blob: 59d3ce28ff9e7e770a1b6ee8a6d283a27f8a99ac [file] [log] [blame]
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SRC_AST_BUILDER_H_
#define SRC_AST_BUILDER_H_
#include <memory>
#include <string>
#include <utility>
#include "src/ast/array_accessor_expression.h"
#include "src/ast/binary_expression.h"
#include "src/ast/bool_literal.h"
#include "src/ast/call_expression.h"
#include "src/ast/expression.h"
#include "src/ast/float_literal.h"
#include "src/ast/identifier_expression.h"
#include "src/ast/module.h"
#include "src/ast/scalar_constructor_expression.h"
#include "src/ast/sint_literal.h"
#include "src/ast/type/array_type.h"
#include "src/ast/type/bool_type.h"
#include "src/ast/type/f32_type.h"
#include "src/ast/type/i32_type.h"
#include "src/ast/type/matrix_type.h"
#include "src/ast/type/pointer_type.h"
#include "src/ast/type/u32_type.h"
#include "src/ast/type/vector_type.h"
#include "src/ast/type/void_type.h"
#include "src/ast/type_constructor_expression.h"
#include "src/ast/uint_literal.h"
#include "src/ast/variable.h"
namespace tint {
namespace ast {
/// TypesBuilder holds basic `tint` types and methods for constructing
/// complex types.
class TypesBuilder {
public:
/// Constructor
/// @param mod the module
explicit TypesBuilder(Module* mod);
/// A boolean type
type::Bool* const bool_;
/// A f32 type
type::F32* const f32;
/// A i32 type
type::I32* const i32;
/// A u32 type
type::U32* const u32;
/// A void type
type::Void* const void_;
/// @return the tint AST type for the C type `T`.
template <typename T>
type::Type* Of() const {
return CToAST<T>::get(this);
}
/// @return the tint AST type for a 2-element vector of the C type `T`.
template <typename T>
type::Vector* vec2() const {
return mod_->create<type::Vector>(Of<T>(), 2);
}
/// @return the tint AST type for a 3-element vector of the C type `T`.
template <typename T>
type::Vector* vec3() const {
return mod_->create<type::Vector>(Of<T>(), 3);
}
/// @return the tint AST type for a 4-element vector of the C type `T`.
template <typename T>
type::Type* vec4() const {
return mod_->create<type::Vector>(Of<T>(), 4);
}
/// @return the tint AST type for a 2x3 matrix of the C type `T`.
template <typename T>
type::Matrix* mat2x2() const {
return mod_->create<type::Matrix>(Of<T>(), 2, 2);
}
/// @return the tint AST type for a 2x3 matrix of the C type `T`.
template <typename T>
type::Matrix* mat2x3() const {
return mod_->create<type::Matrix>(Of<T>(), 3, 2);
}
/// @return the tint AST type for a 2x4 matrix of the C type `T`.
template <typename T>
type::Matrix* mat2x4() const {
return mod_->create<type::Matrix>(Of<T>(), 4, 2);
}
/// @return the tint AST type for a 3x2 matrix of the C type `T`.
template <typename T>
type::Matrix* mat3x2() const {
return mod_->create<type::Matrix>(Of<T>(), 2, 3);
}
/// @return the tint AST type for a 3x3 matrix of the C type `T`.
template <typename T>
type::Matrix* mat3x3() const {
return mod_->create<type::Matrix>(Of<T>(), 3, 3);
}
/// @return the tint AST type for a 3x4 matrix of the C type `T`.
template <typename T>
type::Matrix* mat3x4() const {
return mod_->create<type::Matrix>(Of<T>(), 4, 3);
}
/// @return the tint AST type for a 4x2 matrix of the C type `T`.
template <typename T>
type::Matrix* mat4x2() const {
return mod_->create<type::Matrix>(Of<T>(), 2, 4);
}
/// @return the tint AST type for a 4x3 matrix of the C type `T`.
template <typename T>
type::Matrix* mat4x3() const {
return mod_->create<type::Matrix>(Of<T>(), 3, 4);
}
/// @return the tint AST type for a 4x4 matrix of the C type `T`.
template <typename T>
type::Matrix* mat4x4() const {
return mod_->create<type::Matrix>(Of<T>(), 4, 4);
}
/// @param subtype the array element type
/// @param n the array size. 0 represents unbounded
/// @return the tint AST type for a array of size `n` of type `T`
type::Array* array(type::Type* subtype, uint32_t n) const {
return mod_->create<type::Array>(subtype, n, ArrayDecorationList{});
}
/// @return the tint AST type for an array of size `N` of type `T`
template <typename T, int N = 0>
type::Array* array() const {
return array(Of<T>(), N);
}
/// @return the tint AST pointer to type `T` with the given StorageClass.
/// @param storage_class the storage class of the pointer
template <typename T>
type::Pointer* pointer(StorageClass storage_class) const {
return mod_->create<type::Pointer>(Of<T>(), storage_class);
}
private:
/// CToAST<T> is specialized for various `T` types and each specialization
/// contains a single static `get()` method for obtaining the corresponding
/// AST type for the C type `T`.
/// `get()` has the signature:
/// `static type::Type* get(Types* t)`
template <typename T>
struct CToAST {};
Module* const mod_;
};
/// Helper for building common AST constructs.
class Builder {
public:
/// `i32` is a type alias to `int`.
/// Useful for passing to template methods such as `vec2<i32>()` to imitate
/// WGSL syntax.
/// Note: this is intentionally not aliased to uint32_t as we want integer
/// literals passed to the builder to match WGSL's integer literal types.
using i32 = decltype(1);
/// `u32` is a type alias to `unsigned int`.
/// Useful for passing to template methods such as `vec2<u32>()` to imitate
/// WGSL syntax.
/// Note: this is intentionally not aliased to uint32_t as we want integer
/// literals passed to the builder to match WGSL's integer literal types.
using u32 = decltype(1u);
/// `f32` is a type alias to `float`
/// Useful for passing to template methods such as `vec2<f32>()` to imitate
/// WGSL syntax.
using f32 = float;
/// Constructor
/// @param mod the module to use in the builder
explicit Builder(Module* mod);
virtual ~Builder();
/// @param expr the expression
/// @return expr
Expression* Expr(Expression* expr) { return expr; }
/// @param name the identifier name
/// @return an IdentifierExpression with the given name
IdentifierExpression* Expr(const std::string& name) {
return create<IdentifierExpression>(name);
}
/// @param name the identifier name
/// @return an IdentifierExpression with the given name
IdentifierExpression* Expr(const char* name) {
return create<IdentifierExpression>(name);
}
/// @param value the boolean value
/// @return a Scalar constructor for the given value
ScalarConstructorExpression* Expr(bool value) {
return create<ScalarConstructorExpression>(Literal(value));
}
/// @param value the float value
/// @return a Scalar constructor for the given value
ScalarConstructorExpression* Expr(f32 value) {
return create<ScalarConstructorExpression>(Literal(value));
}
/// @param value the integer value
/// @return a Scalar constructor for the given value
ScalarConstructorExpression* Expr(i32 value) {
return create<ScalarConstructorExpression>(Literal(value));
}
/// @param value the unsigned int value
/// @return a Scalar constructor for the given value
ScalarConstructorExpression* Expr(u32 value) {
return create<ScalarConstructorExpression>(Literal(value));
}
/// Converts `arg` to an `Expression` using `Expr()`, then appends it to
/// `list`.
/// @param list the list to append too
/// @param arg the arg to create
template <typename ARG>
void Append(ExpressionList& list, ARG&& arg) {
list.emplace_back(Expr(std::forward<ARG>(arg)));
}
/// Converts `arg0` and `args` to `Expression`s using `Expr()`,
/// then appends them to `list`.
/// @param list the list to append too
/// @param arg0 the first argument
/// @param args the rest of the arguments
template <typename ARG0, typename... ARGS>
void Append(ExpressionList& list, ARG0&& arg0, ARGS&&... args) {
Append(list, std::forward<ARG0>(arg0));
Append(list, std::forward<ARGS>(args)...);
}
/// @return an empty list of expressions,
ExpressionList ExprList() { return {}; }
/// @param args the list of expressions
/// @return the list of expressions converted to `Expression`s using
/// `Expr()`,
template <typename... ARGS>
ExpressionList ExprList(ARGS&&... args) {
ExpressionList list;
list.reserve(sizeof...(args));
Append(list, std::forward<ARGS>(args)...);
return list;
}
/// @param val the boolan value
/// @return a boolean literal with the given value
BoolLiteral* Literal(bool val) { return create<BoolLiteral>(ty.bool_, val); }
/// @param val the float value
/// @return a float literal with the given value
FloatLiteral* Literal(f32 val) { return create<FloatLiteral>(ty.f32, val); }
/// @param val the unsigned int value
/// @return a UintLiteral with the given value
UintLiteral* Literal(u32 val) { return create<UintLiteral>(ty.u32, val); }
/// @param val the integer value
/// @return the SintLiteral with the given value
SintLiteral* Literal(i32 val) { return create<SintLiteral>(ty.i32, val); }
/// @param args the arguments for the type constructor
/// @return an `TypeConstructorExpression` of type `ty`, with the values
/// of `args` converted to `Expression`s using `Expr()`
template <typename T, typename... ARGS>
TypeConstructorExpression* Construct(ARGS&&... args) {
return create<TypeConstructorExpression>(
ty.Of<T>(), ExprList(std::forward<ARGS>(args)...));
}
/// @param type the type to construct
/// @param args the arguments for the constructor
/// @return an `TypeConstructorExpression` of `type` constructed with the
/// values `args`.
template <typename... ARGS>
TypeConstructorExpression* Construct(type::Type* type, ARGS&&... args) {
return create<TypeConstructorExpression>(
type, ExprList(std::forward<ARGS>(args)...));
}
/// @param args the arguments for the vector constructor
/// @return an `TypeConstructorExpression` of a 2-element vector of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
TypeConstructorExpression* vec2(ARGS&&... args) {
return create<TypeConstructorExpression>(
ty.vec2<T>(), ExprList(std::forward<ARGS>(args)...));
}
/// @param args the arguments for the vector constructor
/// @return an `TypeConstructorExpression` of a 3-element vector of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
TypeConstructorExpression* vec3(ARGS&&... args) {
return create<TypeConstructorExpression>(
ty.vec3<T>(), ExprList(std::forward<ARGS>(args)...));
}
/// @param args the arguments for the vector constructor
/// @return an `TypeConstructorExpression` of a 4-element vector of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
TypeConstructorExpression* vec4(ARGS&&... args) {
return create<TypeConstructorExpression>(
ty.vec4<T>(), ExprList(std::forward<ARGS>(args)...));
}
/// @param args the arguments for the matrix constructor
/// @return an `TypeConstructorExpression` of a 2x2 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
TypeConstructorExpression* mat2x2(ARGS&&... args) {
return create<TypeConstructorExpression>(
ty.mat2x2<T>(), ExprList(std::forward<ARGS>(args)...));
}
/// @param args the arguments for the matrix constructor
/// @return an `TypeConstructorExpression` of a 2x3 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
TypeConstructorExpression* mat2x3(ARGS&&... args) {
return create<TypeConstructorExpression>(
ty.mat2x3<T>(), ExprList(std::forward<ARGS>(args)...));
}
/// @param args the arguments for the matrix constructor
/// @return an `TypeConstructorExpression` of a 2x4 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
TypeConstructorExpression* mat2x4(ARGS&&... args) {
return create<TypeConstructorExpression>(
ty.mat2x4<T>(), ExprList(std::forward<ARGS>(args)...));
}
/// @param args the arguments for the matrix constructor
/// @return an `TypeConstructorExpression` of a 3x2 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
TypeConstructorExpression* mat3x2(ARGS&&... args) {
return create<TypeConstructorExpression>(
ty.mat3x2<T>(), ExprList(std::forward<ARGS>(args)...));
}
/// @param args the arguments for the matrix constructor
/// @return an `TypeConstructorExpression` of a 3x3 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
TypeConstructorExpression* mat3x3(ARGS&&... args) {
return create<TypeConstructorExpression>(
ty.mat3x3<T>(), ExprList(std::forward<ARGS>(args)...));
}
/// @param args the arguments for the matrix constructor
/// @return an `TypeConstructorExpression` of a 3x4 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
TypeConstructorExpression* mat3x4(ARGS&&... args) {
return create<TypeConstructorExpression>(
ty.mat3x4<T>(), ExprList(std::forward<ARGS>(args)...));
}
/// @param args the arguments for the matrix constructor
/// @return an `TypeConstructorExpression` of a 4x2 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
TypeConstructorExpression* mat4x2(ARGS&&... args) {
return create<TypeConstructorExpression>(
ty.mat4x2<T>(), ExprList(std::forward<ARGS>(args)...));
}
/// @param args the arguments for the matrix constructor
/// @return an `TypeConstructorExpression` of a 4x3 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
TypeConstructorExpression* mat4x3(ARGS&&... args) {
return create<TypeConstructorExpression>(
ty.mat4x3<T>(), ExprList(std::forward<ARGS>(args)...));
}
/// @param args the arguments for the matrix constructor
/// @return an `TypeConstructorExpression` of a 4x4 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
TypeConstructorExpression* mat4x4(ARGS&&... args) {
return create<TypeConstructorExpression>(
ty.mat4x4<T>(), ExprList(std::forward<ARGS>(args)...));
}
/// @param args the arguments for the array constructor
/// @return an `TypeConstructorExpression` of a 4x4 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, int N = 0, typename... ARGS>
TypeConstructorExpression* array(ARGS&&... args) {
return create<TypeConstructorExpression>(
ty.array<T, N>(), ExprList(std::forward<ARGS>(args)...));
}
/// @param name the variable name
/// @param storage the variable storage class
/// @param type the variable type
/// @returns a `Variable` with the given name, storage and type
Variable* Var(const std::string& name,
StorageClass storage,
type::Type* type);
/// @param name the variable name
/// @param storage the variable storage class
/// @param type the variable type
/// @returns a constant `Variable` with the given name, storage and type
Variable* Const(const std::string& name,
StorageClass storage,
type::Type* type);
/// @param func the function name
/// @param args the function call arguments
/// @returns a `CallExpression` to the function `func`, with the
/// arguments of `args` converted to `Expression`s using `Expr()`.
template <typename... ARGS>
CallExpression Call(const std::string& func, ARGS&&... args) {
return CallExpression{Expr(func), ExprList(std::forward<ARGS>(args)...)};
}
/// @param lhs the left hand argument to the addition operation
/// @param rhs the right hand argument to the addition operation
/// @returns a `BinaryExpression` summing the arguments `lhs` and `rhs`
template <typename LHS, typename RHS>
Expression* Add(LHS&& lhs, RHS&& rhs) {
return create<BinaryExpression>(ast::BinaryOp::kAdd,
Expr(std::forward<LHS>(lhs)),
Expr(std::forward<RHS>(rhs)));
}
/// @param lhs the left hand argument to the subtraction operation
/// @param rhs the right hand argument to the subtraction operation
/// @returns a `BinaryExpression` subtracting `rhs` from `lhs`
template <typename LHS, typename RHS>
Expression* Sub(LHS&& lhs, RHS&& rhs) {
return create<BinaryExpression>(ast::BinaryOp::kSubtract,
Expr(std::forward<LHS>(lhs)),
Expr(std::forward<RHS>(rhs)));
}
/// @param arr the array argument for the array accessor expression
/// @param idx the index argument for the array accessor expression
/// @returns a `ArrayAccessorExpression` that indexes `arr` with `idx`
template <typename ARR, typename IDX>
Expression* Index(ARR&& arr, IDX&& idx) {
return create<ArrayAccessorExpression>(Expr(std::forward<ARR>(arr)),
Expr(std::forward<IDX>(idx)));
}
/// Creates a new `Node` owned by the Module. When the Module is
/// destructed, the `Node` will also be destructed.
/// @param args the arguments to pass to the type constructor
/// @returns the node pointer
template <typename T, typename... ARGS>
T* create(ARGS&&... args) {
return mod->create<T>(std::forward<ARGS>(args)...);
}
/// The builder module
Module* const mod;
/// The builder types
const TypesBuilder ty;
protected:
/// Called whenever a new variable is built with `Var()`.
virtual void OnVariableBuilt(Variable*) {}
};
/// BuilderWithModule is a `Builder` that constructs and owns its `Module`.
class BuilderWithModule : public Builder {
public:
BuilderWithModule();
~BuilderWithModule() override;
};
//! @cond Doxygen_Suppress
// Various template specializations for TypesBuilder::CToAST.
template <>
struct TypesBuilder::CToAST<Builder::i32> {
static type::Type* get(const TypesBuilder* t) { return t->i32; }
};
template <>
struct TypesBuilder::CToAST<Builder::u32> {
static type::Type* get(const TypesBuilder* t) { return t->u32; }
};
template <>
struct TypesBuilder::CToAST<Builder::f32> {
static type::Type* get(const TypesBuilder* t) { return t->f32; }
};
template <>
struct TypesBuilder::CToAST<bool> {
static type::Type* get(const TypesBuilder* t) { return t->bool_; }
};
template <>
struct TypesBuilder::CToAST<void> {
static type::Type* get(const TypesBuilder* t) { return t->void_; }
};
//! @endcond
} // namespace ast
} // namespace tint
#endif // SRC_AST_BUILDER_H_