blob: 3f6416b42c6eeff43dab55dd778dd5dbbd3971cc [file] [log] [blame]
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/transform/bound_array_accessors.h"
#include <algorithm>
#include <utility>
#include "src/program_builder.h"
#include "src/semantic/expression.h"
namespace tint {
namespace transform {
BoundArrayAccessors::BoundArrayAccessors() = default;
BoundArrayAccessors::~BoundArrayAccessors() = default;
Output BoundArrayAccessors::Run(const Program* in, const DataMap&) {
ProgramBuilder out;
CloneContext ctx(&out, in);
// Start by cloning all the symbols. This ensures that the authored symbols
// won't get renamed if they collide with new symbols below.
ctx.CloneSymbols();
ctx.ReplaceAll([&](ast::ArrayAccessorExpression* expr) {
return Transform(expr, &ctx);
});
ctx.Clone();
return Output(Program(std::move(out)));
}
ast::ArrayAccessorExpression* BoundArrayAccessors::Transform(
ast::ArrayAccessorExpression* expr,
CloneContext* ctx) {
auto& diags = ctx->dst->Diagnostics();
auto* ret_type = ctx->src->Sem().Get(expr->array())->Type()->UnwrapAll();
if (!ret_type->Is<type::Array>() && !ret_type->Is<type::Matrix>() &&
!ret_type->Is<type::Vector>()) {
return nullptr;
}
ProgramBuilder& b = *ctx->dst;
using u32 = ProgramBuilder::u32;
uint32_t size = 0;
bool is_vec = ret_type->Is<type::Vector>();
bool is_arr = ret_type->Is<type::Array>();
if (is_vec || is_arr) {
size = is_vec ? ret_type->As<type::Vector>()->size()
: ret_type->As<type::Array>()->size();
} else {
// The row accessor would have been an embedded array accessor and already
// handled, so we just need to do columns here.
size = ret_type->As<type::Matrix>()->columns();
}
auto* const old_idx = expr->idx_expr();
b.SetSource(ctx->Clone(old_idx->source()));
ast::Expression* new_idx = nullptr;
if (size == 0) {
if (is_arr) {
// Call Cloneable::Clone() instead of CloneContext::Clone() to ensure the
// AST node is duplicated. CloneContext::Clone() will ensure that repeated
// calls with the same pointer return the *same* cloned node - in this
// case we actually want two copies.
auto* arr = static_cast<ast::Expression*>(expr->array()->Clone(ctx));
auto* arr_len = b.Call("arrayLength", arr);
auto* limit = b.Sub(arr_len, b.Expr(1u));
new_idx = b.Call("min", b.Construct<u32>(ctx->Clone(old_idx)), limit);
} else {
diags.add_error("invalid 0 size", expr->source());
return nullptr;
}
} else if (auto* c = old_idx->As<ast::ScalarConstructorExpression>()) {
// Scalar constructor we can re-write the value to be within bounds.
auto* lit = c->literal();
if (auto* sint = lit->As<ast::SintLiteral>()) {
int32_t max = static_cast<int32_t>(size) - 1;
new_idx = b.Expr(std::max(std::min(sint->value(), max), 0));
} else if (auto* uint = lit->As<ast::UintLiteral>()) {
new_idx = b.Expr(std::min(uint->value(), size - 1));
} else {
diags.add_error("unknown scalar constructor type for accessor",
expr->source());
return nullptr;
}
} else {
auto* cloned_idx = ctx->Clone(old_idx);
new_idx = b.Call("min", b.Construct<u32>(cloned_idx), b.Expr(size - 1));
}
// Clone arguments outside of create() call to have deterministic ordering
auto src = ctx->Clone(expr->source());
auto* arr = ctx->Clone(expr->array());
return b.create<ast::ArrayAccessorExpression>(src, arr, new_idx);
}
} // namespace transform
} // namespace tint