blob: 6ea8536fa5e8448835a7b8d8cea5fba13fbecc32 [file] [log] [blame]
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/resolver/resolver.h"
#include <tuple>
#include "gmock/gmock.h"
#include "gtest/gtest-spi.h"
#include "src/ast/assignment_statement.h"
#include "src/ast/bitcast_expression.h"
#include "src/ast/break_statement.h"
#include "src/ast/call_statement.h"
#include "src/ast/continue_statement.h"
#include "src/ast/if_statement.h"
#include "src/ast/intrinsic_texture_helper_test.h"
#include "src/ast/loop_statement.h"
#include "src/ast/return_statement.h"
#include "src/ast/stage_decoration.h"
#include "src/ast/struct_block_decoration.h"
#include "src/ast/switch_statement.h"
#include "src/ast/unary_op_expression.h"
#include "src/ast/variable_decl_statement.h"
#include "src/resolver/resolver_test_helper.h"
#include "src/sem/access_control_type.h"
#include "src/sem/call.h"
#include "src/sem/function.h"
#include "src/sem/member_accessor_expression.h"
#include "src/sem/sampled_texture_type.h"
#include "src/sem/statement.h"
#include "src/sem/variable.h"
using ::testing::ElementsAre;
using ::testing::HasSubstr;
namespace tint {
namespace resolver {
namespace {
// Helpers and typedefs
using i32 = ProgramBuilder::i32;
using u32 = ProgramBuilder::u32;
using f32 = ProgramBuilder::f32;
using Op = ast::BinaryOp;
TEST_F(ResolverTest, Stmt_Assign) {
auto* v = Var("v", ty.f32(), ast::StorageClass::kFunction);
auto* lhs = Expr("v");
auto* rhs = Expr(2.3f);
auto* assign = create<ast::AssignmentStatement>(lhs, rhs);
WrapInFunction(v, assign);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(lhs), nullptr);
ASSERT_NE(TypeOf(rhs), nullptr);
EXPECT_TRUE(TypeOf(lhs)->UnwrapAll()->Is<sem::F32>());
EXPECT_TRUE(TypeOf(rhs)->Is<sem::F32>());
EXPECT_EQ(StmtOf(lhs), assign);
EXPECT_EQ(StmtOf(rhs), assign);
}
TEST_F(ResolverTest, Stmt_Case) {
auto* v = Var("v", ty.f32(), ast::StorageClass::kFunction);
auto* lhs = Expr("v");
auto* rhs = Expr(2.3f);
auto* assign = create<ast::AssignmentStatement>(lhs, rhs);
auto* block = Block(assign);
ast::CaseSelectorList lit;
lit.push_back(create<ast::SintLiteral>(ty.i32(), 3));
auto* cse = create<ast::CaseStatement>(lit, block);
WrapInFunction(v, cse);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(lhs), nullptr);
ASSERT_NE(TypeOf(rhs), nullptr);
EXPECT_TRUE(TypeOf(lhs)->UnwrapAll()->Is<sem::F32>());
EXPECT_TRUE(TypeOf(rhs)->Is<sem::F32>());
EXPECT_EQ(StmtOf(lhs), assign);
EXPECT_EQ(StmtOf(rhs), assign);
EXPECT_EQ(BlockOf(assign), block);
}
TEST_F(ResolverTest, Stmt_Block) {
auto* v = Var("v", ty.f32(), ast::StorageClass::kFunction);
auto* lhs = Expr("v");
auto* rhs = Expr(2.3f);
auto* assign = create<ast::AssignmentStatement>(lhs, rhs);
auto* block = Block(assign);
WrapInFunction(v, block);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(lhs), nullptr);
ASSERT_NE(TypeOf(rhs), nullptr);
EXPECT_TRUE(TypeOf(lhs)->UnwrapAll()->Is<sem::F32>());
EXPECT_TRUE(TypeOf(rhs)->Is<sem::F32>());
EXPECT_EQ(StmtOf(lhs), assign);
EXPECT_EQ(StmtOf(rhs), assign);
EXPECT_EQ(BlockOf(lhs), block);
EXPECT_EQ(BlockOf(rhs), block);
EXPECT_EQ(BlockOf(assign), block);
}
TEST_F(ResolverTest, Stmt_If) {
auto* v = Var("v", ty.f32(), ast::StorageClass::kFunction);
auto* else_lhs = Expr("v");
auto* else_rhs = Expr(2.3f);
auto* else_body = Block(create<ast::AssignmentStatement>(else_lhs, else_rhs));
auto* else_cond = Expr(3);
auto* else_stmt = create<ast::ElseStatement>(else_cond, else_body);
auto* lhs = Expr("v");
auto* rhs = Expr(2.3f);
auto* assign = create<ast::AssignmentStatement>(lhs, rhs);
auto* body = Block(assign);
auto* cond = Expr(true);
auto* stmt =
create<ast::IfStatement>(cond, body, ast::ElseStatementList{else_stmt});
WrapInFunction(v, stmt);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(stmt->condition()), nullptr);
ASSERT_NE(TypeOf(else_lhs), nullptr);
ASSERT_NE(TypeOf(else_rhs), nullptr);
ASSERT_NE(TypeOf(lhs), nullptr);
ASSERT_NE(TypeOf(rhs), nullptr);
EXPECT_TRUE(TypeOf(stmt->condition())->Is<sem::Bool>());
EXPECT_TRUE(TypeOf(else_lhs)->UnwrapAll()->Is<sem::F32>());
EXPECT_TRUE(TypeOf(else_rhs)->Is<sem::F32>());
EXPECT_TRUE(TypeOf(lhs)->UnwrapAll()->Is<sem::F32>());
EXPECT_TRUE(TypeOf(rhs)->Is<sem::F32>());
EXPECT_EQ(StmtOf(lhs), assign);
EXPECT_EQ(StmtOf(rhs), assign);
EXPECT_EQ(StmtOf(cond), stmt);
EXPECT_EQ(StmtOf(else_cond), else_stmt);
EXPECT_EQ(BlockOf(lhs), body);
EXPECT_EQ(BlockOf(rhs), body);
EXPECT_EQ(BlockOf(else_lhs), else_body);
EXPECT_EQ(BlockOf(else_rhs), else_body);
}
TEST_F(ResolverTest, Stmt_Loop) {
auto* v = Var("v", ty.f32(), ast::StorageClass::kFunction);
auto* body_lhs = Expr("v");
auto* body_rhs = Expr(2.3f);
auto* body = Block(create<ast::AssignmentStatement>(body_lhs, body_rhs));
auto* continuing_lhs = Expr("v");
auto* continuing_rhs = Expr(2.3f);
auto* continuing = create<ast::BlockStatement>(ast::StatementList{
create<ast::AssignmentStatement>(continuing_lhs, continuing_rhs),
});
auto* stmt = create<ast::LoopStatement>(body, continuing);
WrapInFunction(v, stmt);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(body_lhs), nullptr);
ASSERT_NE(TypeOf(body_rhs), nullptr);
ASSERT_NE(TypeOf(continuing_lhs), nullptr);
ASSERT_NE(TypeOf(continuing_rhs), nullptr);
EXPECT_TRUE(TypeOf(body_lhs)->UnwrapAll()->Is<sem::F32>());
EXPECT_TRUE(TypeOf(body_rhs)->Is<sem::F32>());
EXPECT_TRUE(TypeOf(continuing_lhs)->UnwrapAll()->Is<sem::F32>());
EXPECT_TRUE(TypeOf(continuing_rhs)->Is<sem::F32>());
EXPECT_EQ(BlockOf(body_lhs), body);
EXPECT_EQ(BlockOf(body_rhs), body);
EXPECT_EQ(BlockOf(continuing_lhs), continuing);
EXPECT_EQ(BlockOf(continuing_rhs), continuing);
}
TEST_F(ResolverTest, Stmt_Return) {
auto* cond = Expr(2);
auto* ret = create<ast::ReturnStatement>(cond);
Func("test", {}, ty.i32(), {ret}, {});
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(cond), nullptr);
EXPECT_TRUE(TypeOf(cond)->Is<sem::I32>());
}
TEST_F(ResolverTest, Stmt_Return_WithoutValue) {
auto* ret = create<ast::ReturnStatement>();
WrapInFunction(ret);
EXPECT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverTest, Stmt_Switch) {
auto* v = Var("v", ty.f32(), ast::StorageClass::kFunction);
auto* lhs = Expr("v");
auto* rhs = Expr(2.3f);
auto* case_block = Block(Assign(lhs, rhs));
auto* stmt = Switch(Expr(2), Case(Literal(3), case_block), DefaultCase());
WrapInFunction(v, stmt);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(stmt->condition()), nullptr);
ASSERT_NE(TypeOf(lhs), nullptr);
ASSERT_NE(TypeOf(rhs), nullptr);
EXPECT_TRUE(TypeOf(stmt->condition())->Is<sem::I32>());
EXPECT_TRUE(TypeOf(lhs)->UnwrapAll()->Is<sem::F32>());
EXPECT_TRUE(TypeOf(rhs)->Is<sem::F32>());
EXPECT_EQ(BlockOf(lhs), case_block);
EXPECT_EQ(BlockOf(rhs), case_block);
}
TEST_F(ResolverTest, Stmt_Call) {
ast::VariableList params;
Func("my_func", params, ty.f32(), ast::StatementList{Return(Expr(0.0f))},
ast::DecorationList{});
auto* expr = Call("my_func");
auto* call = create<ast::CallStatement>(expr);
WrapInFunction(call);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(expr), nullptr);
EXPECT_TRUE(TypeOf(expr)->Is<sem::F32>());
EXPECT_EQ(StmtOf(expr), call);
}
TEST_F(ResolverTest, Stmt_VariableDecl) {
auto* var = Var("my_var", ty.i32(), ast::StorageClass::kNone, Expr(2));
auto* init = var->constructor();
auto* decl = create<ast::VariableDeclStatement>(var);
WrapInFunction(decl);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(init), nullptr);
EXPECT_TRUE(TypeOf(init)->Is<sem::I32>());
}
TEST_F(ResolverTest, Stmt_VariableDecl_Alias) {
auto* my_int = ty.alias("MyInt", ty.i32());
auto* var = Var("my_var", my_int, ast::StorageClass::kNone, Expr(2));
auto* init = var->constructor();
auto* decl = create<ast::VariableDeclStatement>(var);
WrapInFunction(decl);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(init), nullptr);
EXPECT_TRUE(TypeOf(init)->Is<sem::I32>());
}
TEST_F(ResolverTest, Stmt_VariableDecl_ModuleScope) {
auto* init = Expr(2);
Global("my_var", ty.i32(), ast::StorageClass::kInput, init);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(init), nullptr);
EXPECT_TRUE(TypeOf(init)->Is<sem::I32>());
EXPECT_EQ(StmtOf(init), nullptr);
}
TEST_F(ResolverTest, Stmt_VariableDecl_OuterScopeAfterInnerScope) {
// fn func_i32() {
// {
// var foo : i32 = 2;
// var bar : i32 = foo;
// }
// var foo : f32 = 2.0;
// var bar : f32 = foo;
// }
ast::VariableList params;
// Declare i32 "foo" inside a block
auto* foo_i32 = Var("foo", ty.i32(), ast::StorageClass::kNone, Expr(2));
auto* foo_i32_init = foo_i32->constructor();
auto* foo_i32_decl = create<ast::VariableDeclStatement>(foo_i32);
// Reference "foo" inside the block
auto* bar_i32 = Var("bar", ty.i32(), ast::StorageClass::kNone, Expr("foo"));
auto* bar_i32_init = bar_i32->constructor();
auto* bar_i32_decl = create<ast::VariableDeclStatement>(bar_i32);
auto* inner = create<ast::BlockStatement>(
ast::StatementList{foo_i32_decl, bar_i32_decl});
// Declare f32 "foo" at function scope
auto* foo_f32 = Var("foo", ty.f32(), ast::StorageClass::kNone, Expr(2.f));
auto* foo_f32_init = foo_f32->constructor();
auto* foo_f32_decl = create<ast::VariableDeclStatement>(foo_f32);
// Reference "foo" at function scope
auto* bar_f32 = Var("bar", ty.f32(), ast::StorageClass::kNone, Expr("foo"));
auto* bar_f32_init = bar_f32->constructor();
auto* bar_f32_decl = create<ast::VariableDeclStatement>(bar_f32);
Func("func", params, ty.void_(),
ast::StatementList{inner, foo_f32_decl, bar_f32_decl},
ast::DecorationList{});
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(foo_i32_init), nullptr);
EXPECT_TRUE(TypeOf(foo_i32_init)->Is<sem::I32>());
ASSERT_NE(TypeOf(foo_f32_init), nullptr);
EXPECT_TRUE(TypeOf(foo_f32_init)->Is<sem::F32>());
ASSERT_NE(TypeOf(bar_i32_init), nullptr);
EXPECT_TRUE(TypeOf(bar_i32_init)->UnwrapAll()->Is<sem::I32>());
ASSERT_NE(TypeOf(bar_f32_init), nullptr);
EXPECT_TRUE(TypeOf(bar_f32_init)->UnwrapAll()->Is<sem::F32>());
EXPECT_EQ(StmtOf(foo_i32_init), foo_i32_decl);
EXPECT_EQ(StmtOf(bar_i32_init), bar_i32_decl);
EXPECT_EQ(StmtOf(foo_f32_init), foo_f32_decl);
EXPECT_EQ(StmtOf(bar_f32_init), bar_f32_decl);
EXPECT_TRUE(CheckVarUsers(foo_i32, {bar_i32->constructor()}));
EXPECT_TRUE(CheckVarUsers(foo_f32, {bar_f32->constructor()}));
ASSERT_NE(VarOf(bar_i32->constructor()), nullptr);
EXPECT_EQ(VarOf(bar_i32->constructor())->Declaration(), foo_i32);
ASSERT_NE(VarOf(bar_f32->constructor()), nullptr);
EXPECT_EQ(VarOf(bar_f32->constructor())->Declaration(), foo_f32);
}
TEST_F(ResolverTest, Stmt_VariableDecl_ModuleScopeAfterFunctionScope) {
// fn func_i32() {
// var foo : i32 = 2;
// }
// var foo : f32 = 2.0;
// fn func_f32() {
// var bar : f32 = foo;
// }
ast::VariableList params;
// Declare i32 "foo" inside a function
auto* fn_i32 = Var("foo", ty.i32(), ast::StorageClass::kFunction, Expr(2));
auto* fn_i32_init = fn_i32->constructor();
auto* fn_i32_decl = create<ast::VariableDeclStatement>(fn_i32);
Func("func_i32", params, ty.void_(), ast::StatementList{fn_i32_decl},
ast::DecorationList{});
// Declare f32 "foo" at module scope
auto* mod_f32 = Var("foo", ty.f32(), ast::StorageClass::kInput, Expr(2.f));
auto* mod_init = mod_f32->constructor();
AST().AddGlobalVariable(mod_f32);
// Reference "foo" in another function
auto* fn_f32 =
Var("bar", ty.f32(), ast::StorageClass::kFunction, Expr("foo"));
auto* fn_f32_init = fn_f32->constructor();
auto* fn_f32_decl = create<ast::VariableDeclStatement>(fn_f32);
Func("func_f32", params, ty.void_(), ast::StatementList{fn_f32_decl},
ast::DecorationList{});
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(mod_init), nullptr);
EXPECT_TRUE(TypeOf(mod_init)->Is<sem::F32>());
ASSERT_NE(TypeOf(fn_i32_init), nullptr);
EXPECT_TRUE(TypeOf(fn_i32_init)->Is<sem::I32>());
ASSERT_NE(TypeOf(fn_f32_init), nullptr);
EXPECT_TRUE(TypeOf(fn_f32_init)->UnwrapAll()->Is<sem::F32>());
EXPECT_EQ(StmtOf(fn_i32_init), fn_i32_decl);
EXPECT_EQ(StmtOf(mod_init), nullptr);
EXPECT_EQ(StmtOf(fn_f32_init), fn_f32_decl);
EXPECT_TRUE(CheckVarUsers(fn_i32, {}));
EXPECT_TRUE(CheckVarUsers(mod_f32, {fn_f32->constructor()}));
ASSERT_NE(VarOf(fn_f32->constructor()), nullptr);
EXPECT_EQ(VarOf(fn_f32->constructor())->Declaration(), mod_f32);
}
TEST_F(ResolverTest, Expr_ArrayAccessor_Array) {
auto* idx = Expr(2);
Global("my_var", ty.array<f32, 3>(), ast::StorageClass::kFunction);
auto* acc = IndexAccessor("my_var", idx);
WrapInFunction(acc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(acc), nullptr);
ASSERT_TRUE(TypeOf(acc)->Is<sem::Pointer>());
auto* ptr = TypeOf(acc)->As<sem::Pointer>();
EXPECT_TRUE(ptr->type()->Is<sem::F32>());
}
TEST_F(ResolverTest, Expr_ArrayAccessor_Alias_Array) {
auto* aary = ty.alias("myarrty", ty.array<f32, 3>());
Global("my_var", aary, ast::StorageClass::kFunction);
auto* acc = IndexAccessor("my_var", 2);
WrapInFunction(acc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(acc), nullptr);
ASSERT_TRUE(TypeOf(acc)->Is<sem::Pointer>());
auto* ptr = TypeOf(acc)->As<sem::Pointer>();
EXPECT_TRUE(ptr->type()->Is<sem::F32>());
}
TEST_F(ResolverTest, Expr_ArrayAccessor_Array_Constant) {
GlobalConst("my_var", ty.array<f32, 3>());
auto* acc = IndexAccessor("my_var", 2);
WrapInFunction(acc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(acc), nullptr);
EXPECT_TRUE(TypeOf(acc)->Is<sem::F32>()) << TypeOf(acc)->type_name();
}
TEST_F(ResolverTest, Expr_ArrayAccessor_Matrix) {
Global("my_var", ty.mat2x3<f32>(), ast::StorageClass::kInput);
auto* acc = IndexAccessor("my_var", 2);
WrapInFunction(acc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(acc), nullptr);
ASSERT_TRUE(TypeOf(acc)->Is<sem::Pointer>());
auto* ptr = TypeOf(acc)->As<sem::Pointer>();
ASSERT_TRUE(ptr->type()->Is<sem::Vector>());
EXPECT_EQ(ptr->type()->As<sem::Vector>()->size(), 3u);
}
TEST_F(ResolverTest, Expr_ArrayAccessor_Matrix_BothDimensions) {
Global("my_var", ty.mat2x3<f32>(), ast::StorageClass::kInput);
auto* acc = IndexAccessor(IndexAccessor("my_var", 2), 1);
WrapInFunction(acc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(acc), nullptr);
ASSERT_TRUE(TypeOf(acc)->Is<sem::Pointer>());
auto* ptr = TypeOf(acc)->As<sem::Pointer>();
EXPECT_TRUE(ptr->type()->Is<sem::F32>());
}
TEST_F(ResolverTest, Expr_ArrayAccessor_Vector) {
Global("my_var", ty.vec3<f32>(), ast::StorageClass::kInput);
auto* acc = IndexAccessor("my_var", 2);
WrapInFunction(acc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(acc), nullptr);
ASSERT_TRUE(TypeOf(acc)->Is<sem::Pointer>());
auto* ptr = TypeOf(acc)->As<sem::Pointer>();
EXPECT_TRUE(ptr->type()->Is<sem::F32>());
}
TEST_F(ResolverTest, Expr_Bitcast) {
Global("name", ty.f32(), ast::StorageClass::kPrivate);
auto* bitcast = create<ast::BitcastExpression>(ty.f32(), Expr("name"));
WrapInFunction(bitcast);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(bitcast), nullptr);
EXPECT_TRUE(TypeOf(bitcast)->Is<sem::F32>());
}
TEST_F(ResolverTest, Expr_Call) {
ast::VariableList params;
Func("my_func", params, ty.f32(), ast::StatementList{Return(Expr(0.0f))},
ast::DecorationList{});
auto* call = Call("my_func");
WrapInFunction(call);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(call), nullptr);
EXPECT_TRUE(TypeOf(call)->Is<sem::F32>());
}
TEST_F(ResolverTest, Expr_Call_InBinaryOp) {
ast::VariableList params;
Func("func", params, ty.f32(), ast::StatementList{Return(Expr(0.0f))},
ast::DecorationList{});
auto* expr = Add(Call("func"), Call("func"));
WrapInFunction(expr);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(expr), nullptr);
EXPECT_TRUE(TypeOf(expr)->Is<sem::F32>());
}
TEST_F(ResolverTest, Expr_Call_WithParams) {
ast::VariableList params;
Func("my_func", params, ty.void_(), ast::StatementList{},
ast::DecorationList{});
auto* param = Expr(2.4f);
auto* call = Call("my_func", param);
WrapInFunction(call);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(param), nullptr);
EXPECT_TRUE(TypeOf(param)->Is<sem::F32>());
}
TEST_F(ResolverTest, Expr_Call_Intrinsic) {
auto* call = Call("round", 2.4f);
WrapInFunction(call);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(call), nullptr);
EXPECT_TRUE(TypeOf(call)->Is<sem::F32>());
}
TEST_F(ResolverTest, Expr_Cast) {
Global("name", ty.f32(), ast::StorageClass::kPrivate);
auto* cast = Construct(ty.f32(), "name");
WrapInFunction(cast);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(cast), nullptr);
EXPECT_TRUE(TypeOf(cast)->Is<sem::F32>());
}
TEST_F(ResolverTest, Expr_Constructor_Scalar) {
auto* s = Expr(1.0f);
WrapInFunction(s);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(s), nullptr);
EXPECT_TRUE(TypeOf(s)->Is<sem::F32>());
}
TEST_F(ResolverTest, Expr_Constructor_Type_Vec2) {
auto* tc = vec2<f32>(1.0f, 1.0f);
WrapInFunction(tc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->size(), 2u);
}
TEST_F(ResolverTest, Expr_Constructor_Type_Vec3) {
auto* tc = vec3<f32>(1.0f, 1.0f, 1.0f);
WrapInFunction(tc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->size(), 3u);
}
TEST_F(ResolverTest, Expr_Constructor_Type_Vec4) {
auto* tc = vec4<f32>(1.0f, 1.0f, 1.0f, 1.0f);
WrapInFunction(tc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->size(), 4u);
}
TEST_F(ResolverTest, Expr_Identifier_GlobalVariable) {
auto* my_var = Global("my_var", ty.f32(), ast::StorageClass::kInput);
auto* ident = Expr("my_var");
WrapInFunction(ident);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(ident), nullptr);
EXPECT_TRUE(TypeOf(ident)->Is<sem::Pointer>());
EXPECT_TRUE(TypeOf(ident)->As<sem::Pointer>()->type()->Is<sem::F32>());
EXPECT_TRUE(CheckVarUsers(my_var, {ident}));
ASSERT_NE(VarOf(ident), nullptr);
EXPECT_EQ(VarOf(ident)->Declaration(), my_var);
}
TEST_F(ResolverTest, Expr_Identifier_GlobalConstant) {
auto* my_var = GlobalConst("my_var", ty.f32());
auto* ident = Expr("my_var");
WrapInFunction(ident);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(ident), nullptr);
EXPECT_TRUE(TypeOf(ident)->Is<sem::F32>());
EXPECT_TRUE(CheckVarUsers(my_var, {ident}));
ASSERT_NE(VarOf(ident), nullptr);
EXPECT_EQ(VarOf(ident)->Declaration(), my_var);
}
TEST_F(ResolverTest, Expr_Identifier_FunctionVariable_Const) {
auto* my_var_a = Expr("my_var");
auto* var = Const("my_var", ty.f32());
auto* decl = Decl(Var("b", ty.f32(), ast::StorageClass::kFunction, my_var_a));
Func("my_func", ast::VariableList{}, ty.void_(),
ast::StatementList{
create<ast::VariableDeclStatement>(var),
decl,
},
ast::DecorationList{});
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(my_var_a), nullptr);
EXPECT_TRUE(TypeOf(my_var_a)->Is<sem::F32>());
EXPECT_EQ(StmtOf(my_var_a), decl);
EXPECT_TRUE(CheckVarUsers(var, {my_var_a}));
ASSERT_NE(VarOf(my_var_a), nullptr);
EXPECT_EQ(VarOf(my_var_a)->Declaration(), var);
}
TEST_F(ResolverTest, Expr_Identifier_FunctionVariable) {
auto* my_var_a = Expr("my_var");
auto* my_var_b = Expr("my_var");
auto* assign = create<ast::AssignmentStatement>(my_var_a, my_var_b);
auto* var = Var("my_var", ty.f32(), ast::StorageClass::kNone);
Func("my_func", ast::VariableList{}, ty.void_(),
ast::StatementList{
create<ast::VariableDeclStatement>(var),
assign,
},
ast::DecorationList{});
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(my_var_a), nullptr);
EXPECT_TRUE(TypeOf(my_var_a)->Is<sem::Pointer>());
EXPECT_TRUE(TypeOf(my_var_a)->As<sem::Pointer>()->type()->Is<sem::F32>());
EXPECT_EQ(StmtOf(my_var_a), assign);
ASSERT_NE(TypeOf(my_var_b), nullptr);
EXPECT_TRUE(TypeOf(my_var_b)->Is<sem::Pointer>());
EXPECT_TRUE(TypeOf(my_var_b)->As<sem::Pointer>()->type()->Is<sem::F32>());
EXPECT_EQ(StmtOf(my_var_b), assign);
EXPECT_TRUE(CheckVarUsers(var, {my_var_a, my_var_b}));
ASSERT_NE(VarOf(my_var_a), nullptr);
EXPECT_EQ(VarOf(my_var_a)->Declaration(), var);
ASSERT_NE(VarOf(my_var_b), nullptr);
EXPECT_EQ(VarOf(my_var_b)->Declaration(), var);
}
TEST_F(ResolverTest, Expr_Identifier_Function_Ptr) {
auto* my_var_a = Expr("my_var");
auto* my_var_b = Expr("my_var");
auto* assign = create<ast::AssignmentStatement>(my_var_a, my_var_b);
Func("my_func", ast::VariableList{}, ty.void_(),
ast::StatementList{
create<ast::VariableDeclStatement>(
Var("my_var", ty.pointer<f32>(ast::StorageClass::kFunction),
ast::StorageClass::kNone)),
assign,
},
ast::DecorationList{});
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(my_var_a), nullptr);
EXPECT_TRUE(TypeOf(my_var_a)->Is<sem::Pointer>());
EXPECT_TRUE(TypeOf(my_var_a)->As<sem::Pointer>()->type()->Is<sem::F32>());
EXPECT_EQ(StmtOf(my_var_a), assign);
ASSERT_NE(TypeOf(my_var_b), nullptr);
EXPECT_TRUE(TypeOf(my_var_b)->Is<sem::Pointer>());
EXPECT_TRUE(TypeOf(my_var_b)->As<sem::Pointer>()->type()->Is<sem::F32>());
EXPECT_EQ(StmtOf(my_var_b), assign);
}
TEST_F(ResolverTest, Expr_Call_Function) {
Func("my_func", ast::VariableList{}, ty.f32(),
ast::StatementList{Return(Expr(0.0f))}, ast::DecorationList{});
auto* call = Call("my_func");
WrapInFunction(call);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(call), nullptr);
EXPECT_TRUE(TypeOf(call)->Is<sem::F32>());
}
TEST_F(ResolverTest, Expr_Identifier_Unknown) {
auto* a = Expr("a");
WrapInFunction(a);
EXPECT_FALSE(r()->Resolve());
}
TEST_F(ResolverTest, Function_Parameters) {
auto* param_a = Param("a", ty.f32());
auto* param_b = Param("b", ty.i32());
auto* param_c = Param("c", ty.u32());
auto* func = Func("my_func",
ast::VariableList{
param_a,
param_b,
param_c,
},
ty.void_(), {});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* func_sem = Sem().Get(func);
ASSERT_NE(func_sem, nullptr);
EXPECT_EQ(func_sem->Parameters().size(), 3u);
EXPECT_EQ(func_sem->Parameters()[0]->Type(), ty.f32());
EXPECT_EQ(func_sem->Parameters()[1]->Type(), ty.i32());
EXPECT_EQ(func_sem->Parameters()[2]->Type(), ty.u32());
EXPECT_EQ(func_sem->Parameters()[0]->Declaration(), param_a);
EXPECT_EQ(func_sem->Parameters()[1]->Declaration(), param_b);
EXPECT_EQ(func_sem->Parameters()[2]->Declaration(), param_c);
}
TEST_F(ResolverTest, Function_RegisterInputOutputVariables) {
auto* s = Structure("S", {Member("m", ty.u32())},
{create<ast::StructBlockDecoration>()});
auto* a = ty.access(ast::AccessControl::kReadOnly, s);
auto* in_var = Global("in_var", ty.f32(), ast::StorageClass::kInput);
auto* out_var = Global("out_var", ty.f32(), ast::StorageClass::kOutput);
auto* sb_var = Global("sb_var", a, ast::StorageClass::kStorage);
auto* wg_var = Global("wg_var", ty.f32(), ast::StorageClass::kWorkgroup);
auto* priv_var = Global("priv_var", ty.f32(), ast::StorageClass::kPrivate);
auto* func = Func(
"my_func", ast::VariableList{}, ty.void_(),
ast::StatementList{
create<ast::AssignmentStatement>(Expr("out_var"), Expr("in_var")),
create<ast::AssignmentStatement>(Expr("wg_var"), Expr("wg_var")),
create<ast::AssignmentStatement>(Expr("sb_var"), Expr("sb_var")),
create<ast::AssignmentStatement>(Expr("priv_var"), Expr("priv_var")),
},
ast::DecorationList{});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* func_sem = Sem().Get(func);
ASSERT_NE(func_sem, nullptr);
EXPECT_EQ(func_sem->Parameters().size(), 0u);
const auto& vars = func_sem->ReferencedModuleVariables();
ASSERT_EQ(vars.size(), 5u);
EXPECT_EQ(vars[0]->Declaration(), out_var);
EXPECT_EQ(vars[1]->Declaration(), in_var);
EXPECT_EQ(vars[2]->Declaration(), wg_var);
EXPECT_EQ(vars[3]->Declaration(), sb_var);
EXPECT_EQ(vars[4]->Declaration(), priv_var);
}
TEST_F(ResolverTest, Function_RegisterInputOutputVariables_SubFunction) {
auto* s = Structure("S", {Member("m", ty.u32())},
{create<ast::StructBlockDecoration>()});
auto* a = ty.access(ast::AccessControl::kReadOnly, s);
auto* in_var = Global("in_var", ty.f32(), ast::StorageClass::kInput);
auto* out_var = Global("out_var", ty.f32(), ast::StorageClass::kOutput);
auto* sb_var = Global("sb_var", a, ast::StorageClass::kStorage);
auto* wg_var = Global("wg_var", ty.f32(), ast::StorageClass::kWorkgroup);
auto* priv_var = Global("priv_var", ty.f32(), ast::StorageClass::kPrivate);
Func("my_func", ast::VariableList{}, ty.f32(),
ast::StatementList{
create<ast::AssignmentStatement>(Expr("out_var"), Expr("in_var")),
create<ast::AssignmentStatement>(Expr("wg_var"), Expr("wg_var")),
create<ast::AssignmentStatement>(Expr("sb_var"), Expr("sb_var")),
create<ast::AssignmentStatement>(Expr("priv_var"), Expr("priv_var")),
Return(Expr(0.0f))},
ast::DecorationList{});
auto* func2 = Func(
"func", ast::VariableList{}, ty.void_(),
ast::StatementList{
create<ast::AssignmentStatement>(Expr("out_var"), Call("my_func")),
},
ast::DecorationList{});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* func2_sem = Sem().Get(func2);
ASSERT_NE(func2_sem, nullptr);
EXPECT_EQ(func2_sem->Parameters().size(), 0u);
const auto& vars = func2_sem->ReferencedModuleVariables();
ASSERT_EQ(vars.size(), 5u);
EXPECT_EQ(vars[0]->Declaration(), out_var);
EXPECT_EQ(vars[1]->Declaration(), in_var);
EXPECT_EQ(vars[2]->Declaration(), wg_var);
EXPECT_EQ(vars[3]->Declaration(), sb_var);
EXPECT_EQ(vars[4]->Declaration(), priv_var);
}
TEST_F(ResolverTest, Function_NotRegisterFunctionVariable) {
auto* var = Var("in_var", ty.f32(), ast::StorageClass::kFunction);
Global("var", ty.f32(), ast::StorageClass::kFunction);
auto* func =
Func("my_func", ast::VariableList{}, ty.void_(),
ast::StatementList{
create<ast::VariableDeclStatement>(var),
create<ast::AssignmentStatement>(Expr("var"), Expr(1.f)),
},
ast::DecorationList{});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* func_sem = Sem().Get(func);
ASSERT_NE(func_sem, nullptr);
EXPECT_EQ(func_sem->ReferencedModuleVariables().size(), 0u);
}
TEST_F(ResolverTest, Function_ReturnStatements) {
auto* var = Var("foo", ty.f32(), ast::StorageClass::kFunction);
auto* ret_1 = create<ast::ReturnStatement>(Expr(1.f));
auto* ret_foo = create<ast::ReturnStatement>(Expr("foo"));
auto* func = Func("my_func", ast::VariableList{}, ty.f32(),
ast::StatementList{
create<ast::VariableDeclStatement>(var),
If(Expr(true), Block(ret_1)),
ret_foo,
},
ast::DecorationList{});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* func_sem = Sem().Get(func);
ASSERT_NE(func_sem, nullptr);
EXPECT_EQ(func_sem->Parameters().size(), 0u);
EXPECT_EQ(func_sem->ReturnStatements().size(), 2u);
EXPECT_EQ(func_sem->ReturnStatements()[0], ret_1);
EXPECT_EQ(func_sem->ReturnStatements()[1], ret_foo);
}
TEST_F(ResolverTest, Expr_MemberAccessor_Struct) {
auto* strct = create<ast::Struct>(
ast::StructMemberList{Member("first_member", ty.i32()),
Member("second_member", ty.f32())},
ast::DecorationList{});
auto* st = ty.struct_("S", strct);
Global("my_struct", st, ast::StorageClass::kInput);
auto* mem = MemberAccessor("my_struct", "second_member");
WrapInFunction(mem);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(mem), nullptr);
ASSERT_TRUE(TypeOf(mem)->Is<sem::Pointer>());
auto* ptr = TypeOf(mem)->As<sem::Pointer>();
EXPECT_TRUE(ptr->type()->Is<sem::F32>());
ASSERT_TRUE(Sem().Get(mem)->Is<sem::StructMemberAccess>());
EXPECT_EQ(Sem()
.Get(mem)
->As<sem::StructMemberAccess>()
->Member()
->Declaration()
->symbol(),
Symbols().Get("second_member"));
}
TEST_F(ResolverTest, Expr_MemberAccessor_Struct_Alias) {
auto* strct = create<ast::Struct>(
ast::StructMemberList{Member("first_member", ty.i32()),
Member("second_member", ty.f32())},
ast::DecorationList{});
auto* st = ty.struct_("alias", strct);
auto* alias = ty.alias("alias", st);
Global("my_struct", alias, ast::StorageClass::kInput);
auto* mem = MemberAccessor("my_struct", "second_member");
WrapInFunction(mem);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(mem), nullptr);
ASSERT_TRUE(TypeOf(mem)->Is<sem::Pointer>());
auto* ptr = TypeOf(mem)->As<sem::Pointer>();
EXPECT_TRUE(ptr->type()->Is<sem::F32>());
ASSERT_TRUE(Sem().Get(mem)->Is<sem::StructMemberAccess>());
}
TEST_F(ResolverTest, Expr_MemberAccessor_VectorSwizzle) {
Global("my_vec", ty.vec3<f32>(), ast::StorageClass::kInput);
auto* mem = MemberAccessor("my_vec", "xzyw");
WrapInFunction(mem);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(mem), nullptr);
ASSERT_TRUE(TypeOf(mem)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(mem)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_EQ(TypeOf(mem)->As<sem::Vector>()->size(), 4u);
ASSERT_TRUE(Sem().Get(mem)->Is<sem::Swizzle>());
EXPECT_THAT(Sem().Get(mem)->As<sem::Swizzle>()->Indices(),
ElementsAre(0, 2, 1, 3));
}
TEST_F(ResolverTest, Expr_MemberAccessor_VectorSwizzle_SingleElement) {
Global("my_vec", ty.vec3<f32>(), ast::StorageClass::kInput);
auto* mem = MemberAccessor("my_vec", "b");
WrapInFunction(mem);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(mem), nullptr);
ASSERT_TRUE(TypeOf(mem)->Is<sem::Pointer>());
auto* ptr = TypeOf(mem)->As<sem::Pointer>();
ASSERT_TRUE(ptr->type()->Is<sem::F32>());
ASSERT_TRUE(Sem().Get(mem)->Is<sem::Swizzle>());
EXPECT_THAT(Sem().Get(mem)->As<sem::Swizzle>()->Indices(), ElementsAre(2));
}
TEST_F(ResolverTest, Expr_Accessor_MultiLevel) {
// struct b {
// vec4<f32> foo
// }
// struct A {
// vec3<struct b> mem
// }
// var c : A
// c.mem[0].foo.yx
// -> vec2<f32>
//
// MemberAccessor{
// MemberAccessor{
// ArrayAccessor{
// MemberAccessor{
// Identifier{c}
// Identifier{mem}
// }
// ScalarConstructor{0}
// }
// Identifier{foo}
// }
// Identifier{yx}
// }
//
auto* strctB =
create<ast::Struct>(ast::StructMemberList{Member("foo", ty.vec4<f32>())},
ast::DecorationList{});
auto* stB = ty.struct_("B", strctB);
sem::Vector vecB(stB, 3);
auto* strctA = create<ast::Struct>(
ast::StructMemberList{Member("mem", &vecB)}, ast::DecorationList{});
auto* stA = ty.struct_("A", strctA);
Global("c", stA, ast::StorageClass::kInput);
auto* mem = MemberAccessor(
MemberAccessor(IndexAccessor(MemberAccessor("c", "mem"), 0), "foo"),
"yx");
WrapInFunction(mem);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(mem), nullptr);
ASSERT_TRUE(TypeOf(mem)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(mem)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_EQ(TypeOf(mem)->As<sem::Vector>()->size(), 2u);
ASSERT_TRUE(Sem().Get(mem)->Is<sem::Swizzle>());
}
TEST_F(ResolverTest, Expr_MemberAccessor_InBinaryOp) {
auto* strct = create<ast::Struct>(
ast::StructMemberList{Member("first_member", ty.f32()),
Member("second_member", ty.f32())},
ast::DecorationList{});
auto* st = ty.struct_("S", strct);
Global("my_struct", st, ast::StorageClass::kInput);
auto* expr = Add(MemberAccessor("my_struct", "first_member"),
MemberAccessor("my_struct", "second_member"));
WrapInFunction(expr);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(expr), nullptr);
EXPECT_TRUE(TypeOf(expr)->Is<sem::F32>());
}
namespace ExprBinaryTest {
struct Params {
ast::BinaryOp op;
create_type_func_ptr create_lhs_type;
create_type_func_ptr create_rhs_type;
create_type_func_ptr create_result_type;
};
static constexpr create_type_func_ptr all_create_type_funcs[] = {
ty_bool_, ty_u32, ty_i32, ty_f32,
ty_vec3<bool>, ty_vec3<i32>, ty_vec3<u32>, ty_vec3<f32>,
ty_mat3x3<i32>, ty_mat3x3<u32>, ty_mat3x3<f32>};
// A list of all valid test cases for 'lhs op rhs', except that for vecN and
// matNxN, we only test N=3.
static constexpr Params all_valid_cases[] = {
// Logical expressions
// https://gpuweb.github.io/gpuweb/wgsl.html#logical-expr
// Binary logical expressions
Params{Op::kLogicalAnd, ty_bool_, ty_bool_, ty_bool_},
Params{Op::kLogicalOr, ty_bool_, ty_bool_, ty_bool_},
Params{Op::kAnd, ty_bool_, ty_bool_, ty_bool_},
Params{Op::kOr, ty_bool_, ty_bool_, ty_bool_},
Params{Op::kAnd, ty_vec3<bool>, ty_vec3<bool>, ty_vec3<bool>},
Params{Op::kOr, ty_vec3<bool>, ty_vec3<bool>, ty_vec3<bool>},
// Arithmetic expressions
// https://gpuweb.github.io/gpuweb/wgsl.html#arithmetic-expr
// Binary arithmetic expressions over scalars
Params{Op::kAdd, ty_i32, ty_i32, ty_i32},
Params{Op::kSubtract, ty_i32, ty_i32, ty_i32},
Params{Op::kMultiply, ty_i32, ty_i32, ty_i32},
Params{Op::kDivide, ty_i32, ty_i32, ty_i32},
Params{Op::kModulo, ty_i32, ty_i32, ty_i32},
Params{Op::kAdd, ty_u32, ty_u32, ty_u32},
Params{Op::kSubtract, ty_u32, ty_u32, ty_u32},
Params{Op::kMultiply, ty_u32, ty_u32, ty_u32},
Params{Op::kDivide, ty_u32, ty_u32, ty_u32},
Params{Op::kModulo, ty_u32, ty_u32, ty_u32},
Params{Op::kAdd, ty_f32, ty_f32, ty_f32},
Params{Op::kSubtract, ty_f32, ty_f32, ty_f32},
Params{Op::kMultiply, ty_f32, ty_f32, ty_f32},
Params{Op::kDivide, ty_f32, ty_f32, ty_f32},
Params{Op::kModulo, ty_f32, ty_f32, ty_f32},
// Binary arithmetic expressions over vectors
Params{Op::kAdd, ty_vec3<i32>, ty_vec3<i32>, ty_vec3<i32>},
Params{Op::kSubtract, ty_vec3<i32>, ty_vec3<i32>, ty_vec3<i32>},
Params{Op::kMultiply, ty_vec3<i32>, ty_vec3<i32>, ty_vec3<i32>},
Params{Op::kDivide, ty_vec3<i32>, ty_vec3<i32>, ty_vec3<i32>},
Params{Op::kModulo, ty_vec3<i32>, ty_vec3<i32>, ty_vec3<i32>},
Params{Op::kAdd, ty_vec3<u32>, ty_vec3<u32>, ty_vec3<u32>},
Params{Op::kSubtract, ty_vec3<u32>, ty_vec3<u32>, ty_vec3<u32>},
Params{Op::kMultiply, ty_vec3<u32>, ty_vec3<u32>, ty_vec3<u32>},
Params{Op::kDivide, ty_vec3<u32>, ty_vec3<u32>, ty_vec3<u32>},
Params{Op::kModulo, ty_vec3<u32>, ty_vec3<u32>, ty_vec3<u32>},
Params{Op::kAdd, ty_vec3<f32>, ty_vec3<f32>, ty_vec3<f32>},
Params{Op::kSubtract, ty_vec3<f32>, ty_vec3<f32>, ty_vec3<f32>},
Params{Op::kMultiply, ty_vec3<f32>, ty_vec3<f32>, ty_vec3<f32>},
Params{Op::kDivide, ty_vec3<f32>, ty_vec3<f32>, ty_vec3<f32>},
Params{Op::kModulo, ty_vec3<f32>, ty_vec3<f32>, ty_vec3<f32>},
// Binary arithmetic expressions with mixed scalar, vector, and matrix
// operands
Params{Op::kMultiply, ty_vec3<f32>, ty_f32, ty_vec3<f32>},
Params{Op::kMultiply, ty_f32, ty_vec3<f32>, ty_vec3<f32>},
Params{Op::kMultiply, ty_mat3x3<f32>, ty_f32, ty_mat3x3<f32>},
Params{Op::kMultiply, ty_f32, ty_mat3x3<f32>, ty_mat3x3<f32>},
Params{Op::kMultiply, ty_vec3<f32>, ty_mat3x3<f32>, ty_vec3<f32>},
Params{Op::kMultiply, ty_mat3x3<f32>, ty_vec3<f32>, ty_vec3<f32>},
Params{Op::kMultiply, ty_mat3x3<f32>, ty_mat3x3<f32>, ty_mat3x3<f32>},
// Comparison expressions
// https://gpuweb.github.io/gpuweb/wgsl.html#comparison-expr
// Comparisons over scalars
Params{Op::kEqual, ty_bool_, ty_bool_, ty_bool_},
Params{Op::kNotEqual, ty_bool_, ty_bool_, ty_bool_},
Params{Op::kEqual, ty_i32, ty_i32, ty_bool_},
Params{Op::kNotEqual, ty_i32, ty_i32, ty_bool_},
Params{Op::kLessThan, ty_i32, ty_i32, ty_bool_},
Params{Op::kLessThanEqual, ty_i32, ty_i32, ty_bool_},
Params{Op::kGreaterThan, ty_i32, ty_i32, ty_bool_},
Params{Op::kGreaterThanEqual, ty_i32, ty_i32, ty_bool_},
Params{Op::kEqual, ty_u32, ty_u32, ty_bool_},
Params{Op::kNotEqual, ty_u32, ty_u32, ty_bool_},
Params{Op::kLessThan, ty_u32, ty_u32, ty_bool_},
Params{Op::kLessThanEqual, ty_u32, ty_u32, ty_bool_},
Params{Op::kGreaterThan, ty_u32, ty_u32, ty_bool_},
Params{Op::kGreaterThanEqual, ty_u32, ty_u32, ty_bool_},
Params{Op::kEqual, ty_f32, ty_f32, ty_bool_},
Params{Op::kNotEqual, ty_f32, ty_f32, ty_bool_},
Params{Op::kLessThan, ty_f32, ty_f32, ty_bool_},
Params{Op::kLessThanEqual, ty_f32, ty_f32, ty_bool_},
Params{Op::kGreaterThan, ty_f32, ty_f32, ty_bool_},
Params{Op::kGreaterThanEqual, ty_f32, ty_f32, ty_bool_},
// Comparisons over vectors
Params{Op::kEqual, ty_vec3<bool>, ty_vec3<bool>, ty_vec3<bool>},
Params{Op::kNotEqual, ty_vec3<bool>, ty_vec3<bool>, ty_vec3<bool>},
Params{Op::kEqual, ty_vec3<i32>, ty_vec3<i32>, ty_vec3<bool>},
Params{Op::kNotEqual, ty_vec3<i32>, ty_vec3<i32>, ty_vec3<bool>},
Params{Op::kLessThan, ty_vec3<i32>, ty_vec3<i32>, ty_vec3<bool>},
Params{Op::kLessThanEqual, ty_vec3<i32>, ty_vec3<i32>, ty_vec3<bool>},
Params{Op::kGreaterThan, ty_vec3<i32>, ty_vec3<i32>, ty_vec3<bool>},
Params{Op::kGreaterThanEqual, ty_vec3<i32>, ty_vec3<i32>, ty_vec3<bool>},
Params{Op::kEqual, ty_vec3<u32>, ty_vec3<u32>, ty_vec3<bool>},
Params{Op::kNotEqual, ty_vec3<u32>, ty_vec3<u32>, ty_vec3<bool>},
Params{Op::kLessThan, ty_vec3<u32>, ty_vec3<u32>, ty_vec3<bool>},
Params{Op::kLessThanEqual, ty_vec3<u32>, ty_vec3<u32>, ty_vec3<bool>},
Params{Op::kGreaterThan, ty_vec3<u32>, ty_vec3<u32>, ty_vec3<bool>},
Params{Op::kGreaterThanEqual, ty_vec3<u32>, ty_vec3<u32>, ty_vec3<bool>},
Params{Op::kEqual, ty_vec3<f32>, ty_vec3<f32>, ty_vec3<bool>},
Params{Op::kNotEqual, ty_vec3<f32>, ty_vec3<f32>, ty_vec3<bool>},
Params{Op::kLessThan, ty_vec3<f32>, ty_vec3<f32>, ty_vec3<bool>},
Params{Op::kLessThanEqual, ty_vec3<f32>, ty_vec3<f32>, ty_vec3<bool>},
Params{Op::kGreaterThan, ty_vec3<f32>, ty_vec3<f32>, ty_vec3<bool>},
Params{Op::kGreaterThanEqual, ty_vec3<f32>, ty_vec3<f32>, ty_vec3<bool>},
// Bit expressions
// https://gpuweb.github.io/gpuweb/wgsl.html#bit-expr
// Binary bitwise operations
Params{Op::kOr, ty_i32, ty_i32, ty_i32},
Params{Op::kAnd, ty_i32, ty_i32, ty_i32},
Params{Op::kXor, ty_i32, ty_i32, ty_i32},
Params{Op::kOr, ty_u32, ty_u32, ty_u32},
Params{Op::kAnd, ty_u32, ty_u32, ty_u32},
Params{Op::kXor, ty_u32, ty_u32, ty_u32},
// Bit shift expressions
Params{Op::kShiftLeft, ty_i32, ty_u32, ty_i32},
Params{Op::kShiftLeft, ty_vec3<i32>, ty_vec3<u32>, ty_vec3<i32>},
Params{Op::kShiftLeft, ty_u32, ty_u32, ty_u32},
Params{Op::kShiftLeft, ty_vec3<u32>, ty_vec3<u32>, ty_vec3<u32>},
Params{Op::kShiftRight, ty_i32, ty_u32, ty_i32},
Params{Op::kShiftRight, ty_vec3<i32>, ty_vec3<u32>, ty_vec3<i32>},
Params{Op::kShiftRight, ty_u32, ty_u32, ty_u32},
Params{Op::kShiftRight, ty_vec3<u32>, ty_vec3<u32>, ty_vec3<u32>}};
using Expr_Binary_Test_Valid = ResolverTestWithParam<Params>;
TEST_P(Expr_Binary_Test_Valid, All) {
auto& params = GetParam();
auto* lhs_type = params.create_lhs_type(ty);
auto* rhs_type = params.create_rhs_type(ty);
auto* result_type = params.create_result_type(ty);
std::stringstream ss;
ss << lhs_type->FriendlyName(Symbols()) << " " << params.op << " "
<< rhs_type->FriendlyName(Symbols());
SCOPED_TRACE(ss.str());
Global("lhs", lhs_type, ast::StorageClass::kInput);
Global("rhs", rhs_type, ast::StorageClass::kInput);
auto* expr =
create<ast::BinaryExpression>(params.op, Expr("lhs"), Expr("rhs"));
WrapInFunction(expr);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(expr), nullptr);
ASSERT_TRUE(TypeOf(expr) == result_type);
}
INSTANTIATE_TEST_SUITE_P(ResolverTest,
Expr_Binary_Test_Valid,
testing::ValuesIn(all_valid_cases));
enum class BinaryExprSide { Left, Right, Both };
using Expr_Binary_Test_WithAlias_Valid =
ResolverTestWithParam<std::tuple<Params, BinaryExprSide>>;
TEST_P(Expr_Binary_Test_WithAlias_Valid, All) {
const Params& params = std::get<0>(GetParam());
BinaryExprSide side = std::get<1>(GetParam());
auto* lhs_type = params.create_lhs_type(ty);
auto* rhs_type = params.create_rhs_type(ty);
std::stringstream ss;
ss << lhs_type->FriendlyName(Symbols()) << " " << params.op << " "
<< rhs_type->FriendlyName(Symbols());
// For vectors and matrices, wrap the sub type in an alias
auto make_alias = [this](sem::Type* type) -> sem::Type* {
sem::Type* result;
if (auto* v = type->As<sem::Vector>()) {
result = create<sem::Vector>(
create<sem::Alias>(Symbols().New(), v->type()), v->size());
} else if (auto* m = type->As<sem::Matrix>()) {
result =
create<sem::Matrix>(create<sem::Alias>(Symbols().New(), m->type()),
m->rows(), m->columns());
} else {
result = create<sem::Alias>(Symbols().New(), type);
}
return result;
};
// Wrap in alias
if (side == BinaryExprSide::Left || side == BinaryExprSide::Both) {
lhs_type = make_alias(lhs_type);
}
if (side == BinaryExprSide::Right || side == BinaryExprSide::Both) {
rhs_type = make_alias(rhs_type);
}
ss << ", After aliasing: " << lhs_type->FriendlyName(Symbols()) << " "
<< params.op << " " << rhs_type->FriendlyName(Symbols());
SCOPED_TRACE(ss.str());
Global("lhs", lhs_type, ast::StorageClass::kInput);
Global("rhs", rhs_type, ast::StorageClass::kInput);
auto* expr =
create<ast::BinaryExpression>(params.op, Expr("lhs"), Expr("rhs"));
WrapInFunction(expr);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(expr), nullptr);
// TODO(amaiorano): Bring this back once we have a way to get the canonical
// type
// auto* result_type = params.create_result_type(ty);
// ASSERT_TRUE(TypeOf(expr) == result_type);
}
INSTANTIATE_TEST_SUITE_P(
ResolverTest,
Expr_Binary_Test_WithAlias_Valid,
testing::Combine(testing::ValuesIn(all_valid_cases),
testing::Values(BinaryExprSide::Left,
BinaryExprSide::Right,
BinaryExprSide::Both)));
using Expr_Binary_Test_Invalid =
ResolverTestWithParam<std::tuple<Params, create_type_func_ptr>>;
TEST_P(Expr_Binary_Test_Invalid, All) {
const Params& params = std::get<0>(GetParam());
const create_type_func_ptr& create_type_func = std::get<1>(GetParam());
// Currently, for most operations, for a given lhs type, there is exactly one
// rhs type allowed. The only exception is for multiplication, which allows
// any permutation of f32, vecN<f32>, and matNxN<f32>. We are fed valid inputs
// only via `params`, and all possible types via `create_type_func`, so we
// test invalid combinations by testing every other rhs type, modulo
// exceptions.
// Skip valid rhs type
if (params.create_rhs_type == create_type_func) {
return;
}
auto* lhs_type = params.create_lhs_type(ty);
auto* rhs_type = create_type_func(ty);
// Skip exceptions: multiplication of f32, vecN<f32>, and matNxN<f32>
if (params.op == Op::kMultiply &&
lhs_type->is_float_scalar_or_vector_or_matrix() &&
rhs_type->is_float_scalar_or_vector_or_matrix()) {
return;
}
std::stringstream ss;
ss << lhs_type->FriendlyName(Symbols()) << " " << params.op << " "
<< rhs_type->FriendlyName(Symbols());
SCOPED_TRACE(ss.str());
Global("lhs", lhs_type, ast::StorageClass::kInput);
Global("rhs", rhs_type, ast::StorageClass::kInput);
auto* expr = create<ast::BinaryExpression>(Source{{12, 34}}, params.op,
Expr("lhs"), Expr("rhs"));
WrapInFunction(expr);
ASSERT_FALSE(r()->Resolve());
ASSERT_EQ(r()->error(),
"12:34 error: Binary expression operand types are invalid for "
"this operation: " +
lhs_type->FriendlyName(Symbols()) + " " +
FriendlyName(expr->op()) + " " +
rhs_type->FriendlyName(Symbols()));
}
INSTANTIATE_TEST_SUITE_P(
ResolverTest,
Expr_Binary_Test_Invalid,
testing::Combine(testing::ValuesIn(all_valid_cases),
testing::ValuesIn(all_create_type_funcs)));
using Expr_Binary_Test_Invalid_VectorMatrixMultiply =
ResolverTestWithParam<std::tuple<bool, uint32_t, uint32_t, uint32_t>>;
TEST_P(Expr_Binary_Test_Invalid_VectorMatrixMultiply, All) {
bool vec_by_mat = std::get<0>(GetParam());
uint32_t vec_size = std::get<1>(GetParam());
uint32_t mat_rows = std::get<2>(GetParam());
uint32_t mat_cols = std::get<3>(GetParam());
sem::Type* lhs_type;
sem::Type* rhs_type;
sem::Type* result_type;
bool is_valid_expr;
if (vec_by_mat) {
lhs_type = create<sem::Vector>(ty.f32(), vec_size);
rhs_type = create<sem::Matrix>(ty.f32(), mat_rows, mat_cols);
result_type = create<sem::Vector>(ty.f32(), mat_cols);
is_valid_expr = vec_size == mat_rows;
} else {
lhs_type = create<sem::Matrix>(ty.f32(), mat_rows, mat_cols);
rhs_type = create<sem::Vector>(ty.f32(), vec_size);
result_type = create<sem::Vector>(ty.f32(), mat_rows);
is_valid_expr = vec_size == mat_cols;
}
Global("lhs", lhs_type, ast::StorageClass::kInput);
Global("rhs", rhs_type, ast::StorageClass::kInput);
auto* expr = Mul(Source{{12, 34}}, Expr("lhs"), Expr("rhs"));
WrapInFunction(expr);
if (is_valid_expr) {
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_TRUE(TypeOf(expr) == result_type);
} else {
ASSERT_FALSE(r()->Resolve());
ASSERT_EQ(r()->error(),
"12:34 error: Binary expression operand types are invalid for "
"this operation: " +
lhs_type->FriendlyName(Symbols()) + " " +
FriendlyName(expr->op()) + " " +
rhs_type->FriendlyName(Symbols()));
}
}
auto all_dimension_values = testing::Values(2u, 3u, 4u);
INSTANTIATE_TEST_SUITE_P(ResolverTest,
Expr_Binary_Test_Invalid_VectorMatrixMultiply,
testing::Combine(testing::Values(true, false),
all_dimension_values,
all_dimension_values,
all_dimension_values));
using Expr_Binary_Test_Invalid_MatrixMatrixMultiply =
ResolverTestWithParam<std::tuple<uint32_t, uint32_t, uint32_t, uint32_t>>;
TEST_P(Expr_Binary_Test_Invalid_MatrixMatrixMultiply, All) {
uint32_t lhs_mat_rows = std::get<0>(GetParam());
uint32_t lhs_mat_cols = std::get<1>(GetParam());
uint32_t rhs_mat_rows = std::get<2>(GetParam());
uint32_t rhs_mat_cols = std::get<3>(GetParam());
auto* lhs_type = create<sem::Matrix>(ty.f32(), lhs_mat_rows, lhs_mat_cols);
auto* rhs_type = create<sem::Matrix>(ty.f32(), rhs_mat_rows, rhs_mat_cols);
auto* result_type = create<sem::Matrix>(ty.f32(), lhs_mat_rows, rhs_mat_cols);
Global("lhs", lhs_type, ast::StorageClass::kInput);
Global("rhs", rhs_type, ast::StorageClass::kInput);
auto* expr = Mul(Source{{12, 34}}, Expr("lhs"), Expr("rhs"));
WrapInFunction(expr);
bool is_valid_expr = lhs_mat_cols == rhs_mat_rows;
if (is_valid_expr) {
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_TRUE(TypeOf(expr) == result_type);
} else {
ASSERT_FALSE(r()->Resolve());
ASSERT_EQ(r()->error(),
"12:34 error: Binary expression operand types are invalid for "
"this operation: " +
lhs_type->FriendlyName(Symbols()) + " " +
FriendlyName(expr->op()) + " " +
rhs_type->FriendlyName(Symbols()));
}
}
INSTANTIATE_TEST_SUITE_P(ResolverTest,
Expr_Binary_Test_Invalid_MatrixMatrixMultiply,
testing::Combine(all_dimension_values,
all_dimension_values,
all_dimension_values,
all_dimension_values));
} // namespace ExprBinaryTest
using UnaryOpExpressionTest = ResolverTestWithParam<ast::UnaryOp>;
TEST_P(UnaryOpExpressionTest, Expr_UnaryOp) {
auto op = GetParam();
Global("ident", ty.vec4<f32>(), ast::StorageClass::kInput);
auto* der = create<ast::UnaryOpExpression>(op, Expr("ident"));
WrapInFunction(der);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(der), nullptr);
ASSERT_TRUE(TypeOf(der)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(der)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_EQ(TypeOf(der)->As<sem::Vector>()->size(), 4u);
}
INSTANTIATE_TEST_SUITE_P(ResolverTest,
UnaryOpExpressionTest,
testing::Values(ast::UnaryOp::kNegation,
ast::UnaryOp::kNot));
TEST_F(ResolverTest, StorageClass_SetsIfMissing) {
auto* var = Var("var", ty.i32(), ast::StorageClass::kNone);
auto* stmt = create<ast::VariableDeclStatement>(var);
Func("func", ast::VariableList{}, ty.void_(), ast::StatementList{stmt},
ast::DecorationList{});
EXPECT_TRUE(r()->Resolve()) << r()->error();
EXPECT_EQ(Sem().Get(var)->StorageClass(), ast::StorageClass::kFunction);
}
TEST_F(ResolverTest, StorageClass_DoesNotSetOnConst) {
auto* var = Const("var", ty.i32());
auto* stmt = create<ast::VariableDeclStatement>(var);
Func("func", ast::VariableList{}, ty.void_(), ast::StatementList{stmt},
ast::DecorationList{});
EXPECT_TRUE(r()->Resolve()) << r()->error();
EXPECT_EQ(Sem().Get(var)->StorageClass(), ast::StorageClass::kNone);
}
TEST_F(ResolverTest, Function_EntryPoints_StageDecoration) {
// fn b() {}
// fn c() { b(); }
// fn a() { c(); }
// fn ep_1() { a(); b(); }
// fn ep_2() { c();}
//
// c -> {ep_1, ep_2}
// a -> {ep_1}
// b -> {ep_1, ep_2}
// ep_1 -> {}
// ep_2 -> {}
Global("first", ty.f32(), ast::StorageClass::kPrivate);
Global("second", ty.f32(), ast::StorageClass::kPrivate);
Global("call_a", ty.f32(), ast::StorageClass::kPrivate);
Global("call_b", ty.f32(), ast::StorageClass::kPrivate);
Global("call_c", ty.f32(), ast::StorageClass::kPrivate);
ast::VariableList params;
auto* func_b =
Func("b", params, ty.f32(), ast::StatementList{Return(Expr(0.0f))},
ast::DecorationList{});
auto* func_c = Func("c", params, ty.f32(),
ast::StatementList{create<ast::AssignmentStatement>(
Expr("second"), Call("b")),
Return(Expr(0.0f))},
ast::DecorationList{});
auto* func_a = Func("a", params, ty.f32(),
ast::StatementList{create<ast::AssignmentStatement>(
Expr("first"), Call("c")),
Return(Expr(0.0f))},
ast::DecorationList{});
auto* ep_1 =
Func("ep_1", params, ty.void_(),
ast::StatementList{
create<ast::AssignmentStatement>(Expr("call_a"), Call("a")),
create<ast::AssignmentStatement>(Expr("call_b"), Call("b")),
},
ast::DecorationList{
create<ast::StageDecoration>(ast::PipelineStage::kVertex),
});
auto* ep_2 =
Func("ep_2", params, ty.void_(),
ast::StatementList{
create<ast::AssignmentStatement>(Expr("call_c"), Call("c")),
},
ast::DecorationList{
create<ast::StageDecoration>(ast::PipelineStage::kVertex),
});
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* func_b_sem = Sem().Get(func_b);
auto* func_a_sem = Sem().Get(func_a);
auto* func_c_sem = Sem().Get(func_c);
auto* ep_1_sem = Sem().Get(ep_1);
auto* ep_2_sem = Sem().Get(ep_2);
ASSERT_NE(func_b_sem, nullptr);
ASSERT_NE(func_a_sem, nullptr);
ASSERT_NE(func_c_sem, nullptr);
ASSERT_NE(ep_1_sem, nullptr);
ASSERT_NE(ep_2_sem, nullptr);
EXPECT_EQ(func_b_sem->Parameters().size(), 0u);
EXPECT_EQ(func_a_sem->Parameters().size(), 0u);
EXPECT_EQ(func_c_sem->Parameters().size(), 0u);
const auto& b_eps = func_b_sem->AncestorEntryPoints();
ASSERT_EQ(2u, b_eps.size());
EXPECT_EQ(Symbols().Register("ep_1"), b_eps[0]);
EXPECT_EQ(Symbols().Register("ep_2"), b_eps[1]);
const auto& a_eps = func_a_sem->AncestorEntryPoints();
ASSERT_EQ(1u, a_eps.size());
EXPECT_EQ(Symbols().Register("ep_1"), a_eps[0]);
const auto& c_eps = func_c_sem->AncestorEntryPoints();
ASSERT_EQ(2u, c_eps.size());
EXPECT_EQ(Symbols().Register("ep_1"), c_eps[0]);
EXPECT_EQ(Symbols().Register("ep_2"), c_eps[1]);
EXPECT_TRUE(ep_1_sem->AncestorEntryPoints().empty());
EXPECT_TRUE(ep_2_sem->AncestorEntryPoints().empty());
}
// Check for linear-time traversal of functions reachable from entry points.
// See: crbug.com/tint/245
TEST_F(ResolverTest, Function_EntryPoints_LinearTime) {
// fn lNa() { }
// fn lNb() { }
// ...
// fn l2a() { l3a(); l3b(); }
// fn l2b() { l3a(); l3b(); }
// fn l1a() { l2a(); l2b(); }
// fn l1b() { l2a(); l2b(); }
// fn main() { l1a(); l1b(); }
static constexpr int levels = 64;
auto fn_a = [](int level) { return "l" + std::to_string(level + 1) + "a"; };
auto fn_b = [](int level) { return "l" + std::to_string(level + 1) + "b"; };
Func(fn_a(levels), {}, ty.void_(), {}, {});
Func(fn_b(levels), {}, ty.void_(), {}, {});
for (int i = levels - 1; i >= 0; i--) {
Func(fn_a(i), {}, ty.void_(),
{
create<ast::CallStatement>(Call(fn_a(i + 1))),
create<ast::CallStatement>(Call(fn_b(i + 1))),
},
{});
Func(fn_b(i), {}, ty.void_(),
{
create<ast::CallStatement>(Call(fn_a(i + 1))),
create<ast::CallStatement>(Call(fn_b(i + 1))),
},
{});
}
Func("main", {}, ty.void_(),
{
create<ast::CallStatement>(Call(fn_a(0))),
create<ast::CallStatement>(Call(fn_b(0))),
},
{
create<ast::StageDecoration>(ast::PipelineStage::kVertex),
});
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverTest, ASTNodeNotReached) {
EXPECT_FATAL_FAILURE(
{
ProgramBuilder builder;
builder.Expr("1");
Resolver(&builder).Resolve();
},
"internal compiler error: AST node 'tint::ast::IdentifierExpression' was "
"not reached by the resolver");
}
TEST_F(ResolverTest, ASTNodeReachedTwice) {
EXPECT_FATAL_FAILURE(
{
ProgramBuilder builder;
auto* expr = builder.Expr("1");
auto* usesExprTwice = builder.Add(expr, expr);
builder.Global("g", builder.ty.i32(), ast::StorageClass::kPrivate,
usesExprTwice);
Resolver(&builder).Resolve();
},
"internal compiler error: AST node 'tint::ast::IdentifierExpression' was "
"encountered twice in the same AST of a Program");
}
} // namespace
} // namespace resolver
} // namespace tint