("my_func", utils::Empty, ty.u32(), utils::Vector{Return(0_u)});
auto* expr = LessThanEqual(Call("my_func"), 4_u);
WrapInFunction(expr);
auto& b = CreateBuilder();
InjectFlowBlock();
auto r = b.EmitExpression(expr);
ASSERT_THAT(b.Diagnostics(), testing::IsEmpty());
ASSERT_TRUE(r);
Disassembler d(b.builder.ir);
d.EmitBlockInstructions(b.current_flow_block->As<ir::Block>());
EXPECT_EQ(d.AsString(), R"(%1(u32) = call my_func
%2(bool) = lte %1(u32), 4u
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_GreaterThanEqual) {
Func("my_func", utils::Empty, ty.u32(), utils::Vector{Return(0_u)});
auto* expr = GreaterThanEqual(Call("my_func"), 4_u);
WrapInFunction(expr);
auto& b = CreateBuilder();
InjectFlowBlock();
auto r = b.EmitExpression(expr);
ASSERT_THAT(b.Diagnostics(), testing::IsEmpty());
ASSERT_TRUE(r);
Disassembler d(b.builder.ir);
d.EmitBlockInstructions(b.current_flow_block->As<ir::Block>());
EXPECT_EQ(d.AsString(), R"(%1(u32) = call my_func
%2(bool) = gte %1(u32), 4u
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_ShiftLeft) {
Func("my_func", utils::Empty, ty.u32(), utils::Vector{Return(0_u)});
auto* expr = Shl(Call("my_func"), 4_u);
WrapInFunction(expr);
auto& b = CreateBuilder();
InjectFlowBlock();
auto r = b.EmitExpression(expr);
ASSERT_THAT(b.Diagnostics(), testing::IsEmpty());
ASSERT_TRUE(r);
Disassembler d(b.builder.ir);
d.EmitBlockInstructions(b.current_flow_block->As<ir::Block>());
EXPECT_EQ(d.AsString(), R"(%1(u32) = call my_func
%2(u32) = shiftl %1(u32), 4u
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_ShiftRight) {
Func("my_func", utils::Empty, ty.u32(), utils::Vector{Return(0_u)});
auto* expr = Shr(Call("my_func"), 4_u);
WrapInFunction(expr);
auto& b = CreateBuilder();
InjectFlowBlock();
auto r = b.EmitExpression(expr);
ASSERT_THAT(b.Diagnostics(), testing::IsEmpty());
ASSERT_TRUE(r);
Disassembler d(b.builder.ir);
d.EmitBlockInstructions(b.current_flow_block->As<ir::Block>());
EXPECT_EQ(d.AsString(), R"(%1(u32) = call my_func
%2(u32) = shiftr %1(u32), 4u
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_Compound) {
Func("my_func", utils::Empty, ty.f32(), utils::Vector{Return(0_f)});
auto* expr = LogicalAnd(LessThan(Call("my_func"), 2_f),
GreaterThan(2.5_f, Div(Call("my_func"), Mul(2.3_f, Call("my_func")))));
WrapInFunction(expr);
auto& b = CreateBuilder();
InjectFlowBlock();
auto r = b.EmitExpression(expr);
ASSERT_THAT(b.Diagnostics(), testing::IsEmpty());
ASSERT_TRUE(r);
Disassembler d(b.builder.ir);
d.EmitBlockInstructions(b.current_flow_block->As<ir::Block>());
EXPECT_EQ(d.AsString(), R"(%1(f32) = call my_func
%2(bool) = lt %1(f32), 2.0f
%3(f32) = call my_func
%4(f32) = call my_func
%5(f32) = mul 2.29999995231628417969f, %4(f32)
%6(f32) = div %3(f32), %5(f32)
%7(bool) = gt 2.5f, %6(f32)
%8(bool) = log_and %2(bool), %7(bool)
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Binary_Compound_WithConstEval) {
Func("my_func", utils::Vector{Param("p", ty.bool_())}, ty.bool_(), utils::Vector{Return(true)});
auto* expr = Call("my_func", LogicalAnd(LessThan(2.4_f, 2_f),
GreaterThan(2.5_f, Div(10_f, Mul(2.3_f, 9.4_f)))));
WrapInFunction(expr);
auto& b = CreateBuilder();
InjectFlowBlock();
auto r = b.EmitExpression(expr);
ASSERT_THAT(b.Diagnostics(), testing::IsEmpty());
ASSERT_TRUE(r);
Disassembler d(b.builder.ir);
d.EmitBlockInstructions(b.current_flow_block->As<ir::Block>());
EXPECT_EQ(d.AsString(), R"(%1(bool) = call my_func, false
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_Bitcast) {
Func("my_func", utils::Empty, ty.f32(), utils::Vector{Return(0_f)});
auto* expr = Bitcast<f32>(Call("my_func"));
WrapInFunction(expr);
auto& b = CreateBuilder();
InjectFlowBlock();
auto r = b.EmitExpression(expr);
ASSERT_THAT(b.Diagnostics(), testing::IsEmpty());
ASSERT_TRUE(r);
Disassembler d(b.builder.ir);
d.EmitBlockInstructions(b.current_flow_block->As<ir::Block>());
EXPECT_EQ(d.AsString(), R"(%1(f32) = call my_func
%2(f32) = bitcast %1(f32)
)");
}
TEST_F(IR_BuilderImplTest, EmitStatement_Discard) {
auto* expr = Discard();
Func("test_function", {}, ty.void_(), expr,
utils::Vector{
create<ast::StageAttribute>(ast::PipelineStage::kFragment),
});
auto& b = CreateBuilder();
InjectFlowBlock();
b.EmitStatement(expr);
ASSERT_THAT(b.Diagnostics(), testing::IsEmpty());
Disassembler d(b.builder.ir);
d.EmitBlockInstructions(b.current_flow_block->As<ir::Block>());
EXPECT_EQ(d.AsString(), R"(discard
)");
}
TEST_F(IR_BuilderImplTest, EmitStatement_UserFunction) {
Func("my_func", utils::Vector{Param("p", ty.f32())}, ty.void_(), utils::Empty);
auto* stmt = CallStmt(Call("my_func", Mul(2_a, 3_a)));
WrapInFunction(stmt);
auto& b = CreateBuilder();
InjectFlowBlock();
b.EmitStatement(stmt);
ASSERT_THAT(b.Diagnostics(), testing::IsEmpty());
Disassembler d(b.builder.ir);
d.EmitBlockInstructions(b.current_flow_block->As<ir::Block>());
EXPECT_EQ(d.AsString(), R"(%1(void) = call my_func, 6.0f
)");
}
// TODO(dsinclair): This needs assignment in order to output correctly. The empty constructor ends
// up materializing, so there is no expression to emit until there is a usage. When assigment is
// implemented this can be enabled (and the output updated).
TEST_F(IR_BuilderImplTest, DISABLED_EmitExpression_ConstructEmpty) {
auto* expr = vec3(ty.f32());
GlobalVar("i", builtin::AddressSpace::kPrivate, expr);
auto& b = CreateBuilder();
InjectFlowBlock();
auto r = b.EmitExpression(expr);
ASSERT_THAT(b.Diagnostics(), testing::IsEmpty());
ASSERT_TRUE(r);
Disassembler d(b.builder.ir);
d.EmitBlockInstructions(b.current_flow_block->As<ir::Block>());
EXPECT_EQ(d.AsString(), R"(%1(vec3<f32>) = construct
)");
}
// Requires identifier expressions
TEST_F(IR_BuilderImplTest, DISABLED_EmitExpression_Construct) {
auto i = GlobalVar("i", builtin::AddressSpace::kPrivate, Expr(1_f));
auto* expr = vec3(ty.f32(), 2_f, 3_f, i);
WrapInFunction(expr);
auto& b = CreateBuilder();
InjectFlowBlock();
auto r = b.EmitExpression(expr);
ASSERT_THAT(b.Diagnostics(), testing::IsEmpty());
ASSERT_TRUE(r);
Disassembler d(b.builder.ir);
d.EmitBlockInstructions(b.current_flow_block->As<ir::Block>());
EXPECT_EQ(d.AsString(), R"(%2(vec3<f32>) = construct 2.0f, 3.0f, %1(void)
)");
}
// Requires identifier expressions
TEST_F(IR_BuilderImplTest, DISABLED_EmitExpression_Convert) {
auto i = GlobalVar("i", builtin::AddressSpace::kPrivate, Expr(1_i));
auto* expr = Call(ty.f32(), i);
WrapInFunction(expr);
auto& b = CreateBuilder();
InjectFlowBlock();
auto r = b.EmitExpression(expr);
ASSERT_THAT(b.Diagnostics(), testing::IsEmpty());
ASSERT_TRUE(r);
Disassembler d(b.builder.ir);
d.EmitBlockInstructions(b.current_flow_block->As<ir::Block>());
EXPECT_EQ(d.AsString(), R"(%2(f32) = convert i32, %1(void)
)");
}
TEST_F(IR_BuilderImplTest, EmitExpression_MaterializedCall) {
auto* expr = Return(Call("trunc", 2.5_f));
Func("test_function", {}, ty.f32(), expr, utils::Empty);
auto r = Build();
ASSERT_TRUE(r) << Error();
auto m = r.Move();
EXPECT_EQ(Disassemble(m), R"(%fn0 = func test_function
%fn1 = block
ret 2.0f
func_end
)");
}
// Requires identifier expressions
TEST_F(IR_BuilderImplTest, DISABLED_EmitExpression_Builtin) {
auto i = GlobalVar("i", builtin::AddressSpace::kPrivate, Expr(1_f));
auto* expr = Call("asin", i);
WrapInFunction(expr);
auto& b = CreateBuilder();
InjectFlowBlock();
auto r = b.EmitExpression(expr);
ASSERT_THAT(b.Diagnostics(), testing::IsEmpty());
ASSERT_TRUE(r);
Disassembler d(b.builder.ir);
d.EmitBlockInstructions(b.current_flow_block->As<ir::Block>());
EXPECT_EQ(d.AsString(), R"(%2(f32) = asin %1(void)
)");
}
} // namespace
} // namespace tint::ir