| #include <metal_stdlib> |
| |
| using namespace metal; |
| struct tint_symbol_1 { |
| float2 a_particlePos [[attribute(0)]]; |
| float2 a_particleVel [[attribute(1)]]; |
| float2 a_pos [[attribute(2)]]; |
| }; |
| struct tint_symbol_2 { |
| float4 value [[position]]; |
| }; |
| struct tint_symbol_3 { |
| float4 value [[color(0)]]; |
| }; |
| struct Particle { |
| /* 0x0000 */ packed_float2 pos; |
| /* 0x0008 */ packed_float2 vel; |
| }; |
| struct SimParams { |
| /* 0x0000 */ float deltaT; |
| /* 0x0004 */ float rule1Distance; |
| /* 0x0008 */ float rule2Distance; |
| /* 0x000c */ float rule3Distance; |
| /* 0x0010 */ float rule1Scale; |
| /* 0x0014 */ float rule2Scale; |
| /* 0x0018 */ float rule3Scale; |
| }; |
| struct tint_array_wrapper { |
| /* 0x0000 */ Particle arr[5]; |
| }; |
| struct Particles { |
| /* 0x0000 */ tint_array_wrapper particles; |
| }; |
| |
| float4 vert_main_inner(float2 a_particlePos, float2 a_particleVel, float2 a_pos) { |
| float angle = -(atan2(a_particleVel.x, a_particleVel.y)); |
| float2 pos = float2(((a_pos.x * cos(angle)) - (a_pos.y * sin(angle))), ((a_pos.x * sin(angle)) + (a_pos.y * cos(angle)))); |
| return float4((pos + a_particlePos), 0.0f, 1.0f); |
| } |
| |
| vertex tint_symbol_2 vert_main(tint_symbol_1 tint_symbol [[stage_in]]) { |
| float4 const inner_result = vert_main_inner(tint_symbol.a_particlePos, tint_symbol.a_particleVel, tint_symbol.a_pos); |
| tint_symbol_2 wrapper_result = {}; |
| wrapper_result.value = inner_result; |
| return wrapper_result; |
| } |
| |
| float4 frag_main_inner() { |
| return float4(1.0f, 1.0f, 1.0f, 1.0f); |
| } |
| |
| fragment tint_symbol_3 frag_main() { |
| float4 const inner_result_1 = frag_main_inner(); |
| tint_symbol_3 wrapper_result_1 = {}; |
| wrapper_result_1.value = inner_result_1; |
| return wrapper_result_1; |
| } |
| |
| void comp_main_inner(constant SimParams& params, device Particles& particlesA, device Particles& particlesB, uint3 gl_GlobalInvocationID) { |
| uint index = gl_GlobalInvocationID.x; |
| if ((index >= 5u)) { |
| return; |
| } |
| float2 vPos = particlesA.particles.arr[index].pos; |
| float2 vVel = particlesA.particles.arr[index].vel; |
| float2 cMass = float2(0.0f, 0.0f); |
| float2 cVel = float2(0.0f, 0.0f); |
| float2 colVel = float2(0.0f, 0.0f); |
| int cMassCount = 0; |
| int cVelCount = 0; |
| float2 pos = 0.0f; |
| float2 vel = 0.0f; |
| for(uint i = 0u; (i < 5u); i = (i + 1u)) { |
| if ((i == index)) { |
| continue; |
| } |
| pos = particlesA.particles.arr[i].pos.xy; |
| vel = particlesA.particles.arr[i].vel.xy; |
| if ((distance(pos, vPos) < params.rule1Distance)) { |
| cMass = (cMass + pos); |
| cMassCount = as_type<int>((as_type<uint>(cMassCount) + as_type<uint>(1))); |
| } |
| if ((distance(pos, vPos) < params.rule2Distance)) { |
| colVel = (colVel - (pos - vPos)); |
| } |
| if ((distance(pos, vPos) < params.rule3Distance)) { |
| cVel = (cVel + vel); |
| cVelCount = as_type<int>((as_type<uint>(cVelCount) + as_type<uint>(1))); |
| } |
| } |
| if ((cMassCount > 0)) { |
| cMass = ((cMass / float2(float(cMassCount), float(cMassCount))) - vPos); |
| } |
| if ((cVelCount > 0)) { |
| cVel = (cVel / float2(float(cVelCount), float(cVelCount))); |
| } |
| vVel = (((vVel + (cMass * params.rule1Scale)) + (colVel * params.rule2Scale)) + (cVel * params.rule3Scale)); |
| vVel = (normalize(vVel) * clamp(length(vVel), 0.0f, 0.100000001f)); |
| vPos = (vPos + (vVel * params.deltaT)); |
| if ((vPos.x < -1.0f)) { |
| vPos.x = 1.0f; |
| } |
| if ((vPos.x > 1.0f)) { |
| vPos.x = -1.0f; |
| } |
| if ((vPos.y < -1.0f)) { |
| vPos.y = 1.0f; |
| } |
| if ((vPos.y > 1.0f)) { |
| vPos.y = -1.0f; |
| } |
| particlesB.particles.arr[index].pos = vPos; |
| particlesB.particles.arr[index].vel = vVel; |
| } |
| |
| kernel void comp_main(uint3 gl_GlobalInvocationID [[thread_position_in_grid]], constant SimParams& params [[buffer(0)]], device Particles& particlesA [[buffer(1)]], device Particles& particlesB [[buffer(2)]]) { |
| comp_main_inner(params, particlesA, particlesB, gl_GlobalInvocationID); |
| return; |
| } |
| |