blob: 52e5fff36ca9062c701e09584535751a817391fd [file] [log] [blame]
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <memory>
#include "src/ast/assignment_statement.h"
#include "src/ast/binary_expression.h"
#include "src/ast/bitcast_expression.h"
#include "src/ast/call_expression.h"
#include "src/ast/call_statement.h"
#include "src/ast/else_statement.h"
#include "src/ast/float_literal.h"
#include "src/ast/function.h"
#include "src/ast/identifier_expression.h"
#include "src/ast/if_statement.h"
#include "src/ast/module.h"
#include "src/ast/return_statement.h"
#include "src/ast/scalar_constructor_expression.h"
#include "src/ast/sint_literal.h"
#include "src/ast/type/bool_type.h"
#include "src/ast/type/f32_type.h"
#include "src/ast/type/i32_type.h"
#include "src/ast/type/matrix_type.h"
#include "src/ast/type/u32_type.h"
#include "src/ast/type/vector_type.h"
#include "src/ast/type/void_type.h"
#include "src/ast/type_constructor_expression.h"
#include "src/ast/variable.h"
#include "src/ast/variable_decl_statement.h"
#include "src/writer/hlsl/test_helper.h"
namespace tint {
namespace writer {
namespace hlsl {
namespace {
using HlslGeneratorImplTest_Binary = TestHelper;
struct BinaryData {
const char* result;
ast::BinaryOp op;
};
inline std::ostream& operator<<(std::ostream& out, BinaryData data) {
out << data.op;
return out;
}
using HlslBinaryTest = TestParamHelper<BinaryData>;
TEST_P(HlslBinaryTest, Emit_f32) {
ast::type::F32 f32;
auto params = GetParam();
auto* left_var =
create<ast::Variable>("left", ast::StorageClass::kFunction, &f32);
auto* right_var =
create<ast::Variable>("right", ast::StorageClass::kFunction, &f32);
auto* left = create<ast::IdentifierExpression>("left");
auto* right = create<ast::IdentifierExpression>("right");
td.RegisterVariableForTesting(left_var);
td.RegisterVariableForTesting(right_var);
ast::BinaryExpression expr(params.op, left, right);
ASSERT_TRUE(td.DetermineResultType(&expr)) << td.error();
ASSERT_TRUE(gen.EmitExpression(pre, out, &expr)) << gen.error();
EXPECT_EQ(result(), params.result);
}
TEST_P(HlslBinaryTest, Emit_u32) {
ast::type::U32 u32;
auto params = GetParam();
auto* left_var =
create<ast::Variable>("left", ast::StorageClass::kFunction, &u32);
auto* right_var =
create<ast::Variable>("right", ast::StorageClass::kFunction, &u32);
auto* left = create<ast::IdentifierExpression>("left");
auto* right = create<ast::IdentifierExpression>("right");
td.RegisterVariableForTesting(left_var);
td.RegisterVariableForTesting(right_var);
ast::BinaryExpression expr(params.op, left, right);
ASSERT_TRUE(td.DetermineResultType(&expr)) << td.error();
ASSERT_TRUE(gen.EmitExpression(pre, out, &expr)) << gen.error();
EXPECT_EQ(result(), params.result);
}
TEST_P(HlslBinaryTest, Emit_i32) {
ast::type::I32 i32;
auto params = GetParam();
auto* left_var =
create<ast::Variable>("left", ast::StorageClass::kFunction, &i32);
auto* right_var =
create<ast::Variable>("right", ast::StorageClass::kFunction, &i32);
auto* left = create<ast::IdentifierExpression>("left");
auto* right = create<ast::IdentifierExpression>("right");
td.RegisterVariableForTesting(left_var);
td.RegisterVariableForTesting(right_var);
ast::BinaryExpression expr(params.op, left, right);
ASSERT_TRUE(td.DetermineResultType(&expr)) << td.error();
ASSERT_TRUE(gen.EmitExpression(pre, out, &expr)) << gen.error();
EXPECT_EQ(result(), params.result);
}
INSTANTIATE_TEST_SUITE_P(
HlslGeneratorImplTest,
HlslBinaryTest,
testing::Values(
BinaryData{"(left & right)", ast::BinaryOp::kAnd},
BinaryData{"(left | right)", ast::BinaryOp::kOr},
BinaryData{"(left ^ right)", ast::BinaryOp::kXor},
BinaryData{"(left == right)", ast::BinaryOp::kEqual},
BinaryData{"(left != right)", ast::BinaryOp::kNotEqual},
BinaryData{"(left < right)", ast::BinaryOp::kLessThan},
BinaryData{"(left > right)", ast::BinaryOp::kGreaterThan},
BinaryData{"(left <= right)", ast::BinaryOp::kLessThanEqual},
BinaryData{"(left >= right)", ast::BinaryOp::kGreaterThanEqual},
BinaryData{"(left << right)", ast::BinaryOp::kShiftLeft},
BinaryData{"(left >> right)", ast::BinaryOp::kShiftRight},
BinaryData{"(left + right)", ast::BinaryOp::kAdd},
BinaryData{"(left - right)", ast::BinaryOp::kSubtract},
BinaryData{"(left * right)", ast::BinaryOp::kMultiply},
BinaryData{"(left / right)", ast::BinaryOp::kDivide},
BinaryData{"(left % right)", ast::BinaryOp::kModulo}));
TEST_F(HlslGeneratorImplTest_Binary, Multiply_VectorScalar) {
ast::type::F32 f32;
ast::type::Vector vec3(&f32, 3);
auto* lhs = create<ast::TypeConstructorExpression>(
&vec3, ast::ExpressionList{
create<ast::ScalarConstructorExpression>(
create<ast::FloatLiteral>(&f32, 1.f)),
create<ast::ScalarConstructorExpression>(
create<ast::FloatLiteral>(&f32, 1.f)),
create<ast::ScalarConstructorExpression>(
create<ast::FloatLiteral>(&f32, 1.f)),
});
auto* rhs = create<ast::ScalarConstructorExpression>(
create<ast::FloatLiteral>(&f32, 1.f));
ast::BinaryExpression expr(ast::BinaryOp::kMultiply, lhs, rhs);
ASSERT_TRUE(td.DetermineResultType(&expr)) << td.error();
EXPECT_TRUE(gen.EmitExpression(pre, out, &expr)) << gen.error();
EXPECT_EQ(result(),
"(float3(1.0f, 1.0f, 1.0f) * "
"1.0f)");
}
TEST_F(HlslGeneratorImplTest_Binary, Multiply_ScalarVector) {
ast::type::F32 f32;
ast::type::Vector vec3(&f32, 3);
auto* lhs = create<ast::ScalarConstructorExpression>(
create<ast::FloatLiteral>(&f32, 1.f));
ast::ExpressionList vals;
vals.push_back(create<ast::ScalarConstructorExpression>(
create<ast::FloatLiteral>(&f32, 1.f)));
vals.push_back(create<ast::ScalarConstructorExpression>(
create<ast::FloatLiteral>(&f32, 1.f)));
vals.push_back(create<ast::ScalarConstructorExpression>(
create<ast::FloatLiteral>(&f32, 1.f)));
auto* rhs = create<ast::TypeConstructorExpression>(&vec3, vals);
ast::BinaryExpression expr(ast::BinaryOp::kMultiply, lhs, rhs);
ASSERT_TRUE(td.DetermineResultType(&expr)) << td.error();
EXPECT_TRUE(gen.EmitExpression(pre, out, &expr)) << gen.error();
EXPECT_EQ(result(),
"(1.0f * float3(1.0f, 1.0f, "
"1.0f))");
}
TEST_F(HlslGeneratorImplTest_Binary, Multiply_MatrixScalar) {
ast::type::F32 f32;
ast::type::Matrix mat3(&f32, 3, 3);
auto* var = create<ast::Variable>("mat", ast::StorageClass::kFunction, &mat3);
auto* lhs = create<ast::IdentifierExpression>("mat");
auto* rhs = create<ast::ScalarConstructorExpression>(
create<ast::FloatLiteral>(&f32, 1.f));
td.RegisterVariableForTesting(var);
ast::BinaryExpression expr(ast::BinaryOp::kMultiply, lhs, rhs);
ASSERT_TRUE(td.DetermineResultType(&expr)) << td.error();
EXPECT_TRUE(gen.EmitExpression(pre, out, &expr)) << gen.error();
EXPECT_EQ(result(), "(mat * 1.0f)");
}
TEST_F(HlslGeneratorImplTest_Binary, Multiply_ScalarMatrix) {
ast::type::F32 f32;
ast::type::Matrix mat3(&f32, 3, 3);
auto* var = create<ast::Variable>("mat", ast::StorageClass::kFunction, &mat3);
auto* lhs = create<ast::ScalarConstructorExpression>(
create<ast::FloatLiteral>(&f32, 1.f));
auto* rhs = create<ast::IdentifierExpression>("mat");
td.RegisterVariableForTesting(var);
ast::BinaryExpression expr(ast::BinaryOp::kMultiply, lhs, rhs);
ASSERT_TRUE(td.DetermineResultType(&expr)) << td.error();
EXPECT_TRUE(gen.EmitExpression(pre, out, &expr)) << gen.error();
EXPECT_EQ(result(), "(1.0f * mat)");
}
TEST_F(HlslGeneratorImplTest_Binary, Multiply_MatrixVector) {
ast::type::F32 f32;
ast::type::Vector vec3(&f32, 3);
ast::type::Matrix mat3(&f32, 3, 3);
auto* var = create<ast::Variable>("mat", ast::StorageClass::kFunction, &mat3);
auto* lhs = create<ast::IdentifierExpression>("mat");
ast::ExpressionList vals;
vals.push_back(create<ast::ScalarConstructorExpression>(
create<ast::FloatLiteral>(&f32, 1.f)));
vals.push_back(create<ast::ScalarConstructorExpression>(
create<ast::FloatLiteral>(&f32, 1.f)));
vals.push_back(create<ast::ScalarConstructorExpression>(
create<ast::FloatLiteral>(&f32, 1.f)));
auto* rhs = create<ast::TypeConstructorExpression>(&vec3, vals);
td.RegisterVariableForTesting(var);
ast::BinaryExpression expr(ast::BinaryOp::kMultiply, lhs, rhs);
ASSERT_TRUE(td.DetermineResultType(&expr)) << td.error();
EXPECT_TRUE(gen.EmitExpression(pre, out, &expr)) << gen.error();
EXPECT_EQ(result(), "mul(mat, float3(1.0f, 1.0f, 1.0f))");
}
TEST_F(HlslGeneratorImplTest_Binary, Multiply_VectorMatrix) {
ast::type::F32 f32;
ast::type::Vector vec3(&f32, 3);
ast::type::Matrix mat3(&f32, 3, 3);
auto* var = create<ast::Variable>("mat", ast::StorageClass::kFunction, &mat3);
ast::ExpressionList vals;
vals.push_back(create<ast::ScalarConstructorExpression>(
create<ast::FloatLiteral>(&f32, 1.f)));
vals.push_back(create<ast::ScalarConstructorExpression>(
create<ast::FloatLiteral>(&f32, 1.f)));
vals.push_back(create<ast::ScalarConstructorExpression>(
create<ast::FloatLiteral>(&f32, 1.f)));
auto* lhs = create<ast::TypeConstructorExpression>(&vec3, vals);
auto* rhs = create<ast::IdentifierExpression>("mat");
td.RegisterVariableForTesting(var);
ast::BinaryExpression expr(ast::BinaryOp::kMultiply, lhs, rhs);
ASSERT_TRUE(td.DetermineResultType(&expr)) << td.error();
EXPECT_TRUE(gen.EmitExpression(pre, out, &expr)) << gen.error();
EXPECT_EQ(result(), "mul(float3(1.0f, 1.0f, 1.0f), mat)");
}
TEST_F(HlslGeneratorImplTest_Binary, Multiply_MatrixMatrix) {
ast::type::F32 f32;
ast::type::Vector vec3(&f32, 3);
ast::type::Matrix mat3(&f32, 3, 3);
auto* var = create<ast::Variable>("mat", ast::StorageClass::kFunction, &mat3);
auto* lhs = create<ast::IdentifierExpression>("mat");
auto* rhs = create<ast::IdentifierExpression>("mat");
td.RegisterVariableForTesting(var);
ast::BinaryExpression expr(ast::BinaryOp::kMultiply, lhs, rhs);
ASSERT_TRUE(td.DetermineResultType(&expr)) << td.error();
EXPECT_TRUE(gen.EmitExpression(pre, out, &expr)) << gen.error();
EXPECT_EQ(result(), "mul(mat, mat)");
}
TEST_F(HlslGeneratorImplTest_Binary, Logical_And) {
auto* left = create<ast::IdentifierExpression>("left");
auto* right = create<ast::IdentifierExpression>("right");
ast::BinaryExpression expr(ast::BinaryOp::kLogicalAnd, left, right);
ASSERT_TRUE(gen.EmitExpression(pre, out, &expr)) << gen.error();
EXPECT_EQ(result(), "(_tint_tmp)");
EXPECT_EQ(pre_result(), R"(bool _tint_tmp = left;
if (_tint_tmp) {
_tint_tmp = right;
}
)");
}
TEST_F(HlslGeneratorImplTest_Binary, Logical_Multi) {
// (a && b) || (c || d)
auto* a = create<ast::IdentifierExpression>("a");
auto* b = create<ast::IdentifierExpression>("b");
auto* c = create<ast::IdentifierExpression>("c");
auto* d = create<ast::IdentifierExpression>("d");
ast::BinaryExpression expr(
ast::BinaryOp::kLogicalOr,
create<ast::BinaryExpression>(ast::BinaryOp::kLogicalAnd, a, b),
create<ast::BinaryExpression>(ast::BinaryOp::kLogicalOr, c, d));
ASSERT_TRUE(gen.EmitExpression(pre, out, &expr)) << gen.error();
EXPECT_EQ(result(), "(_tint_tmp_0)");
EXPECT_EQ(pre_result(), R"(bool _tint_tmp = a;
if (_tint_tmp) {
_tint_tmp = b;
}
bool _tint_tmp_0 = (_tint_tmp);
if (!_tint_tmp_0) {
bool _tint_tmp_1 = c;
if (!_tint_tmp_1) {
_tint_tmp_1 = d;
}
_tint_tmp_0 = (_tint_tmp_1);
}
)");
}
TEST_F(HlslGeneratorImplTest_Binary, Logical_Or) {
auto* left = create<ast::IdentifierExpression>("left");
auto* right = create<ast::IdentifierExpression>("right");
ast::BinaryExpression expr(ast::BinaryOp::kLogicalOr, left, right);
ASSERT_TRUE(gen.EmitExpression(pre, out, &expr)) << gen.error();
EXPECT_EQ(result(), "(_tint_tmp)");
EXPECT_EQ(pre_result(), R"(bool _tint_tmp = left;
if (!_tint_tmp) {
_tint_tmp = right;
}
)");
}
TEST_F(HlslGeneratorImplTest_Binary, If_WithLogical) {
// if (a && b) {
// return 1;
// } else if (b || c) {
// return 2;
// } else {
// return 3;
// }
ast::type::I32 i32;
auto* body = create<ast::BlockStatement>();
body->append(
create<ast::ReturnStatement>(create<ast::ScalarConstructorExpression>(
create<ast::SintLiteral>(&i32, 3))));
auto* else_stmt = create<ast::ElseStatement>(body);
body = create<ast::BlockStatement>();
body->append(
create<ast::ReturnStatement>(create<ast::ScalarConstructorExpression>(
create<ast::SintLiteral>(&i32, 2))));
auto* else_if_stmt = create<ast::ElseStatement>(
create<ast::BinaryExpression>(ast::BinaryOp::kLogicalOr,
create<ast::IdentifierExpression>("b"),
create<ast::IdentifierExpression>("c")),
body);
body = create<ast::BlockStatement>();
body->append(
create<ast::ReturnStatement>(create<ast::ScalarConstructorExpression>(
create<ast::SintLiteral>(&i32, 1))));
ast::IfStatement expr(
Source{},
create<ast::BinaryExpression>(ast::BinaryOp::kLogicalAnd,
create<ast::IdentifierExpression>("a"),
create<ast::IdentifierExpression>("b")),
body,
{
else_if_stmt,
else_stmt,
});
ASSERT_TRUE(gen.EmitStatement(out, &expr)) << gen.error();
EXPECT_EQ(result(), R"(bool _tint_tmp = a;
if (_tint_tmp) {
_tint_tmp = b;
}
if ((_tint_tmp)) {
return 1;
} else {
bool _tint_tmp_0 = b;
if (!_tint_tmp_0) {
_tint_tmp_0 = c;
}
if ((_tint_tmp_0)) {
return 2;
} else {
return 3;
}
}
)");
}
TEST_F(HlslGeneratorImplTest_Binary, Return_WithLogical) {
// return (a && b) || c;
auto* a = create<ast::IdentifierExpression>("a");
auto* b = create<ast::IdentifierExpression>("b");
auto* c = create<ast::IdentifierExpression>("c");
ast::ReturnStatement expr(create<ast::BinaryExpression>(
ast::BinaryOp::kLogicalOr,
create<ast::BinaryExpression>(ast::BinaryOp::kLogicalAnd, a, b), c));
ASSERT_TRUE(gen.EmitStatement(out, &expr)) << gen.error();
EXPECT_EQ(result(), R"(bool _tint_tmp = a;
if (_tint_tmp) {
_tint_tmp = b;
}
bool _tint_tmp_0 = (_tint_tmp);
if (!_tint_tmp_0) {
_tint_tmp_0 = c;
}
return (_tint_tmp_0);
)");
}
TEST_F(HlslGeneratorImplTest_Binary, Assign_WithLogical) {
// a = (b || c) && d;
auto* a = create<ast::IdentifierExpression>("a");
auto* b = create<ast::IdentifierExpression>("b");
auto* c = create<ast::IdentifierExpression>("c");
auto* d = create<ast::IdentifierExpression>("d");
ast::AssignmentStatement expr(
a,
create<ast::BinaryExpression>(
ast::BinaryOp::kLogicalAnd,
create<ast::BinaryExpression>(ast::BinaryOp::kLogicalOr, b, c), d));
ASSERT_TRUE(gen.EmitStatement(out, &expr)) << gen.error();
EXPECT_EQ(result(), R"(bool _tint_tmp = b;
if (!_tint_tmp) {
_tint_tmp = c;
}
bool _tint_tmp_0 = (_tint_tmp);
if (_tint_tmp_0) {
_tint_tmp_0 = d;
}
a = (_tint_tmp_0);
)");
}
TEST_F(HlslGeneratorImplTest_Binary, Decl_WithLogical) {
// var a : bool = (b && c) || d;
ast::type::Bool bool_type;
auto* b = create<ast::IdentifierExpression>("b");
auto* c = create<ast::IdentifierExpression>("c");
auto* d = create<ast::IdentifierExpression>("d");
auto* var =
create<ast::Variable>("a", ast::StorageClass::kFunction, &bool_type);
var->set_constructor(create<ast::BinaryExpression>(
ast::BinaryOp::kLogicalOr,
create<ast::BinaryExpression>(ast::BinaryOp::kLogicalAnd, b, c), d));
ast::VariableDeclStatement expr(var);
ASSERT_TRUE(gen.EmitStatement(out, &expr)) << gen.error();
EXPECT_EQ(result(), R"(bool _tint_tmp = b;
if (_tint_tmp) {
_tint_tmp = c;
}
bool _tint_tmp_0 = (_tint_tmp);
if (!_tint_tmp_0) {
_tint_tmp_0 = d;
}
bool a = (_tint_tmp_0);
)");
}
TEST_F(HlslGeneratorImplTest_Binary, Bitcast_WithLogical) {
// as<i32>(a && (b || c))
ast::type::I32 i32;
auto* a = create<ast::IdentifierExpression>("a");
auto* b = create<ast::IdentifierExpression>("b");
auto* c = create<ast::IdentifierExpression>("c");
ast::BitcastExpression expr(&i32, create<ast::BinaryExpression>(
ast::BinaryOp::kLogicalAnd, a,
create<ast::BinaryExpression>(
ast::BinaryOp::kLogicalOr, b, c)));
ASSERT_TRUE(gen.EmitExpression(pre, out, &expr)) << gen.error();
EXPECT_EQ(pre_result(), R"(bool _tint_tmp = a;
if (_tint_tmp) {
bool _tint_tmp_0 = b;
if (!_tint_tmp_0) {
_tint_tmp_0 = c;
}
_tint_tmp = (_tint_tmp_0);
}
)");
EXPECT_EQ(result(), R"(asint((_tint_tmp)))");
}
TEST_F(HlslGeneratorImplTest_Binary, Call_WithLogical) {
// foo(a && b, c || d, (a || c) && (b || d))
ast::type::Void void_type;
auto* func = create<ast::Function>("foo", ast::VariableList{}, &void_type,
create<ast::BlockStatement>());
mod.AddFunction(func);
ast::ExpressionList params;
params.push_back(create<ast::BinaryExpression>(
ast::BinaryOp::kLogicalAnd, create<ast::IdentifierExpression>("a"),
create<ast::IdentifierExpression>("b")));
params.push_back(create<ast::BinaryExpression>(
ast::BinaryOp::kLogicalOr, create<ast::IdentifierExpression>("c"),
create<ast::IdentifierExpression>("d")));
params.push_back(create<ast::BinaryExpression>(
ast::BinaryOp::kLogicalAnd,
create<ast::BinaryExpression>(ast::BinaryOp::kLogicalOr,
create<ast::IdentifierExpression>("a"),
create<ast::IdentifierExpression>("c")),
create<ast::BinaryExpression>(ast::BinaryOp::kLogicalOr,
create<ast::IdentifierExpression>("b"),
create<ast::IdentifierExpression>("d"))));
ast::CallStatement expr(create<ast::CallExpression>(
create<ast::IdentifierExpression>("foo"), params));
ASSERT_TRUE(gen.EmitStatement(out, &expr)) << gen.error();
EXPECT_EQ(result(), R"(bool _tint_tmp = a;
if (_tint_tmp) {
_tint_tmp = b;
}
bool _tint_tmp_0 = c;
if (!_tint_tmp_0) {
_tint_tmp_0 = d;
}
bool _tint_tmp_1 = a;
if (!_tint_tmp_1) {
_tint_tmp_1 = c;
}
bool _tint_tmp_2 = (_tint_tmp_1);
if (_tint_tmp_2) {
bool _tint_tmp_3 = b;
if (!_tint_tmp_3) {
_tint_tmp_3 = d;
}
_tint_tmp_2 = (_tint_tmp_3);
}
foo((_tint_tmp), (_tint_tmp_0), (_tint_tmp_2));
)");
}
} // namespace
} // namespace hlsl
} // namespace writer
} // namespace tint