| // Copyright 2020 The Tint Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "src/resolver/resolver.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <iomanip> |
| #include <limits> |
| #include <utility> |
| |
| #include "src/ast/alias.h" |
| #include "src/ast/array.h" |
| #include "src/ast/assignment_statement.h" |
| #include "src/ast/bitcast_expression.h" |
| #include "src/ast/break_statement.h" |
| #include "src/ast/call_statement.h" |
| #include "src/ast/continue_statement.h" |
| #include "src/ast/depth_texture.h" |
| #include "src/ast/disable_validation_decoration.h" |
| #include "src/ast/discard_statement.h" |
| #include "src/ast/fallthrough_statement.h" |
| #include "src/ast/for_loop_statement.h" |
| #include "src/ast/if_statement.h" |
| #include "src/ast/internal_decoration.h" |
| #include "src/ast/interpolate_decoration.h" |
| #include "src/ast/loop_statement.h" |
| #include "src/ast/matrix.h" |
| #include "src/ast/override_decoration.h" |
| #include "src/ast/pointer.h" |
| #include "src/ast/return_statement.h" |
| #include "src/ast/sampled_texture.h" |
| #include "src/ast/sampler.h" |
| #include "src/ast/storage_texture.h" |
| #include "src/ast/switch_statement.h" |
| #include "src/ast/traverse_expressions.h" |
| #include "src/ast/type_name.h" |
| #include "src/ast/unary_op_expression.h" |
| #include "src/ast/variable_decl_statement.h" |
| #include "src/ast/vector.h" |
| #include "src/ast/workgroup_decoration.h" |
| #include "src/sem/array.h" |
| #include "src/sem/atomic_type.h" |
| #include "src/sem/call.h" |
| #include "src/sem/depth_multisampled_texture_type.h" |
| #include "src/sem/depth_texture_type.h" |
| #include "src/sem/for_loop_statement.h" |
| #include "src/sem/function.h" |
| #include "src/sem/if_statement.h" |
| #include "src/sem/loop_statement.h" |
| #include "src/sem/member_accessor_expression.h" |
| #include "src/sem/multisampled_texture_type.h" |
| #include "src/sem/pointer_type.h" |
| #include "src/sem/reference_type.h" |
| #include "src/sem/sampled_texture_type.h" |
| #include "src/sem/sampler_type.h" |
| #include "src/sem/statement.h" |
| #include "src/sem/storage_texture_type.h" |
| #include "src/sem/struct.h" |
| #include "src/sem/switch_statement.h" |
| #include "src/sem/type_constructor.h" |
| #include "src/sem/type_conversion.h" |
| #include "src/sem/variable.h" |
| #include "src/utils/defer.h" |
| #include "src/utils/math.h" |
| #include "src/utils/reverse.h" |
| #include "src/utils/scoped_assignment.h" |
| #include "src/utils/transform.h" |
| |
| namespace tint { |
| namespace resolver { |
| |
| Resolver::Resolver(ProgramBuilder* builder) |
| : builder_(builder), |
| diagnostics_(builder->Diagnostics()), |
| intrinsic_table_(IntrinsicTable::Create(*builder)) {} |
| |
| Resolver::~Resolver() = default; |
| |
| bool Resolver::Resolve() { |
| if (builder_->Diagnostics().contains_errors()) { |
| return false; |
| } |
| |
| if (!DependencyGraph::Build(builder_->AST(), builder_->Symbols(), |
| builder_->Diagnostics(), dependencies_, |
| /* allow_out_of_order_decls*/ false)) { |
| return false; |
| } |
| |
| bool result = ResolveInternal(); |
| |
| if (!result && !diagnostics_.contains_errors()) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "resolving failed, but no error was raised"; |
| return false; |
| } |
| |
| return result; |
| } |
| |
| bool Resolver::ResolveInternal() { |
| Mark(&builder_->AST()); |
| |
| // Process everything else in the order they appear in the module. This is |
| // necessary for validation of use-before-declaration. |
| for (auto* decl : builder_->AST().GlobalDeclarations()) { |
| if (auto* td = decl->As<ast::TypeDecl>()) { |
| Mark(td); |
| if (!TypeDecl(td)) { |
| return false; |
| } |
| } else if (auto* func = decl->As<ast::Function>()) { |
| Mark(func); |
| if (!Function(func)) { |
| return false; |
| } |
| } else if (auto* var = decl->As<ast::Variable>()) { |
| Mark(var); |
| if (!GlobalVariable(var)) { |
| return false; |
| } |
| } else { |
| TINT_UNREACHABLE(Resolver, diagnostics_) |
| << "unhandled global declaration: " << decl->TypeInfo().name; |
| return false; |
| } |
| } |
| |
| AllocateOverridableConstantIds(); |
| |
| SetShadows(); |
| |
| if (!ValidatePipelineStages()) { |
| return false; |
| } |
| |
| bool result = true; |
| for (auto* node : builder_->ASTNodes().Objects()) { |
| if (marked_.count(node) == 0) { |
| TINT_ICE(Resolver, diagnostics_) << "AST node '" << node->TypeInfo().name |
| << "' was not reached by the resolver\n" |
| << "At: " << node->source << "\n" |
| << "Pointer: " << node; |
| result = false; |
| } |
| } |
| |
| return result; |
| } |
| |
| sem::Type* Resolver::Type(const ast::Type* ty) { |
| Mark(ty); |
| auto* s = [&]() -> sem::Type* { |
| if (ty->Is<ast::Void>()) { |
| return builder_->create<sem::Void>(); |
| } |
| if (ty->Is<ast::Bool>()) { |
| return builder_->create<sem::Bool>(); |
| } |
| if (ty->Is<ast::I32>()) { |
| return builder_->create<sem::I32>(); |
| } |
| if (ty->Is<ast::U32>()) { |
| return builder_->create<sem::U32>(); |
| } |
| if (ty->Is<ast::F32>()) { |
| return builder_->create<sem::F32>(); |
| } |
| if (auto* t = ty->As<ast::Vector>()) { |
| if (!t->type) { |
| AddError("missing vector element type", t->source.End()); |
| return nullptr; |
| } |
| if (auto* el = Type(t->type)) { |
| if (auto* vector = builder_->create<sem::Vector>(el, t->width)) { |
| if (ValidateVector(vector, t->source)) { |
| return vector; |
| } |
| } |
| } |
| return nullptr; |
| } |
| if (auto* t = ty->As<ast::Matrix>()) { |
| if (!t->type) { |
| AddError("missing matrix element type", t->source.End()); |
| return nullptr; |
| } |
| if (auto* el = Type(t->type)) { |
| if (auto* column_type = builder_->create<sem::Vector>(el, t->rows)) { |
| if (auto* matrix = |
| builder_->create<sem::Matrix>(column_type, t->columns)) { |
| if (ValidateMatrix(matrix, t->source)) { |
| return matrix; |
| } |
| } |
| } |
| } |
| return nullptr; |
| } |
| if (auto* t = ty->As<ast::Array>()) { |
| return Array(t); |
| } |
| if (auto* t = ty->As<ast::Atomic>()) { |
| if (auto* el = Type(t->type)) { |
| auto* a = builder_->create<sem::Atomic>(el); |
| if (!ValidateAtomic(t, a)) { |
| return nullptr; |
| } |
| return a; |
| } |
| return nullptr; |
| } |
| if (auto* t = ty->As<ast::Pointer>()) { |
| if (auto* el = Type(t->type)) { |
| auto access = t->access; |
| if (access == ast::kUndefined) { |
| access = DefaultAccessForStorageClass(t->storage_class); |
| } |
| return builder_->create<sem::Pointer>(el, t->storage_class, access); |
| } |
| return nullptr; |
| } |
| if (auto* t = ty->As<ast::Sampler>()) { |
| return builder_->create<sem::Sampler>(t->kind); |
| } |
| if (auto* t = ty->As<ast::SampledTexture>()) { |
| if (auto* el = Type(t->type)) { |
| return builder_->create<sem::SampledTexture>(t->dim, el); |
| } |
| return nullptr; |
| } |
| if (auto* t = ty->As<ast::MultisampledTexture>()) { |
| if (auto* el = Type(t->type)) { |
| return builder_->create<sem::MultisampledTexture>(t->dim, el); |
| } |
| return nullptr; |
| } |
| if (auto* t = ty->As<ast::DepthTexture>()) { |
| return builder_->create<sem::DepthTexture>(t->dim); |
| } |
| if (auto* t = ty->As<ast::DepthMultisampledTexture>()) { |
| return builder_->create<sem::DepthMultisampledTexture>(t->dim); |
| } |
| if (auto* t = ty->As<ast::StorageTexture>()) { |
| if (auto* el = Type(t->type)) { |
| if (!ValidateStorageTexture(t)) { |
| return nullptr; |
| } |
| return builder_->create<sem::StorageTexture>(t->dim, t->format, |
| t->access, el); |
| } |
| return nullptr; |
| } |
| if (ty->As<ast::ExternalTexture>()) { |
| return builder_->create<sem::ExternalTexture>(); |
| } |
| if (auto* type = ResolvedSymbol<sem::Type>(ty)) { |
| return type; |
| } |
| TINT_UNREACHABLE(Resolver, diagnostics_) |
| << "Unhandled ast::Type: " << ty->TypeInfo().name; |
| return nullptr; |
| }(); |
| |
| if (s) { |
| builder_->Sem().Add(ty, s); |
| } |
| return s; |
| } |
| |
| sem::Variable* Resolver::Variable(const ast::Variable* var, |
| VariableKind kind, |
| uint32_t index /* = 0 */) { |
| const sem::Type* storage_ty = nullptr; |
| |
| // If the variable has a declared type, resolve it. |
| if (auto* ty = var->type) { |
| storage_ty = Type(ty); |
| if (!storage_ty) { |
| return nullptr; |
| } |
| } |
| |
| const sem::Expression* rhs = nullptr; |
| |
| // Does the variable have a constructor? |
| if (var->constructor) { |
| rhs = Expression(var->constructor); |
| if (!rhs) { |
| return nullptr; |
| } |
| |
| // If the variable has no declared type, infer it from the RHS |
| if (!storage_ty) { |
| if (!var->is_const && kind == VariableKind::kGlobal) { |
| AddError("global var declaration must specify a type", var->source); |
| return nullptr; |
| } |
| |
| storage_ty = rhs->Type()->UnwrapRef(); // Implicit load of RHS |
| } |
| } else if (var->is_const && kind != VariableKind::kParameter && |
| !ast::HasDecoration<ast::OverrideDecoration>(var->decorations)) { |
| AddError("let declaration must have an initializer", var->source); |
| return nullptr; |
| } else if (!var->type) { |
| AddError( |
| (kind == VariableKind::kGlobal) |
| ? "module scope var declaration requires a type and initializer" |
| : "function scope var declaration requires a type or initializer", |
| var->source); |
| return nullptr; |
| } |
| |
| if (!storage_ty) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "failed to determine storage type for variable '" + |
| builder_->Symbols().NameFor(var->symbol) + "'\n" |
| << "Source: " << var->source; |
| return nullptr; |
| } |
| |
| auto storage_class = var->declared_storage_class; |
| if (storage_class == ast::StorageClass::kNone && !var->is_const) { |
| // No declared storage class. Infer from usage / type. |
| if (kind == VariableKind::kLocal) { |
| storage_class = ast::StorageClass::kFunction; |
| } else if (storage_ty->UnwrapRef()->is_handle()) { |
| // https://gpuweb.github.io/gpuweb/wgsl/#module-scope-variables |
| // If the store type is a texture type or a sampler type, then the |
| // variable declaration must not have a storage class decoration. The |
| // storage class will always be handle. |
| storage_class = ast::StorageClass::kUniformConstant; |
| } |
| } |
| |
| if (kind == VariableKind::kLocal && !var->is_const && |
| storage_class != ast::StorageClass::kFunction && |
| IsValidationEnabled(var->decorations, |
| ast::DisabledValidation::kIgnoreStorageClass)) { |
| AddError("function variable has a non-function storage class", var->source); |
| return nullptr; |
| } |
| |
| auto access = var->declared_access; |
| if (access == ast::Access::kUndefined) { |
| access = DefaultAccessForStorageClass(storage_class); |
| } |
| |
| auto* var_ty = storage_ty; |
| if (!var->is_const) { |
| // Variable declaration. Unlike `let`, `var` has storage. |
| // Variables are always of a reference type to the declared storage type. |
| var_ty = |
| builder_->create<sem::Reference>(storage_ty, storage_class, access); |
| } |
| |
| if (rhs && !ValidateVariableConstructorOrCast(var, storage_class, storage_ty, |
| rhs->Type())) { |
| return nullptr; |
| } |
| |
| if (!ApplyStorageClassUsageToType( |
| storage_class, const_cast<sem::Type*>(var_ty), var->source)) { |
| AddNote( |
| std::string("while instantiating ") + |
| ((kind == VariableKind::kParameter) ? "parameter " : "variable ") + |
| builder_->Symbols().NameFor(var->symbol), |
| var->source); |
| return nullptr; |
| } |
| |
| if (kind == VariableKind::kParameter) { |
| if (auto* ptr = var_ty->As<sem::Pointer>()) { |
| // For MSL, we push module-scope variables into the entry point as pointer |
| // parameters, so we also need to handle their store type. |
| if (!ApplyStorageClassUsageToType( |
| ptr->StorageClass(), const_cast<sem::Type*>(ptr->StoreType()), |
| var->source)) { |
| AddNote("while instantiating parameter " + |
| builder_->Symbols().NameFor(var->symbol), |
| var->source); |
| return nullptr; |
| } |
| } |
| } |
| |
| switch (kind) { |
| case VariableKind::kGlobal: { |
| sem::BindingPoint binding_point; |
| if (auto bp = var->BindingPoint()) { |
| binding_point = {bp.group->value, bp.binding->value}; |
| } |
| |
| auto* override = |
| ast::GetDecoration<ast::OverrideDecoration>(var->decorations); |
| bool has_const_val = rhs && var->is_const && !override; |
| |
| auto* global = builder_->create<sem::GlobalVariable>( |
| var, var_ty, storage_class, access, |
| has_const_val ? rhs->ConstantValue() : sem::Constant{}, |
| binding_point); |
| |
| if (override) { |
| global->SetIsOverridable(); |
| if (override->has_value) { |
| global->SetConstantId(static_cast<uint16_t>(override->value)); |
| } |
| } |
| |
| global->SetConstructor(rhs); |
| |
| builder_->Sem().Add(var, global); |
| return global; |
| } |
| case VariableKind::kLocal: { |
| auto* local = builder_->create<sem::LocalVariable>( |
| var, var_ty, storage_class, access, current_statement_, |
| (rhs && var->is_const) ? rhs->ConstantValue() : sem::Constant{}); |
| builder_->Sem().Add(var, local); |
| local->SetConstructor(rhs); |
| return local; |
| } |
| case VariableKind::kParameter: { |
| auto* param = builder_->create<sem::Parameter>(var, index, var_ty, |
| storage_class, access); |
| builder_->Sem().Add(var, param); |
| return param; |
| } |
| } |
| |
| TINT_UNREACHABLE(Resolver, diagnostics_) |
| << "unhandled VariableKind " << static_cast<int>(kind); |
| return nullptr; |
| } |
| |
| ast::Access Resolver::DefaultAccessForStorageClass( |
| ast::StorageClass storage_class) { |
| // https://gpuweb.github.io/gpuweb/wgsl/#storage-class |
| switch (storage_class) { |
| case ast::StorageClass::kStorage: |
| case ast::StorageClass::kUniform: |
| case ast::StorageClass::kUniformConstant: |
| return ast::Access::kRead; |
| default: |
| break; |
| } |
| return ast::Access::kReadWrite; |
| } |
| |
| void Resolver::AllocateOverridableConstantIds() { |
| // The next pipeline constant ID to try to allocate. |
| uint16_t next_constant_id = 0; |
| |
| // Allocate constant IDs in global declaration order, so that they are |
| // deterministic. |
| // TODO(crbug.com/tint/1192): If a transform changes the order or removes an |
| // unused constant, the allocation may change on the next Resolver pass. |
| for (auto* decl : builder_->AST().GlobalDeclarations()) { |
| auto* var = decl->As<ast::Variable>(); |
| if (!var) { |
| continue; |
| } |
| auto* override_deco = |
| ast::GetDecoration<ast::OverrideDecoration>(var->decorations); |
| if (!override_deco) { |
| continue; |
| } |
| |
| uint16_t constant_id; |
| if (override_deco->has_value) { |
| constant_id = static_cast<uint16_t>(override_deco->value); |
| } else { |
| // No ID was specified, so allocate the next available ID. |
| constant_id = next_constant_id; |
| while (constant_ids_.count(constant_id)) { |
| if (constant_id == UINT16_MAX) { |
| TINT_ICE(Resolver, builder_->Diagnostics()) |
| << "no more pipeline constant IDs available"; |
| return; |
| } |
| constant_id++; |
| } |
| next_constant_id = constant_id + 1; |
| } |
| |
| auto* sem = Sem<sem::GlobalVariable>(var); |
| const_cast<sem::GlobalVariable*>(sem)->SetConstantId(constant_id); |
| } |
| } |
| |
| void Resolver::SetShadows() { |
| for (auto it : dependencies_.shadows) { |
| auto* var = Sem(it.first); |
| if (auto* local = var->As<sem::LocalVariable>()) { |
| local->SetShadows(Sem(it.second)); |
| } |
| if (auto* param = var->As<sem::Parameter>()) { |
| param->SetShadows(Sem(it.second)); |
| } |
| } |
| } // namespace resolver |
| |
| bool Resolver::GlobalVariable(const ast::Variable* var) { |
| auto* sem = Variable(var, VariableKind::kGlobal); |
| if (!sem) { |
| return false; |
| } |
| |
| auto storage_class = sem->StorageClass(); |
| if (!var->is_const && storage_class == ast::StorageClass::kNone) { |
| AddError("global variables must have a storage class", var->source); |
| return false; |
| } |
| if (var->is_const && storage_class != ast::StorageClass::kNone) { |
| AddError("global constants shouldn't have a storage class", var->source); |
| return false; |
| } |
| |
| for (auto* deco : var->decorations) { |
| Mark(deco); |
| |
| if (auto* override_deco = deco->As<ast::OverrideDecoration>()) { |
| // Track the constant IDs that are specified in the shader. |
| if (override_deco->has_value) { |
| constant_ids_.emplace(override_deco->value, sem); |
| } |
| } |
| } |
| |
| if (!ValidateNoDuplicateDecorations(var->decorations)) { |
| return false; |
| } |
| |
| if (!ValidateGlobalVariable(sem)) { |
| return false; |
| } |
| |
| // TODO(bclayton): Call this at the end of resolve on all uniform and storage |
| // referenced structs |
| if (!ValidateStorageClassLayout(sem)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| sem::Function* Resolver::Function(const ast::Function* decl) { |
| uint32_t parameter_index = 0; |
| std::unordered_map<Symbol, Source> parameter_names; |
| std::vector<sem::Parameter*> parameters; |
| |
| // Resolve all the parameters |
| for (auto* param : decl->params) { |
| Mark(param); |
| |
| { // Check the parameter name is unique for the function |
| auto emplaced = parameter_names.emplace(param->symbol, param->source); |
| if (!emplaced.second) { |
| auto name = builder_->Symbols().NameFor(param->symbol); |
| AddError("redefinition of parameter '" + name + "'", param->source); |
| AddNote("previous definition is here", emplaced.first->second); |
| return nullptr; |
| } |
| } |
| |
| auto* var = As<sem::Parameter>( |
| Variable(param, VariableKind::kParameter, parameter_index++)); |
| if (!var) { |
| return nullptr; |
| } |
| |
| for (auto* deco : param->decorations) { |
| Mark(deco); |
| } |
| if (!ValidateNoDuplicateDecorations(param->decorations)) { |
| return nullptr; |
| } |
| |
| parameters.emplace_back(var); |
| |
| auto* var_ty = const_cast<sem::Type*>(var->Type()); |
| if (auto* str = var_ty->As<sem::Struct>()) { |
| switch (decl->PipelineStage()) { |
| case ast::PipelineStage::kVertex: |
| str->AddUsage(sem::PipelineStageUsage::kVertexInput); |
| break; |
| case ast::PipelineStage::kFragment: |
| str->AddUsage(sem::PipelineStageUsage::kFragmentInput); |
| break; |
| case ast::PipelineStage::kCompute: |
| str->AddUsage(sem::PipelineStageUsage::kComputeInput); |
| break; |
| case ast::PipelineStage::kNone: |
| break; |
| } |
| } |
| } |
| |
| // Resolve the return type |
| sem::Type* return_type = nullptr; |
| if (auto* ty = decl->return_type) { |
| return_type = Type(ty); |
| if (!return_type) { |
| return nullptr; |
| } |
| } else { |
| return_type = builder_->create<sem::Void>(); |
| } |
| |
| if (auto* str = return_type->As<sem::Struct>()) { |
| if (!ApplyStorageClassUsageToType(ast::StorageClass::kNone, str, |
| decl->source)) { |
| AddNote("while instantiating return type for " + |
| builder_->Symbols().NameFor(decl->symbol), |
| decl->source); |
| return nullptr; |
| } |
| |
| switch (decl->PipelineStage()) { |
| case ast::PipelineStage::kVertex: |
| str->AddUsage(sem::PipelineStageUsage::kVertexOutput); |
| break; |
| case ast::PipelineStage::kFragment: |
| str->AddUsage(sem::PipelineStageUsage::kFragmentOutput); |
| break; |
| case ast::PipelineStage::kCompute: |
| str->AddUsage(sem::PipelineStageUsage::kComputeOutput); |
| break; |
| case ast::PipelineStage::kNone: |
| break; |
| } |
| } |
| |
| auto* func = builder_->create<sem::Function>(decl, return_type, parameters); |
| builder_->Sem().Add(decl, func); |
| |
| TINT_SCOPED_ASSIGNMENT(current_function_, func); |
| |
| if (!WorkgroupSize(decl)) { |
| return nullptr; |
| } |
| |
| if (decl->IsEntryPoint()) { |
| entry_points_.emplace_back(func); |
| } |
| |
| if (decl->body) { |
| Mark(decl->body); |
| if (current_compound_statement_) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "Resolver::Function() called with a current compound statement"; |
| return nullptr; |
| } |
| auto* body = StatementScope( |
| decl->body, builder_->create<sem::FunctionBlockStatement>(func), |
| [&] { return Statements(decl->body->statements); }); |
| if (!body) { |
| return nullptr; |
| } |
| func->Behaviors() = body->Behaviors(); |
| if (func->Behaviors().Contains(sem::Behavior::kReturn)) { |
| // https://www.w3.org/TR/WGSL/#behaviors-rules |
| // We assign a behavior to each function: it is its body’s behavior |
| // (treating the body as a regular statement), with any "Return" replaced |
| // by "Next". |
| func->Behaviors().Remove(sem::Behavior::kReturn); |
| func->Behaviors().Add(sem::Behavior::kNext); |
| } |
| } |
| |
| for (auto* deco : decl->decorations) { |
| Mark(deco); |
| } |
| if (!ValidateNoDuplicateDecorations(decl->decorations)) { |
| return nullptr; |
| } |
| |
| for (auto* deco : decl->return_type_decorations) { |
| Mark(deco); |
| } |
| if (!ValidateNoDuplicateDecorations(decl->return_type_decorations)) { |
| return nullptr; |
| } |
| |
| if (!ValidateFunction(func)) { |
| return nullptr; |
| } |
| |
| // If this is an entry point, mark all transitively called functions as being |
| // used by this entry point. |
| if (decl->IsEntryPoint()) { |
| for (auto* f : func->TransitivelyCalledFunctions()) { |
| const_cast<sem::Function*>(f)->AddAncestorEntryPoint(func); |
| } |
| } |
| |
| return func; |
| } |
| |
| bool Resolver::WorkgroupSize(const ast::Function* func) { |
| // Set work-group size defaults. |
| sem::WorkgroupSize ws; |
| for (int i = 0; i < 3; i++) { |
| ws[i].value = 1; |
| ws[i].overridable_const = nullptr; |
| } |
| |
| auto* deco = ast::GetDecoration<ast::WorkgroupDecoration>(func->decorations); |
| if (!deco) { |
| return true; |
| } |
| |
| auto values = deco->Values(); |
| auto any_i32 = false; |
| auto any_u32 = false; |
| for (int i = 0; i < 3; i++) { |
| // Each argument to this decoration can either be a literal, an |
| // identifier for a module-scope constants, or nullptr if not specified. |
| |
| auto* expr = values[i]; |
| if (!expr) { |
| // Not specified, just use the default. |
| continue; |
| } |
| |
| auto* expr_sem = Expression(expr); |
| if (!expr_sem) { |
| return false; |
| } |
| |
| constexpr const char* kErrBadType = |
| "workgroup_size argument must be either literal or module-scope " |
| "constant of type i32 or u32"; |
| constexpr const char* kErrInconsistentType = |
| "workgroup_size arguments must be of the same type, either i32 " |
| "or u32"; |
| |
| auto* ty = TypeOf(expr); |
| bool is_i32 = ty->UnwrapRef()->Is<sem::I32>(); |
| bool is_u32 = ty->UnwrapRef()->Is<sem::U32>(); |
| if (!is_i32 && !is_u32) { |
| AddError(kErrBadType, expr->source); |
| return false; |
| } |
| |
| any_i32 = any_i32 || is_i32; |
| any_u32 = any_u32 || is_u32; |
| if (any_i32 && any_u32) { |
| AddError(kErrInconsistentType, expr->source); |
| return false; |
| } |
| |
| sem::Constant value; |
| |
| if (auto* user = Sem(expr)->As<sem::VariableUser>()) { |
| // We have an variable of a module-scope constant. |
| auto* decl = user->Variable()->Declaration(); |
| if (!decl->is_const) { |
| AddError(kErrBadType, expr->source); |
| return false; |
| } |
| // Capture the constant if an [[override]] attribute is present. |
| if (ast::HasDecoration<ast::OverrideDecoration>(decl->decorations)) { |
| ws[i].overridable_const = decl; |
| } |
| |
| if (decl->constructor) { |
| value = Sem(decl->constructor)->ConstantValue(); |
| } else { |
| // No constructor means this value must be overriden by the user. |
| ws[i].value = 0; |
| continue; |
| } |
| } else if (expr->Is<ast::LiteralExpression>()) { |
| value = Sem(expr)->ConstantValue(); |
| } else { |
| AddError( |
| "workgroup_size argument must be either a literal or a " |
| "module-scope constant", |
| values[i]->source); |
| return false; |
| } |
| |
| if (!value) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "could not resolve constant workgroup_size constant value"; |
| continue; |
| } |
| // Validate and set the default value for this dimension. |
| if (is_i32 ? value.Elements()[0].i32 < 1 : value.Elements()[0].u32 < 1) { |
| AddError("workgroup_size argument must be at least 1", values[i]->source); |
| return false; |
| } |
| |
| ws[i].value = is_i32 ? static_cast<uint32_t>(value.Elements()[0].i32) |
| : value.Elements()[0].u32; |
| } |
| |
| current_function_->SetWorkgroupSize(std::move(ws)); |
| return true; |
| } |
| |
| bool Resolver::Statements(const ast::StatementList& stmts) { |
| sem::Behaviors behaviors{sem::Behavior::kNext}; |
| |
| bool reachable = true; |
| for (auto* stmt : stmts) { |
| Mark(stmt); |
| auto* sem = Statement(stmt); |
| if (!sem) { |
| return false; |
| } |
| // s1 s2:(B1∖{Next}) ∪ B2 |
| sem->SetIsReachable(reachable); |
| if (reachable) { |
| behaviors = (behaviors - sem::Behavior::kNext) + sem->Behaviors(); |
| } |
| reachable = reachable && sem->Behaviors().Contains(sem::Behavior::kNext); |
| } |
| |
| current_statement_->Behaviors() = behaviors; |
| |
| if (!ValidateStatements(stmts)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| sem::Statement* Resolver::Statement(const ast::Statement* stmt) { |
| if (stmt->Is<ast::CaseStatement>()) { |
| AddError("case statement can only be used inside a switch statement", |
| stmt->source); |
| return nullptr; |
| } |
| if (stmt->Is<ast::ElseStatement>()) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "Resolver::Statement() encountered an Else statement. Else " |
| "statements are embedded in If statements, so should never be " |
| "encountered as top-level statements"; |
| return nullptr; |
| } |
| |
| // Compound statements. These create their own sem::CompoundStatement |
| // bindings. |
| if (auto* b = stmt->As<ast::BlockStatement>()) { |
| return BlockStatement(b); |
| } |
| if (auto* l = stmt->As<ast::ForLoopStatement>()) { |
| return ForLoopStatement(l); |
| } |
| if (auto* l = stmt->As<ast::LoopStatement>()) { |
| return LoopStatement(l); |
| } |
| if (auto* i = stmt->As<ast::IfStatement>()) { |
| return IfStatement(i); |
| } |
| if (auto* s = stmt->As<ast::SwitchStatement>()) { |
| return SwitchStatement(s); |
| } |
| |
| // Non-Compound statements |
| if (auto* a = stmt->As<ast::AssignmentStatement>()) { |
| return AssignmentStatement(a); |
| } |
| if (auto* b = stmt->As<ast::BreakStatement>()) { |
| return BreakStatement(b); |
| } |
| if (auto* c = stmt->As<ast::CallStatement>()) { |
| return CallStatement(c); |
| } |
| if (auto* c = stmt->As<ast::ContinueStatement>()) { |
| return ContinueStatement(c); |
| } |
| if (auto* d = stmt->As<ast::DiscardStatement>()) { |
| return DiscardStatement(d); |
| } |
| if (auto* f = stmt->As<ast::FallthroughStatement>()) { |
| return FallthroughStatement(f); |
| } |
| if (auto* r = stmt->As<ast::ReturnStatement>()) { |
| return ReturnStatement(r); |
| } |
| if (auto* v = stmt->As<ast::VariableDeclStatement>()) { |
| return VariableDeclStatement(v); |
| } |
| |
| AddError("unknown statement type: " + std::string(stmt->TypeInfo().name), |
| stmt->source); |
| return nullptr; |
| } |
| |
| sem::CaseStatement* Resolver::CaseStatement(const ast::CaseStatement* stmt) { |
| auto* sem = builder_->create<sem::CaseStatement>( |
| stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| for (auto* sel : stmt->selectors) { |
| Mark(sel); |
| } |
| Mark(stmt->body); |
| auto* body = BlockStatement(stmt->body); |
| if (!body) { |
| return false; |
| } |
| sem->SetBlock(body); |
| sem->Behaviors() = body->Behaviors(); |
| return true; |
| }); |
| } |
| |
| sem::IfStatement* Resolver::IfStatement(const ast::IfStatement* stmt) { |
| auto* sem = builder_->create<sem::IfStatement>( |
| stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| auto* cond = Expression(stmt->condition); |
| if (!cond) { |
| return false; |
| } |
| sem->SetCondition(cond); |
| sem->Behaviors() = cond->Behaviors(); |
| sem->Behaviors().Remove(sem::Behavior::kNext); |
| |
| Mark(stmt->body); |
| auto* body = builder_->create<sem::BlockStatement>( |
| stmt->body, current_compound_statement_, current_function_); |
| if (!StatementScope(stmt->body, body, |
| [&] { return Statements(stmt->body->statements); })) { |
| return false; |
| } |
| sem->Behaviors().Add(body->Behaviors()); |
| |
| for (auto* else_stmt : stmt->else_statements) { |
| Mark(else_stmt); |
| auto* else_sem = ElseStatement(else_stmt); |
| if (!else_sem) { |
| return false; |
| } |
| sem->Behaviors().Add(else_sem->Behaviors()); |
| } |
| |
| if (stmt->else_statements.empty() || |
| stmt->else_statements.back()->condition != nullptr) { |
| // https://www.w3.org/TR/WGSL/#behaviors-rules |
| // if statements without an else branch are treated as if they had an |
| // empty else branch (which adds Next to their behavior) |
| sem->Behaviors().Add(sem::Behavior::kNext); |
| } |
| |
| return ValidateIfStatement(sem); |
| }); |
| } |
| |
| sem::ElseStatement* Resolver::ElseStatement(const ast::ElseStatement* stmt) { |
| auto* sem = builder_->create<sem::ElseStatement>( |
| stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| if (auto* cond_expr = stmt->condition) { |
| auto* cond = Expression(cond_expr); |
| if (!cond) { |
| return false; |
| } |
| sem->SetCondition(cond); |
| // https://www.w3.org/TR/WGSL/#behaviors-rules |
| // if statements with else if branches are treated as if they were nested |
| // simple if/else statements |
| sem->Behaviors() = cond->Behaviors(); |
| } |
| sem->Behaviors().Remove(sem::Behavior::kNext); |
| |
| Mark(stmt->body); |
| auto* body = builder_->create<sem::BlockStatement>( |
| stmt->body, current_compound_statement_, current_function_); |
| if (!StatementScope(stmt->body, body, |
| [&] { return Statements(stmt->body->statements); })) { |
| return false; |
| } |
| sem->Behaviors().Add(body->Behaviors()); |
| |
| return ValidateElseStatement(sem); |
| }); |
| } |
| |
| sem::BlockStatement* Resolver::BlockStatement(const ast::BlockStatement* stmt) { |
| auto* sem = builder_->create<sem::BlockStatement>( |
| stmt->As<ast::BlockStatement>(), current_compound_statement_, |
| current_function_); |
| return StatementScope(stmt, sem, |
| [&] { return Statements(stmt->statements); }); |
| } |
| |
| sem::LoopStatement* Resolver::LoopStatement(const ast::LoopStatement* stmt) { |
| auto* sem = builder_->create<sem::LoopStatement>( |
| stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| Mark(stmt->body); |
| |
| auto* body = builder_->create<sem::LoopBlockStatement>( |
| stmt->body, current_compound_statement_, current_function_); |
| return StatementScope(stmt->body, body, [&] { |
| if (!Statements(stmt->body->statements)) { |
| return false; |
| } |
| auto& behaviors = sem->Behaviors(); |
| behaviors = body->Behaviors(); |
| |
| if (stmt->continuing) { |
| Mark(stmt->continuing); |
| if (!stmt->continuing->Empty()) { |
| auto* continuing = StatementScope( |
| stmt->continuing, |
| builder_->create<sem::LoopContinuingBlockStatement>( |
| stmt->continuing, current_compound_statement_, |
| current_function_), |
| [&] { return Statements(stmt->continuing->statements); }); |
| if (!continuing) { |
| return false; |
| } |
| behaviors.Add(continuing->Behaviors()); |
| } |
| } |
| |
| if (behaviors.Contains(sem::Behavior::kBreak)) { // Does the loop exit? |
| behaviors.Add(sem::Behavior::kNext); |
| } else { |
| behaviors.Remove(sem::Behavior::kNext); |
| } |
| behaviors.Remove(sem::Behavior::kBreak, sem::Behavior::kContinue); |
| |
| return ValidateLoopStatement(sem); |
| }); |
| }); |
| } |
| |
| sem::ForLoopStatement* Resolver::ForLoopStatement( |
| const ast::ForLoopStatement* stmt) { |
| auto* sem = builder_->create<sem::ForLoopStatement>( |
| stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| auto& behaviors = sem->Behaviors(); |
| if (auto* initializer = stmt->initializer) { |
| Mark(initializer); |
| auto* init = Statement(initializer); |
| if (!init) { |
| return false; |
| } |
| behaviors.Add(init->Behaviors()); |
| } |
| |
| if (auto* cond_expr = stmt->condition) { |
| auto* cond = Expression(cond_expr); |
| if (!cond) { |
| return false; |
| } |
| sem->SetCondition(cond); |
| behaviors.Add(cond->Behaviors()); |
| } |
| |
| if (auto* continuing = stmt->continuing) { |
| Mark(continuing); |
| auto* cont = Statement(continuing); |
| if (!cont) { |
| return false; |
| } |
| behaviors.Add(cont->Behaviors()); |
| } |
| |
| Mark(stmt->body); |
| |
| auto* body = builder_->create<sem::LoopBlockStatement>( |
| stmt->body, current_compound_statement_, current_function_); |
| if (!StatementScope(stmt->body, body, |
| [&] { return Statements(stmt->body->statements); })) { |
| return false; |
| } |
| |
| behaviors.Add(body->Behaviors()); |
| if (stmt->condition || |
| behaviors.Contains(sem::Behavior::kBreak)) { // Does the loop exit? |
| behaviors.Add(sem::Behavior::kNext); |
| } else { |
| behaviors.Remove(sem::Behavior::kNext); |
| } |
| behaviors.Remove(sem::Behavior::kBreak, sem::Behavior::kContinue); |
| |
| return ValidateForLoopStatement(sem); |
| }); |
| } |
| |
| sem::Expression* Resolver::Expression(const ast::Expression* root) { |
| std::vector<const ast::Expression*> sorted; |
| bool mark_failed = false; |
| if (!ast::TraverseExpressions<ast::TraverseOrder::RightToLeft>( |
| root, diagnostics_, [&](const ast::Expression* expr) { |
| if (!Mark(expr)) { |
| mark_failed = true; |
| return ast::TraverseAction::Stop; |
| } |
| sorted.emplace_back(expr); |
| return ast::TraverseAction::Descend; |
| })) { |
| return nullptr; |
| } |
| |
| if (mark_failed) { |
| return nullptr; |
| } |
| |
| for (auto* expr : utils::Reverse(sorted)) { |
| sem::Expression* sem_expr = nullptr; |
| if (auto* array = expr->As<ast::IndexAccessorExpression>()) { |
| sem_expr = IndexAccessor(array); |
| } else if (auto* bin_op = expr->As<ast::BinaryExpression>()) { |
| sem_expr = Binary(bin_op); |
| } else if (auto* bitcast = expr->As<ast::BitcastExpression>()) { |
| sem_expr = Bitcast(bitcast); |
| } else if (auto* call = expr->As<ast::CallExpression>()) { |
| sem_expr = Call(call); |
| } else if (auto* ident = expr->As<ast::IdentifierExpression>()) { |
| sem_expr = Identifier(ident); |
| } else if (auto* literal = expr->As<ast::LiteralExpression>()) { |
| sem_expr = Literal(literal); |
| } else if (auto* member = expr->As<ast::MemberAccessorExpression>()) { |
| sem_expr = MemberAccessor(member); |
| } else if (auto* unary = expr->As<ast::UnaryOpExpression>()) { |
| sem_expr = UnaryOp(unary); |
| } else if (expr->Is<ast::PhonyExpression>()) { |
| sem_expr = builder_->create<sem::Expression>( |
| expr, builder_->create<sem::Void>(), current_statement_, |
| sem::Constant{}); |
| } else { |
| TINT_ICE(Resolver, diagnostics_) |
| << "unhandled expression type: " << expr->TypeInfo().name; |
| return nullptr; |
| } |
| if (!sem_expr) { |
| return nullptr; |
| } |
| |
| builder_->Sem().Add(expr, sem_expr); |
| if (expr == root) { |
| return sem_expr; |
| } |
| } |
| |
| TINT_ICE(Resolver, diagnostics_) << "Expression() did not find root node"; |
| return nullptr; |
| } |
| |
| sem::Expression* Resolver::IndexAccessor( |
| const ast::IndexAccessorExpression* expr) { |
| auto* idx = Sem(expr->index); |
| auto* obj = Sem(expr->object); |
| auto* obj_raw_ty = obj->Type(); |
| auto* obj_ty = obj_raw_ty->UnwrapRef(); |
| const sem::Type* ty = nullptr; |
| if (auto* arr = obj_ty->As<sem::Array>()) { |
| ty = arr->ElemType(); |
| } else if (auto* vec = obj_ty->As<sem::Vector>()) { |
| ty = vec->type(); |
| } else if (auto* mat = obj_ty->As<sem::Matrix>()) { |
| ty = builder_->create<sem::Vector>(mat->type(), mat->rows()); |
| } else { |
| AddError("cannot index type '" + TypeNameOf(obj_ty) + "'", expr->source); |
| return nullptr; |
| } |
| |
| auto* idx_ty = idx->Type()->UnwrapRef(); |
| if (!idx_ty->IsAnyOf<sem::I32, sem::U32>()) { |
| AddError("index must be of type 'i32' or 'u32', found: '" + |
| TypeNameOf(idx_ty) + "'", |
| idx->Declaration()->source); |
| return nullptr; |
| } |
| |
| // If we're extracting from a reference, we return a reference. |
| if (auto* ref = obj_raw_ty->As<sem::Reference>()) { |
| ty = builder_->create<sem::Reference>(ty, ref->StorageClass(), |
| ref->Access()); |
| } |
| |
| auto val = EvaluateConstantValue(expr, ty); |
| auto* sem = |
| builder_->create<sem::Expression>(expr, ty, current_statement_, val); |
| sem->Behaviors() = idx->Behaviors() + obj->Behaviors(); |
| return sem; |
| } |
| |
| sem::Expression* Resolver::Bitcast(const ast::BitcastExpression* expr) { |
| auto* inner = Sem(expr->expr); |
| auto* ty = Type(expr->type); |
| if (!ty) { |
| return nullptr; |
| } |
| |
| auto val = EvaluateConstantValue(expr, ty); |
| auto* sem = |
| builder_->create<sem::Expression>(expr, ty, current_statement_, val); |
| |
| sem->Behaviors() = inner->Behaviors(); |
| |
| if (!ValidateBitcast(expr, ty)) { |
| return nullptr; |
| } |
| |
| return sem; |
| } |
| |
| sem::Call* Resolver::Call(const ast::CallExpression* expr) { |
| std::vector<const sem::Expression*> args(expr->args.size()); |
| std::vector<const sem::Type*> arg_tys(args.size()); |
| sem::Behaviors arg_behaviors; |
| |
| // The element type of all the arguments. Nullptr if argument types are |
| // different. |
| const sem::Type* arg_el_ty = nullptr; |
| |
| for (size_t i = 0; i < expr->args.size(); i++) { |
| auto* arg = Sem(expr->args[i]); |
| if (!arg) { |
| return nullptr; |
| } |
| args[i] = arg; |
| arg_tys[i] = args[i]->Type(); |
| arg_behaviors.Add(arg->Behaviors()); |
| |
| // Determine the common argument element type |
| auto* el_ty = arg_tys[i]->UnwrapRef(); |
| if (auto* vec = el_ty->As<sem::Vector>()) { |
| el_ty = vec->type(); |
| } else if (auto* mat = el_ty->As<sem::Matrix>()) { |
| el_ty = mat->type(); |
| } |
| if (i == 0) { |
| arg_el_ty = el_ty; |
| } else if (arg_el_ty != el_ty) { |
| arg_el_ty = nullptr; |
| } |
| } |
| |
| arg_behaviors.Remove(sem::Behavior::kNext); |
| |
| auto type_ctor_or_conv = [&](const sem::Type* ty) -> sem::Call* { |
| // The call has resolved to a type constructor or cast. |
| if (args.size() == 1) { |
| auto* target = ty; |
| auto* source = args[0]->Type()->UnwrapRef(); |
| if ((source != target) && // |
| ((source->is_scalar() && target->is_scalar()) || |
| (source->Is<sem::Vector>() && target->Is<sem::Vector>()) || |
| (source->Is<sem::Matrix>() && target->Is<sem::Matrix>()))) { |
| // Note: Matrix types currently cannot be converted (the element type |
| // must only be f32). We implement this for the day we support other |
| // matrix element types. |
| return TypeConversion(expr, ty, args[0], arg_tys[0]); |
| } |
| } |
| return TypeConstructor(expr, ty, std::move(args), std::move(arg_tys)); |
| }; |
| |
| // Resolve the target of the CallExpression to determine whether this is a |
| // function call, cast or type constructor expression. |
| if (expr->target.type) { |
| const sem::Type* ty = nullptr; |
| |
| auto err_cannot_infer_el_ty = [&](std::string name) { |
| AddError( |
| "cannot infer " + name + |
| " element type, as constructor arguments have different types", |
| expr->source); |
| for (size_t i = 0; i < args.size(); i++) { |
| auto* arg = args[i]; |
| AddNote("argument " + std::to_string(i) + " has type " + |
| arg->Type()->FriendlyName(builder_->Symbols()), |
| arg->Declaration()->source); |
| } |
| }; |
| |
| if (!expr->args.empty()) { |
| // vecN() without explicit element type? |
| // Try to infer element type from args |
| if (auto* vec = expr->target.type->As<ast::Vector>()) { |
| if (!vec->type) { |
| if (!arg_el_ty) { |
| err_cannot_infer_el_ty("vector"); |
| return nullptr; |
| } |
| |
| Mark(vec); |
| auto* v = builder_->create<sem::Vector>( |
| arg_el_ty, static_cast<uint32_t>(vec->width)); |
| if (!ValidateVector(v, vec->source)) { |
| return nullptr; |
| } |
| builder_->Sem().Add(vec, v); |
| ty = v; |
| } |
| } |
| |
| // matNxM() without explicit element type? |
| // Try to infer element type from args |
| if (auto* mat = expr->target.type->As<ast::Matrix>()) { |
| if (!mat->type) { |
| if (!arg_el_ty) { |
| err_cannot_infer_el_ty("matrix"); |
| return nullptr; |
| } |
| |
| Mark(mat); |
| auto* column_type = |
| builder_->create<sem::Vector>(arg_el_ty, mat->rows); |
| auto* m = builder_->create<sem::Matrix>(column_type, mat->columns); |
| if (!ValidateMatrix(m, mat->source)) { |
| return nullptr; |
| } |
| builder_->Sem().Add(mat, m); |
| ty = m; |
| } |
| } |
| } |
| |
| if (ty == nullptr) { |
| ty = Type(expr->target.type); |
| if (!ty) { |
| return nullptr; |
| } |
| } |
| |
| return type_ctor_or_conv(ty); |
| } |
| |
| auto* ident = expr->target.name; |
| Mark(ident); |
| |
| auto* resolved = ResolvedSymbol(ident); |
| if (auto* ty = As<sem::Type>(resolved)) { |
| return type_ctor_or_conv(ty); |
| } |
| |
| if (auto* fn = As<sem::Function>(resolved)) { |
| return FunctionCall(expr, fn, std::move(args), arg_behaviors); |
| } |
| |
| auto name = builder_->Symbols().NameFor(ident->symbol); |
| auto intrinsic_type = sem::ParseIntrinsicType(name); |
| if (intrinsic_type != sem::IntrinsicType::kNone) { |
| return IntrinsicCall(expr, intrinsic_type, std::move(args), |
| std::move(arg_tys)); |
| } |
| |
| TINT_ICE(Resolver, diagnostics_) |
| << expr->source << " unresolved CallExpression target:\n" |
| << "resolved: " << (resolved ? resolved->TypeInfo().name : "<null>") |
| << "\n" |
| << "name: " << builder_->Symbols().NameFor(ident->symbol); |
| return nullptr; |
| } |
| |
| sem::Call* Resolver::IntrinsicCall( |
| const ast::CallExpression* expr, |
| sem::IntrinsicType intrinsic_type, |
| const std::vector<const sem::Expression*> args, |
| const std::vector<const sem::Type*> arg_tys) { |
| auto* intrinsic = intrinsic_table_->Lookup(intrinsic_type, std::move(arg_tys), |
| expr->source); |
| if (!intrinsic) { |
| return nullptr; |
| } |
| |
| if (intrinsic->IsDeprecated()) { |
| AddWarning("use of deprecated intrinsic", expr->source); |
| } |
| |
| auto* call = builder_->create<sem::Call>(expr, intrinsic, std::move(args), |
| current_statement_, sem::Constant{}); |
| |
| current_function_->AddDirectlyCalledIntrinsic(intrinsic); |
| |
| if (IsTextureIntrinsic(intrinsic_type)) { |
| if (!ValidateTextureIntrinsicFunction(call)) { |
| return nullptr; |
| } |
| // Collect a texture/sampler pair for this intrinsic. |
| const auto& signature = intrinsic->Signature(); |
| int texture_index = signature.IndexOf(sem::ParameterUsage::kTexture); |
| if (texture_index == -1) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "texture intrinsic without texture parameter"; |
| } |
| |
| auto* texture = args[texture_index]->As<sem::VariableUser>()->Variable(); |
| int sampler_index = signature.IndexOf(sem::ParameterUsage::kSampler); |
| const sem::Variable* sampler = |
| sampler_index != -1 |
| ? args[sampler_index]->As<sem::VariableUser>()->Variable() |
| : nullptr; |
| current_function_->AddTextureSamplerPair(texture, sampler); |
| } |
| |
| if (!ValidateIntrinsicCall(call)) { |
| return nullptr; |
| } |
| |
| current_function_->AddDirectCall(call); |
| |
| return call; |
| } |
| |
| sem::Call* Resolver::FunctionCall( |
| const ast::CallExpression* expr, |
| sem::Function* target, |
| const std::vector<const sem::Expression*> args, |
| sem::Behaviors arg_behaviors) { |
| auto sym = expr->target.name->symbol; |
| auto name = builder_->Symbols().NameFor(sym); |
| |
| auto* call = builder_->create<sem::Call>(expr, target, std::move(args), |
| current_statement_, sem::Constant{}); |
| |
| if (current_function_) { |
| // Note: Requires called functions to be resolved first. |
| // This is currently guaranteed as functions must be declared before |
| // use. |
| current_function_->AddTransitivelyCalledFunction(target); |
| current_function_->AddDirectCall(call); |
| for (auto* transitive_call : target->TransitivelyCalledFunctions()) { |
| current_function_->AddTransitivelyCalledFunction(transitive_call); |
| } |
| |
| // We inherit any referenced variables from the callee. |
| for (auto* var : target->TransitivelyReferencedGlobals()) { |
| current_function_->AddTransitivelyReferencedGlobal(var); |
| } |
| |
| // Map all texture/sampler pairs from the target function to the |
| // current function. These can only be global or parameter |
| // variables. Resolve any parameter variables to the corresponding |
| // argument passed to the current function. Leave global variables |
| // as-is. Then add the mapped pair to the current function's list of |
| // texture/sampler pairs. |
| for (sem::VariablePair pair : target->TextureSamplerPairs()) { |
| const sem::Variable* texture = pair.first; |
| const sem::Variable* sampler = pair.second; |
| if (auto* param = texture->As<sem::Parameter>()) { |
| texture = args[param->Index()]->As<sem::VariableUser>()->Variable(); |
| } |
| if (sampler) { |
| if (auto* param = sampler->As<sem::Parameter>()) { |
| sampler = args[param->Index()]->As<sem::VariableUser>()->Variable(); |
| } |
| } |
| current_function_->AddTextureSamplerPair(texture, sampler); |
| } |
| } |
| |
| target->AddCallSite(call); |
| |
| call->Behaviors() = arg_behaviors + target->Behaviors(); |
| |
| if (!ValidateFunctionCall(call)) { |
| return nullptr; |
| } |
| |
| return call; |
| } |
| |
| sem::Call* Resolver::TypeConversion(const ast::CallExpression* expr, |
| const sem::Type* target, |
| const sem::Expression* arg, |
| const sem::Type* source) { |
| // It is not valid to have a type-cast call expression inside a call |
| // statement. |
| if (IsCallStatement(expr)) { |
| AddError("type cast evaluated but not used", expr->source); |
| return nullptr; |
| } |
| |
| auto* call_target = utils::GetOrCreate( |
| type_conversions_, TypeConversionSig{target, source}, |
| [&]() -> sem::TypeConversion* { |
| // Now that the argument types have been determined, make sure that |
| // they obey the conversion rules laid out in |
| // https://gpuweb.github.io/gpuweb/wgsl/#conversion-expr. |
| bool ok = true; |
| if (auto* vec_type = target->As<sem::Vector>()) { |
| ok = ValidateVectorConstructorOrCast(expr, vec_type); |
| } else if (auto* mat_type = target->As<sem::Matrix>()) { |
| // Note: Matrix types currently cannot be converted (the element |
| // type must only be f32). We implement this for the day we support |
| // other matrix element types. |
| ok = ValidateMatrixConstructorOrCast(expr, mat_type); |
| } else if (target->is_scalar()) { |
| ok = ValidateScalarConstructorOrCast(expr, target); |
| } else if (auto* arr_type = target->As<sem::Array>()) { |
| ok = ValidateArrayConstructorOrCast(expr, arr_type); |
| } else if (auto* struct_type = target->As<sem::Struct>()) { |
| ok = ValidateStructureConstructorOrCast(expr, struct_type); |
| } else { |
| AddError("type is not constructible", expr->source); |
| return nullptr; |
| } |
| if (!ok) { |
| return nullptr; |
| } |
| |
| auto* param = builder_->create<sem::Parameter>( |
| nullptr, // declaration |
| 0, // index |
| source->UnwrapRef(), // type |
| ast::StorageClass::kNone, // storage_class |
| ast::Access::kUndefined); // access |
| return builder_->create<sem::TypeConversion>(target, param); |
| }); |
| |
| if (!call_target) { |
| return nullptr; |
| } |
| |
| auto val = EvaluateConstantValue(expr, target); |
| return builder_->create<sem::Call>(expr, call_target, |
| std::vector<const sem::Expression*>{arg}, |
| current_statement_, val); |
| } |
| |
| sem::Call* Resolver::TypeConstructor( |
| const ast::CallExpression* expr, |
| const sem::Type* ty, |
| const std::vector<const sem::Expression*> args, |
| const std::vector<const sem::Type*> arg_tys) { |
| // It is not valid to have a type-constructor call expression as a call |
| // statement. |
| if (IsCallStatement(expr)) { |
| AddError("type constructor evaluated but not used", expr->source); |
| return nullptr; |
| } |
| |
| auto* call_target = utils::GetOrCreate( |
| type_ctors_, TypeConstructorSig{ty, arg_tys}, |
| [&]() -> sem::TypeConstructor* { |
| // Now that the argument types have been determined, make sure that |
| // they obey the constructor type rules laid out in |
| // https://gpuweb.github.io/gpuweb/wgsl/#type-constructor-expr. |
| bool ok = true; |
| if (auto* vec_type = ty->As<sem::Vector>()) { |
| ok = ValidateVectorConstructorOrCast(expr, vec_type); |
| } else if (auto* mat_type = ty->As<sem::Matrix>()) { |
| ok = ValidateMatrixConstructorOrCast(expr, mat_type); |
| } else if (ty->is_scalar()) { |
| ok = ValidateScalarConstructorOrCast(expr, ty); |
| } else if (auto* arr_type = ty->As<sem::Array>()) { |
| ok = ValidateArrayConstructorOrCast(expr, arr_type); |
| } else if (auto* struct_type = ty->As<sem::Struct>()) { |
| ok = ValidateStructureConstructorOrCast(expr, struct_type); |
| } else { |
| AddError("type is not constructible", expr->source); |
| return nullptr; |
| } |
| if (!ok) { |
| return nullptr; |
| } |
| |
| return builder_->create<sem::TypeConstructor>( |
| ty, utils::Transform( |
| arg_tys, |
| [&](const sem::Type* t, size_t i) -> const sem::Parameter* { |
| return builder_->create<sem::Parameter>( |
| nullptr, // declaration |
| static_cast<uint32_t>(i), // index |
| t->UnwrapRef(), // type |
| ast::StorageClass::kNone, // storage_class |
| ast::Access::kUndefined); // access |
| })); |
| }); |
| |
| if (!call_target) { |
| return nullptr; |
| } |
| |
| auto val = EvaluateConstantValue(expr, ty); |
| return builder_->create<sem::Call>(expr, call_target, std::move(args), |
| current_statement_, val); |
| } |
| |
| sem::Expression* Resolver::Literal(const ast::LiteralExpression* literal) { |
| auto* ty = TypeOf(literal); |
| if (!ty) { |
| return nullptr; |
| } |
| |
| auto val = EvaluateConstantValue(literal, ty); |
| return builder_->create<sem::Expression>(literal, ty, current_statement_, |
| val); |
| } |
| |
| sem::Expression* Resolver::Identifier(const ast::IdentifierExpression* expr) { |
| auto symbol = expr->symbol; |
| auto* resolved = ResolvedSymbol(expr); |
| if (auto* var = As<sem::Variable>(resolved)) { |
| auto* user = |
| builder_->create<sem::VariableUser>(expr, current_statement_, var); |
| |
| if (current_statement_) { |
| // If identifier is part of a loop continuing block, make sure it |
| // doesn't refer to a variable that is bypassed by a continue statement |
| // in the loop's body block. |
| if (auto* continuing_block = |
| current_statement_ |
| ->FindFirstParent<sem::LoopContinuingBlockStatement>()) { |
| auto* loop_block = |
| continuing_block->FindFirstParent<sem::LoopBlockStatement>(); |
| if (loop_block->FirstContinue()) { |
| auto& decls = loop_block->Decls(); |
| // If our identifier is in loop_block->decls, make sure its index is |
| // less than first_continue |
| auto iter = |
| std::find_if(decls.begin(), decls.end(), |
| [&symbol](auto* v) { return v->symbol == symbol; }); |
| if (iter != decls.end()) { |
| auto var_decl_index = |
| static_cast<size_t>(std::distance(decls.begin(), iter)); |
| if (var_decl_index >= loop_block->NumDeclsAtFirstContinue()) { |
| AddError("continue statement bypasses declaration of '" + |
| builder_->Symbols().NameFor(symbol) + "'", |
| loop_block->FirstContinue()->source); |
| AddNote("identifier '" + builder_->Symbols().NameFor(symbol) + |
| "' declared here", |
| (*iter)->source); |
| AddNote("identifier '" + builder_->Symbols().NameFor(symbol) + |
| "' referenced in continuing block here", |
| expr->source); |
| return nullptr; |
| } |
| } |
| } |
| } |
| } |
| |
| if (current_function_) { |
| if (auto* global = var->As<sem::GlobalVariable>()) { |
| current_function_->AddDirectlyReferencedGlobal(global); |
| } |
| } |
| |
| var->AddUser(user); |
| return user; |
| } |
| |
| if (Is<sem::Function>(resolved)) { |
| AddError("missing '(' for function call", expr->source.End()); |
| return nullptr; |
| } |
| |
| if (IsIntrinsic(symbol)) { |
| AddError("missing '(' for intrinsic call", expr->source.End()); |
| return nullptr; |
| } |
| |
| if (resolved->Is<sem::Type>()) { |
| AddError("missing '(' for type constructor or cast", expr->source.End()); |
| return nullptr; |
| } |
| |
| TINT_ICE(Resolver, diagnostics_) |
| << expr->source << " unresolved identifier:\n" |
| << "resolved: " << (resolved ? resolved->TypeInfo().name : "<null>") |
| << "\n" |
| << "name: " << builder_->Symbols().NameFor(symbol); |
| return nullptr; |
| } |
| |
| sem::Expression* Resolver::MemberAccessor( |
| const ast::MemberAccessorExpression* expr) { |
| auto* structure = TypeOf(expr->structure); |
| auto* storage_ty = structure->UnwrapRef(); |
| |
| const sem::Type* ret = nullptr; |
| std::vector<uint32_t> swizzle; |
| |
| if (auto* str = storage_ty->As<sem::Struct>()) { |
| Mark(expr->member); |
| auto symbol = expr->member->symbol; |
| |
| const sem::StructMember* member = nullptr; |
| for (auto* m : str->Members()) { |
| if (m->Name() == symbol) { |
| ret = m->Type(); |
| member = m; |
| break; |
| } |
| } |
| |
| if (ret == nullptr) { |
| AddError( |
| "struct member " + builder_->Symbols().NameFor(symbol) + " not found", |
| expr->source); |
| return nullptr; |
| } |
| |
| // If we're extracting from a reference, we return a reference. |
| if (auto* ref = structure->As<sem::Reference>()) { |
| ret = builder_->create<sem::Reference>(ret, ref->StorageClass(), |
| ref->Access()); |
| } |
| |
| return builder_->create<sem::StructMemberAccess>( |
| expr, ret, current_statement_, member); |
| } |
| |
| if (auto* vec = storage_ty->As<sem::Vector>()) { |
| Mark(expr->member); |
| std::string s = builder_->Symbols().NameFor(expr->member->symbol); |
| auto size = s.size(); |
| swizzle.reserve(s.size()); |
| |
| for (auto c : s) { |
| switch (c) { |
| case 'x': |
| case 'r': |
| swizzle.emplace_back(0); |
| break; |
| case 'y': |
| case 'g': |
| swizzle.emplace_back(1); |
| break; |
| case 'z': |
| case 'b': |
| swizzle.emplace_back(2); |
| break; |
| case 'w': |
| case 'a': |
| swizzle.emplace_back(3); |
| break; |
| default: |
| AddError("invalid vector swizzle character", |
| expr->member->source.Begin() + swizzle.size()); |
| return nullptr; |
| } |
| |
| if (swizzle.back() >= vec->Width()) { |
| AddError("invalid vector swizzle member", expr->member->source); |
| return nullptr; |
| } |
| } |
| |
| if (size < 1 || size > 4) { |
| AddError("invalid vector swizzle size", expr->member->source); |
| return nullptr; |
| } |
| |
| // All characters are valid, check if they're being mixed |
| auto is_rgba = [](char c) { |
| return c == 'r' || c == 'g' || c == 'b' || c == 'a'; |
| }; |
| auto is_xyzw = [](char c) { |
| return c == 'x' || c == 'y' || c == 'z' || c == 'w'; |
| }; |
| if (!std::all_of(s.begin(), s.end(), is_rgba) && |
| !std::all_of(s.begin(), s.end(), is_xyzw)) { |
| AddError("invalid mixing of vector swizzle characters rgba with xyzw", |
| expr->member->source); |
| return nullptr; |
| } |
| |
| if (size == 1) { |
| // A single element swizzle is just the type of the vector. |
| ret = vec->type(); |
| // If we're extracting from a reference, we return a reference. |
| if (auto* ref = structure->As<sem::Reference>()) { |
| ret = builder_->create<sem::Reference>(ret, ref->StorageClass(), |
| ref->Access()); |
| } |
| } else { |
| // The vector will have a number of components equal to the length of |
| // the swizzle. |
| ret = builder_->create<sem::Vector>(vec->type(), |
| static_cast<uint32_t>(size)); |
| } |
| return builder_->create<sem::Swizzle>(expr, ret, current_statement_, |
| std::move(swizzle)); |
| } |
| |
| AddError( |
| "invalid member accessor expression. Expected vector or struct, got '" + |
| TypeNameOf(storage_ty) + "'", |
| expr->structure->source); |
| return nullptr; |
| } |
| |
| sem::Expression* Resolver::Binary(const ast::BinaryExpression* expr) { |
| using Bool = sem::Bool; |
| using F32 = sem::F32; |
| using I32 = sem::I32; |
| using U32 = sem::U32; |
| using Matrix = sem::Matrix; |
| using Vector = sem::Vector; |
| |
| auto* lhs = Sem(expr->lhs); |
| auto* rhs = Sem(expr->rhs); |
| |
| auto* lhs_ty = lhs->Type()->UnwrapRef(); |
| auto* rhs_ty = rhs->Type()->UnwrapRef(); |
| |
| auto* lhs_vec = lhs_ty->As<Vector>(); |
| auto* lhs_vec_elem_type = lhs_vec ? lhs_vec->type() : nullptr; |
| auto* rhs_vec = rhs_ty->As<Vector>(); |
| auto* rhs_vec_elem_type = rhs_vec ? rhs_vec->type() : nullptr; |
| |
| const bool matching_vec_elem_types = |
| lhs_vec_elem_type && rhs_vec_elem_type && |
| (lhs_vec_elem_type == rhs_vec_elem_type) && |
| (lhs_vec->Width() == rhs_vec->Width()); |
| |
| const bool matching_types = matching_vec_elem_types || (lhs_ty == rhs_ty); |
| |
| auto build = [&](const sem::Type* ty) { |
| auto val = EvaluateConstantValue(expr, ty); |
| auto* sem = |
| builder_->create<sem::Expression>(expr, ty, current_statement_, val); |
| sem->Behaviors() = lhs->Behaviors() + rhs->Behaviors(); |
| return sem; |
| }; |
| |
| // Binary logical expressions |
| if (expr->IsLogicalAnd() || expr->IsLogicalOr()) { |
| if (matching_types && lhs_ty->Is<Bool>()) { |
| return build(lhs_ty); |
| } |
| } |
| if (expr->IsOr() || expr->IsAnd()) { |
| if (matching_types && lhs_ty->Is<Bool>()) { |
| return build(lhs_ty); |
| } |
| if (matching_types && lhs_vec_elem_type && lhs_vec_elem_type->Is<Bool>()) { |
| return build(lhs_ty); |
| } |
| } |
| |
| // Arithmetic expressions |
| if (expr->IsArithmetic()) { |
| // Binary arithmetic expressions over scalars |
| if (matching_types && lhs_ty->is_numeric_scalar()) { |
| return build(lhs_ty); |
| } |
| |
| // Binary arithmetic expressions over vectors |
| if (matching_types && lhs_vec_elem_type && |
| lhs_vec_elem_type->is_numeric_scalar()) { |
| return build(lhs_ty); |
| } |
| |
| // Binary arithmetic expressions with mixed scalar and vector operands |
| if (lhs_vec_elem_type && (lhs_vec_elem_type == rhs_ty)) { |
| if (expr->IsModulo()) { |
| if (rhs_ty->is_integer_scalar()) { |
| return build(lhs_ty); |
| } |
| } else if (rhs_ty->is_numeric_scalar()) { |
| return build(lhs_ty); |
| } |
| } |
| if (rhs_vec_elem_type && (rhs_vec_elem_type == lhs_ty)) { |
| if (expr->IsModulo()) { |
| if (lhs_ty->is_integer_scalar()) { |
| return build(rhs_ty); |
| } |
| } else if (lhs_ty->is_numeric_scalar()) { |
| return build(rhs_ty); |
| } |
| } |
| } |
| |
| // Matrix arithmetic |
| auto* lhs_mat = lhs_ty->As<Matrix>(); |
| auto* lhs_mat_elem_type = lhs_mat ? lhs_mat->type() : nullptr; |
| auto* rhs_mat = rhs_ty->As<Matrix>(); |
| auto* rhs_mat_elem_type = rhs_mat ? rhs_mat->type() : nullptr; |
| // Addition and subtraction of float matrices |
| if ((expr->IsAdd() || expr->IsSubtract()) && lhs_mat_elem_type && |
| lhs_mat_elem_type->Is<F32>() && rhs_mat_elem_type && |
| rhs_mat_elem_type->Is<F32>() && |
| (lhs_mat->columns() == rhs_mat->columns()) && |
| (lhs_mat->rows() == rhs_mat->rows())) { |
| return build(rhs_ty); |
| } |
| if (expr->IsMultiply()) { |
| // Multiplication of a matrix and a scalar |
| if (lhs_ty->Is<F32>() && rhs_mat_elem_type && |
| rhs_mat_elem_type->Is<F32>()) { |
| return build(rhs_ty); |
| } |
| if (lhs_mat_elem_type && lhs_mat_elem_type->Is<F32>() && |
| rhs_ty->Is<F32>()) { |
| return build(lhs_ty); |
| } |
| |
| // Vector times matrix |
| if (lhs_vec_elem_type && lhs_vec_elem_type->Is<F32>() && |
| rhs_mat_elem_type && rhs_mat_elem_type->Is<F32>() && |
| (lhs_vec->Width() == rhs_mat->rows())) { |
| return build( |
| builder_->create<sem::Vector>(lhs_vec->type(), rhs_mat->columns())); |
| } |
| |
| // Matrix times vector |
| if (lhs_mat_elem_type && lhs_mat_elem_type->Is<F32>() && |
| rhs_vec_elem_type && rhs_vec_elem_type->Is<F32>() && |
| (lhs_mat->columns() == rhs_vec->Width())) { |
| return build( |
| builder_->create<sem::Vector>(rhs_vec->type(), lhs_mat->rows())); |
| } |
| |
| // Matrix times matrix |
| if (lhs_mat_elem_type && lhs_mat_elem_type->Is<F32>() && |
| rhs_mat_elem_type && rhs_mat_elem_type->Is<F32>() && |
| (lhs_mat->columns() == rhs_mat->rows())) { |
| return build(builder_->create<sem::Matrix>( |
| builder_->create<sem::Vector>(lhs_mat_elem_type, lhs_mat->rows()), |
| rhs_mat->columns())); |
| } |
| } |
| |
| // Comparison expressions |
| if (expr->IsComparison()) { |
| if (matching_types) { |
| // Special case for bools: only == and != |
| if (lhs_ty->Is<Bool>() && (expr->IsEqual() || expr->IsNotEqual())) { |
| return build(builder_->create<sem::Bool>()); |
| } |
| |
| // For the rest, we can compare i32, u32, and f32 |
| if (lhs_ty->IsAnyOf<I32, U32, F32>()) { |
| return build(builder_->create<sem::Bool>()); |
| } |
| } |
| |
| // Same for vectors |
| if (matching_vec_elem_types) { |
| if (lhs_vec_elem_type->Is<Bool>() && |
| (expr->IsEqual() || expr->IsNotEqual())) { |
| return build(builder_->create<sem::Vector>( |
| builder_->create<sem::Bool>(), lhs_vec->Width())); |
| } |
| |
| if (lhs_vec_elem_type->is_numeric_scalar()) { |
| return build(builder_->create<sem::Vector>( |
| builder_->create<sem::Bool>(), lhs_vec->Width())); |
| } |
| } |
| } |
| |
| // Binary bitwise operations |
| if (expr->IsBitwise()) { |
| if (matching_types && lhs_ty->is_integer_scalar_or_vector()) { |
| return build(lhs_ty); |
| } |
| } |
| |
| // Bit shift expressions |
| if (expr->IsBitshift()) { |
| // Type validation rules are the same for left or right shift, despite |
| // differences in computation rules (i.e. right shift can be arithmetic or |
| // logical depending on lhs type). |
| |
| if (lhs_ty->IsAnyOf<I32, U32>() && rhs_ty->Is<U32>()) { |
| return build(lhs_ty); |
| } |
| |
| if (lhs_vec_elem_type && lhs_vec_elem_type->IsAnyOf<I32, U32>() && |
| rhs_vec_elem_type && rhs_vec_elem_type->Is<U32>()) { |
| return build(lhs_ty); |
| } |
| } |
| |
| AddError("Binary expression operand types are invalid for this operation: " + |
| TypeNameOf(lhs_ty) + " " + FriendlyName(expr->op) + " " + |
| TypeNameOf(rhs_ty), |
| expr->source); |
| return nullptr; |
| } |
| |
| sem::Expression* Resolver::UnaryOp(const ast::UnaryOpExpression* unary) { |
| auto* expr = Sem(unary->expr); |
| auto* expr_ty = expr->Type(); |
| if (!expr_ty) { |
| return nullptr; |
| } |
| |
| const sem::Type* ty = nullptr; |
| |
| switch (unary->op) { |
| case ast::UnaryOp::kNot: |
| // Result type matches the deref'd inner type. |
| ty = expr_ty->UnwrapRef(); |
| if (!ty->Is<sem::Bool>() && !ty->is_bool_vector()) { |
| AddError( |
| "cannot logical negate expression of type '" + TypeNameOf(expr_ty), |
| unary->expr->source); |
| return nullptr; |
| } |
| break; |
| |
| case ast::UnaryOp::kComplement: |
| // Result type matches the deref'd inner type. |
| ty = expr_ty->UnwrapRef(); |
| if (!ty->is_integer_scalar_or_vector()) { |
| AddError("cannot bitwise complement expression of type '" + |
| TypeNameOf(expr_ty), |
| unary->expr->source); |
| return nullptr; |
| } |
| break; |
| |
| case ast::UnaryOp::kNegation: |
| // Result type matches the deref'd inner type. |
| ty = expr_ty->UnwrapRef(); |
| if (!(ty->IsAnyOf<sem::F32, sem::I32>() || |
| ty->is_signed_integer_vector() || ty->is_float_vector())) { |
| AddError("cannot negate expression of type '" + TypeNameOf(expr_ty), |
| unary->expr->source); |
| return nullptr; |
| } |
| break; |
| |
| case ast::UnaryOp::kAddressOf: |
| if (auto* ref = expr_ty->As<sem::Reference>()) { |
| if (ref->StoreType()->UnwrapRef()->is_handle()) { |
| AddError( |
| "cannot take the address of expression in handle storage class", |
| unary->expr->source); |
| return nullptr; |
| } |
| |
| auto* array = unary->expr->As<ast::IndexAccessorExpression>(); |
| auto* member = unary->expr->As<ast::MemberAccessorExpression>(); |
| if ((array && TypeOf(array->object)->UnwrapRef()->Is<sem::Vector>()) || |
| (member && |
| TypeOf(member->structure)->UnwrapRef()->Is<sem::Vector>())) { |
| AddError("cannot take the address of a vector component", |
| unary->expr->source); |
| return nullptr; |
| } |
| |
| ty = builder_->create<sem::Pointer>(ref->StoreType(), |
| ref->StorageClass(), ref->Access()); |
| } else { |
| AddError("cannot take the address of expression", unary->expr->source); |
| return nullptr; |
| } |
| break; |
| |
| case ast::UnaryOp::kIndirection: |
| if (auto* ptr = expr_ty->As<sem::Pointer>()) { |
| ty = builder_->create<sem::Reference>( |
| ptr->StoreType(), ptr->StorageClass(), ptr->Access()); |
| } else { |
| AddError("cannot dereference expression of type '" + |
| TypeNameOf(expr_ty) + "'", |
| unary->expr->source); |
| return nullptr; |
| } |
| break; |
| } |
| |
| auto val = EvaluateConstantValue(unary, ty); |
| auto* sem = |
| builder_->create<sem::Expression>(unary, ty, current_statement_, val); |
| sem->Behaviors() = expr->Behaviors(); |
| return sem; |
| } |
| |
| sem::Type* Resolver::TypeDecl(const ast::TypeDecl* named_type) { |
| sem::Type* result = nullptr; |
| if (auto* alias = named_type->As<ast::Alias>()) { |
| result = Alias(alias); |
| } else if (auto* str = named_type->As<ast::Struct>()) { |
| result = Structure(str); |
| } else { |
| TINT_UNREACHABLE(Resolver, diagnostics_) << "Unhandled TypeDecl"; |
| } |
| |
| if (!result) { |
| return nullptr; |
| } |
| |
| builder_->Sem().Add(named_type, result); |
| return result; |
| } |
| |
| sem::Type* Resolver::TypeOf(const ast::Expression* expr) { |
| auto* sem = Sem(expr); |
| return sem ? const_cast<sem::Type*>(sem->Type()) : nullptr; |
| } |
| |
| std::string Resolver::TypeNameOf(const sem::Type* ty) { |
| return RawTypeNameOf(ty->UnwrapRef()); |
| } |
| |
| std::string Resolver::RawTypeNameOf(const sem::Type* ty) { |
| return ty->FriendlyName(builder_->Symbols()); |
| } |
| |
| sem::Type* Resolver::TypeOf(const ast::LiteralExpression* lit) { |
| if (lit->Is<ast::SintLiteralExpression>()) { |
| return builder_->create<sem::I32>(); |
| } |
| if (lit->Is<ast::UintLiteralExpression>()) { |
| return builder_->create<sem::U32>(); |
| } |
| if (lit->Is<ast::FloatLiteralExpression>()) { |
| return builder_->create<sem::F32>(); |
| } |
| if (lit->Is<ast::BoolLiteralExpression>()) { |
| return builder_->create<sem::Bool>(); |
| } |
| TINT_UNREACHABLE(Resolver, diagnostics_) |
| << "Unhandled literal type: " << lit->TypeInfo().name; |
| return nullptr; |
| } |
| |
| sem::Array* Resolver::Array(const ast::Array* arr) { |
| auto source = arr->source; |
| |
| auto* elem_type = Type(arr->type); |
| if (!elem_type) { |
| return nullptr; |
| } |
| |
| if (!IsPlain(elem_type)) { // Check must come before GetDefaultAlignAndSize() |
| AddError(TypeNameOf(elem_type) + |
| " cannot be used as an element type of an array", |
| source); |
| return nullptr; |
| } |
| |
| uint32_t el_align = elem_type->Align(); |
| uint32_t el_size = elem_type->Size(); |
| |
| if (!ValidateNoDuplicateDecorations(arr->decorations)) { |
| return nullptr; |
| } |
| |
| // Look for explicit stride via @stride(n) decoration |
| uint32_t explicit_stride = 0; |
| for (auto* deco : arr->decorations) { |
| Mark(deco); |
| if (auto* sd = deco->As<ast::StrideDecoration>()) { |
| explicit_stride = sd->stride; |
| if (!ValidateArrayStrideDecoration(sd, el_size, el_align, source)) { |
| return nullptr; |
| } |
| continue; |
| } |
| |
| AddError("decoration is not valid for array types", deco->source); |
| return nullptr; |
| } |
| |
| // Calculate implicit stride |
| uint64_t implicit_stride = utils::RoundUp<uint64_t>(el_align, el_size); |
| |
| uint64_t stride = explicit_stride ? explicit_stride : implicit_stride; |
| |
| // Evaluate the constant array size expression. |
| // sem::Array uses a size of 0 for a runtime-sized array. |
| uint32_t count = 0; |
| if (auto* count_expr = arr->count) { |
| auto* count_sem = Expression(count_expr); |
| if (!count_sem) { |
| return nullptr; |
| } |
| |
| auto size_source = count_expr->source; |
| |
| auto* ty = count_sem->Type()->UnwrapRef(); |
| if (!ty->is_integer_scalar()) { |
| AddError("array size must be integer scalar", size_source); |
| return nullptr; |
| } |
| |
| if (auto* ident = count_expr->As<ast::IdentifierExpression>()) { |
| // Make sure the identifier is a non-overridable module-scope constant. |
| auto* var = ResolvedSymbol<sem::Variable>(ident); |
| if (!var || !var->Is<sem::GlobalVariable>() || |
| !var->Declaration()->is_const) { |
| AddError("array size identifier must be a module-scope constant", |
| size_source); |
| return nullptr; |
| } |
| if (ast::HasDecoration<ast::OverrideDecoration>( |
| var->Declaration()->decorations)) { |
| AddError("array size expression must not be pipeline-overridable", |
| size_source); |
| return nullptr; |
| } |
| |
| count_expr = var->Declaration()->constructor; |
| } else if (!count_expr->Is<ast::LiteralExpression>()) { |
| AddError( |
| "array size expression must be either a literal or a module-scope " |
| "constant", |
| size_source); |
| return nullptr; |
| } |
| |
| auto count_val = count_sem->ConstantValue(); |
| if (!count_val) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "could not resolve array size expression"; |
| return nullptr; |
| } |
| |
| if (ty->is_signed_integer_scalar() ? count_val.Elements()[0].i32 < 1 |
| : count_val.Elements()[0].u32 < 1u) { |
| AddError("array size must be at least 1", size_source); |
| return nullptr; |
| } |
| |
| count = count_val.Elements()[0].u32; |
| } |
| |
| auto size = std::max<uint64_t>(count, 1) * stride; |
| if (size > std::numeric_limits<uint32_t>::max()) { |
| std::stringstream msg; |
| msg << "array size in bytes must not exceed 0x" << std::hex |
| << std::numeric_limits<uint32_t>::max() << ", but is 0x" << std::hex |
| << size; |
| AddError(msg.str(), arr->source); |
| return nullptr; |
| } |
| if (stride > std::numeric_limits<uint32_t>::max() || |
| implicit_stride > std::numeric_limits<uint32_t>::max()) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "calculated array stride exceeds uint32"; |
| return nullptr; |
| } |
| auto* out = builder_->create<sem::Array>( |
| elem_type, count, el_align, static_cast<uint32_t>(size), |
| static_cast<uint32_t>(stride), static_cast<uint32_t>(implicit_stride)); |
| |
| if (!ValidateArray(out, source)) { |
| return nullptr; |
| } |
| |
| if (elem_type->Is<sem::Atomic>()) { |
| atomic_composite_info_.emplace(out, arr->type->source); |
| } else { |
| auto found = atomic_composite_info_.find(elem_type); |
| if (found != atomic_composite_info_.end()) { |
| atomic_composite_info_.emplace(out, found->second); |
| } |
| } |
| |
| return out; |
| } |
| |
| sem::Type* Resolver::Alias(const ast::Alias* alias) { |
| auto* ty = Type(alias->type); |
| if (!ty) { |
| return nullptr; |
| } |
| if (!ValidateAlias(alias)) { |
| return nullptr; |
| } |
| return ty; |
| } |
| |
| sem::Struct* Resolver::Structure(const ast::Struct* str) { |
| if (!ValidateNoDuplicateDecorations(str->decorations)) { |
| return nullptr; |
| } |
| for (auto* deco : str->decorations) { |
| Mark(deco); |
| } |
| |
| sem::StructMemberList sem_members; |
| sem_members.reserve(str->members.size()); |
| |
| // Calculate the effective size and alignment of each field, and the overall |
| // size of the structure. |
| // For size, use the size attribute if provided, otherwise use the default |
| // size for the type. |
| // For alignment, use the alignment attribute if provided, otherwise use the |
| // default alignment for the member type. |
| // Diagnostic errors are raised if a basic rule is violated. |
| // Validation of storage-class rules requires analysing the actual variable |
| // usage of the structure, and so is performed as part of the variable |
| // validation. |
| uint64_t struct_size = 0; |
| uint64_t struct_align = 1; |
| std::unordered_map<Symbol, const ast::StructMember*> member_map; |
| |
| for (auto* member : str->members) { |
| Mark(member); |
| auto result = member_map.emplace(member->symbol, member); |
| if (!result.second) { |
| AddError("redefinition of '" + |
| builder_->Symbols().NameFor(member->symbol) + "'", |
| member->source); |
| AddNote("previous definition is here", result.first->second->source); |
| return nullptr; |
| } |
| |
| // Resolve member type |
| auto* type = Type(member->type); |
| if (!type) { |
| return nullptr; |
| } |
| |
| // Validate member type |
| if (!IsPlain(type)) { |
| AddError(TypeNameOf(type) + |
| " cannot be used as the type of a structure member", |
| member->source); |
| return nullptr; |
| } |
| |
| uint64_t offset = struct_size; |
| uint64_t align = type->Align(); |
| uint64_t size = type->Size(); |
| |
| if (!ValidateNoDuplicateDecorations(member->decorations)) { |
| return nullptr; |
| } |
| |
| bool has_offset_deco = false; |
| bool has_align_deco = false; |
| bool has_size_deco = false; |
| for (auto* deco : member->decorations) { |
| Mark(deco); |
| if (auto* o = deco->As<ast::StructMemberOffsetDecoration>()) { |
| // Offset decorations are not part of the WGSL spec, but are emitted |
| // by the SPIR-V reader. |
| if (o->offset < struct_size) { |
| AddError("offsets must be in ascending order", o->source); |
| return nullptr; |
| } |
| offset = o->offset; |
| align = 1; |
| has_offset_deco = true; |
| } else if (auto* a = deco->As<ast::StructMemberAlignDecoration>()) { |
| if (a->align <= 0 || !utils::IsPowerOfTwo(a->align)) { |
| AddError("align value must be a positive, power-of-two integer", |
| a->source); |
| return nullptr; |
| } |
| align = a->align; |
| has_align_deco = true; |
| } else if (auto* s = deco->As<ast::StructMemberSizeDecoration>()) { |
| if (s->size < size) { |
| AddError("size must be at least as big as the type's size (" + |
| std::to_string(size) + ")", |
| s->source); |
| return nullptr; |
| } |
| size = s->size; |
| has_size_deco = true; |
| } |
| } |
| |
| if (has_offset_deco && (has_align_deco || has_size_deco)) { |
| AddError( |
| "offset decorations cannot be used with align or size decorations", |
| member->source); |
| return nullptr; |
| } |
| |
| offset = utils::RoundUp(align, offset); |
| if (offset > std::numeric_limits<uint32_t>::max()) { |
| std::stringstream msg; |
| msg << "struct member has byte offset 0x" << std::hex << offset |
| << ", but must not exceed 0x" << std::hex |
| << std::numeric_limits<uint32_t>::max(); |
| AddError(msg.str(), member->source); |
| return nullptr; |
| } |
| |
| auto* sem_member = builder_->create<sem::StructMember>( |
| member, member->symbol, type, static_cast<uint32_t>(sem_members.size()), |
| static_cast<uint32_t>(offset), static_cast<uint32_t>(align), |
| static_cast<uint32_t>(size)); |
| builder_->Sem().Add(member, sem_member); |
| sem_members.emplace_back(sem_member); |
| |
| struct_size = offset + size; |
| struct_align = std::max(struct_align, align); |
| } |
| |
| uint64_t size_no_padding = struct_size; |
| struct_size = utils::RoundUp(struct_align, struct_size); |
| |
| if (struct_size > std::numeric_limits<uint32_t>::max()) { |
| std::stringstream msg; |
| msg << "struct size in bytes must not exceed 0x" << std::hex |
| << std::numeric_limits<uint32_t>::max() << ", but is 0x" << std::hex |
| << struct_size; |
| AddError(msg.str(), str->source); |
| return nullptr; |
| } |
| if (struct_align > std::numeric_limits<uint32_t>::max()) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "calculated struct stride exceeds uint32"; |
| return nullptr; |
| } |
| |
| auto* out = builder_->create<sem::Struct>( |
| str, str->name, sem_members, static_cast<uint32_t>(struct_align), |
| static_cast<uint32_t>(struct_size), |
| static_cast<uint32_t>(size_no_padding)); |
| |
| for (size_t i = 0; i < sem_members.size(); i++) { |
| auto* mem_type = sem_members[i]->Type(); |
| if (mem_type->Is<sem::Atomic>()) { |
| atomic_composite_info_.emplace(out, |
| sem_members[i]->Declaration()->source); |
| break; |
| } else { |
| auto found = atomic_composite_info_.find(mem_type); |
| if (found != atomic_composite_info_.end()) { |
| atomic_composite_info_.emplace(out, found->second); |
| break; |
| } |
| } |
| } |
| |
| if (!ValidateStructure(out)) { |
| return nullptr; |
| } |
| |
| return out; |
| } |
| |
| sem::Statement* Resolver::ReturnStatement(const ast::ReturnStatement* stmt) { |
| auto* sem = builder_->create<sem::Statement>( |
| stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| auto& behaviors = current_statement_->Behaviors(); |
| behaviors = sem::Behavior::kReturn; |
| |
| if (auto* value = stmt->value) { |
| auto* expr = Expression(value); |
| if (!expr) { |
| return false; |
| } |
| behaviors.Add(expr->Behaviors() - sem::Behavior::kNext); |
| } |
| |
| // Validate after processing the return value expression so that its type |
| // is available for validation. |
| return ValidateReturn(stmt); |
| }); |
| } |
| |
| sem::SwitchStatement* Resolver::SwitchStatement( |
| const ast::SwitchStatement* stmt) { |
| auto* sem = builder_->create<sem::SwitchStatement>( |
| stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| auto& behaviors = sem->Behaviors(); |
| |
| auto* cond = Expression(stmt->condition); |
| if (!cond) { |
| return false; |
| } |
| behaviors = cond->Behaviors() - sem::Behavior::kNext; |
| |
| for (auto* case_stmt : stmt->body) { |
| Mark(case_stmt); |
| auto* c = CaseStatement(case_stmt); |
| if (!c) { |
| return false; |
| } |
| behaviors.Add(c->Behaviors()); |
| } |
| |
| if (behaviors.Contains(sem::Behavior::kBreak)) { |
| behaviors.Add(sem::Behavior::kNext); |
| } |
| behaviors.Remove(sem::Behavior::kBreak, sem::Behavior::kFallthrough); |
| |
| return ValidateSwitch(stmt); |
| }); |
| } |
| |
| sem::Statement* Resolver::VariableDeclStatement( |
| const ast::VariableDeclStatement* stmt) { |
| auto* sem = builder_->create<sem::Statement>( |
| stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| Mark(stmt->variable); |
| |
| auto* var = Variable(stmt->variable, VariableKind::kLocal); |
| if (!var) { |
| return false; |
| } |
| |
| for (auto* deco : stmt->variable->decorations) { |
| Mark(deco); |
| if (!deco->Is<ast::InternalDecoration>()) { |
| AddError("decorations are not valid on local variables", deco->source); |
| return false; |
| } |
| } |
| |
| if (current_block_) { // Not all statements are inside a block |
| current_block_->AddDecl(stmt->variable); |
| } |
| |
| if (auto* ctor = var->Constructor()) { |
| sem->Behaviors() = ctor->Behaviors(); |
| } |
| |
| return ValidateVariable(var); |
| }); |
| } |
| |
| sem::Statement* Resolver::AssignmentStatement( |
| const ast::AssignmentStatement* stmt) { |
| auto* sem = builder_->create<sem::Statement>( |
| stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| auto* lhs = Expression(stmt->lhs); |
| if (!lhs) { |
| return false; |
| } |
| |
| auto* rhs = Expression(stmt->rhs); |
| if (!rhs) { |
| return false; |
| } |
| |
| auto& behaviors = sem->Behaviors(); |
| behaviors = rhs->Behaviors(); |
| if (!stmt->lhs->Is<ast::PhonyExpression>()) { |
| behaviors.Add(lhs->Behaviors()); |
| } |
| |
| return ValidateAssignment(stmt); |
| }); |
| } |
| |
| sem::Statement* Resolver::BreakStatement(const ast::BreakStatement* stmt) { |
| auto* sem = builder_->create<sem::Statement>( |
| stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| sem->Behaviors() = sem::Behavior::kBreak; |
| |
| return ValidateBreakStatement(sem); |
| }); |
| } |
| |
| sem::Statement* Resolver::CallStatement(const ast::CallStatement* stmt) { |
| auto* sem = builder_->create<sem::Statement>( |
| stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| if (auto* expr = Expression(stmt->expr)) { |
| sem->Behaviors() = expr->Behaviors(); |
| return true; |
| } |
| return false; |
| }); |
| } |
| |
| sem::Statement* Resolver::ContinueStatement( |
| const ast::ContinueStatement* stmt) { |
| auto* sem = builder_->create<sem::Statement>( |
| stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| sem->Behaviors() = sem::Behavior::kContinue; |
| |
| // Set if we've hit the first continue statement in our parent loop |
| if (auto* block = sem->FindFirstParent<sem::LoopBlockStatement>()) { |
| if (!block->FirstContinue()) { |
| const_cast<sem::LoopBlockStatement*>(block)->SetFirstContinue( |
| stmt, block->Decls().size()); |
| } |
| } |
| |
| return ValidateContinueStatement(sem); |
| }); |
| } |
| |
| sem::Statement* Resolver::DiscardStatement(const ast::DiscardStatement* stmt) { |
| auto* sem = builder_->create<sem::Statement>( |
| stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| sem->Behaviors() = sem::Behavior::kDiscard; |
| current_function_->SetHasDiscard(); |
| |
| return ValidateDiscardStatement(sem); |
| }); |
| } |
| |
| sem::Statement* Resolver::FallthroughStatement( |
| const ast::FallthroughStatement* stmt) { |
| auto* sem = builder_->create<sem::Statement>( |
| stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| sem->Behaviors() = sem::Behavior::kFallthrough; |
| |
| return ValidateFallthroughStatement(sem); |
| }); |
| } |
| |
| bool Resolver::ApplyStorageClassUsageToType(ast::StorageClass sc, |
| sem::Type* ty, |
| const Source& usage) { |
| ty = const_cast<sem::Type*>(ty->UnwrapRef()); |
| |
| if (auto* str = ty->As<sem::Struct>()) { |
| if (str->StorageClassUsage().count(sc)) { |
| return true; // Already applied |
| } |
| |
| str->AddUsage(sc); |
| |
| for (auto* member : str->Members()) { |
| if (!ApplyStorageClassUsageToType(sc, member->Type(), usage)) { |
| std::stringstream err; |
| err << "while analysing structure member " << TypeNameOf(str) << "." |
| << builder_->Symbols().NameFor(member->Declaration()->symbol); |
| AddNote(err.str(), member->Declaration()->source); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| if (auto* arr = ty->As<sem::Array>()) { |
| if (arr->IsRuntimeSized() && sc != ast::StorageClass::kStorage) { |
| AddError( |
| "runtime-sized arrays can only be used in the <storage> storage " |
| "class", |
| usage); |
| return false; |
| } |
| |
| return ApplyStorageClassUsageToType( |
| sc, const_cast<sem::Type*>(arr->ElemType()), usage); |
| } |
| |
| if (ast::IsHostShareable(sc) && !IsHostShareable(ty)) { |
| std::stringstream err; |
| err << "Type '" << TypeNameOf(ty) << "' cannot be used in storage class '" |
| << sc << "' as it is non-host-shareable"; |
| AddError(err.str(), usage); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| template <typename SEM, typename F> |
| SEM* Resolver::StatementScope(const ast::Statement* ast, |
| SEM* sem, |
| F&& callback) { |
| builder_->Sem().Add(ast, sem); |
| |
| auto* as_compound = |
| As<sem::CompoundStatement, CastFlags::kDontErrorOnImpossibleCast>(sem); |
| auto* as_block = |
| As<sem::BlockStatement, CastFlags::kDontErrorOnImpossibleCast>(sem); |
| |
| TINT_SCOPED_ASSIGNMENT(current_statement_, sem); |
| TINT_SCOPED_ASSIGNMENT( |
| current_compound_statement_, |
| as_compound ? as_compound : current_compound_statement_); |
| TINT_SCOPED_ASSIGNMENT(current_block_, as_block ? as_block : current_block_); |
| |
| if (!callback()) { |
| return nullptr; |
| } |
| |
| return sem; |
| } |
| |
| std::string Resolver::VectorPretty(uint32_t size, |
| const sem::Type* element_type) { |
| sem::Vector vec_type(element_type, size); |
| return vec_type.FriendlyName(builder_->Symbols()); |
| } |
| |
| bool Resolver::Mark(const ast::Node* node) { |
| if (node == nullptr) { |
| TINT_ICE(Resolver, diagnostics_) << "Resolver::Mark() called with nullptr"; |
| return false; |
| } |
| if (marked_.emplace(node).second) { |
| return true; |
| } |
| TINT_ICE(Resolver, diagnostics_) |
| << "AST node '" << node->TypeInfo().name |
| << "' was encountered twice in the same AST of a Program\n" |
| << "At: " << node->source << "\n" |
| << "Pointer: " << node; |
| return false; |
| } |
| |
| void Resolver::AddError(const std::string& msg, const Source& source) const { |
| diagnostics_.add_error(diag::System::Resolver, msg, source); |
| } |
| |
| void Resolver::AddWarning(const std::string& msg, const Source& source) const { |
| diagnostics_.add_warning(diag::System::Resolver, msg, source); |
| } |
| |
| void Resolver::AddNote(const std::string& msg, const Source& source) const { |
| diagnostics_.add_note(diag::System::Resolver, msg, source); |
| } |
| |
| // https://gpuweb.github.io/gpuweb/wgsl/#plain-types-section |
| bool Resolver::IsPlain(const sem::Type* type) const { |
| return type->is_scalar() || |
| type->IsAnyOf<sem::Atomic, sem::Vector, sem::Matrix, sem::Array, |
| sem::Struct>(); |
| } |
| |
| // https://gpuweb.github.io/gpuweb/wgsl/#fixed-footprint-types |
| bool Resolver::IsFixedFootprint(const sem::Type* type) const { |
| if (type->is_scalar()) { |
| return true; |
| } |
| if (type->Is<sem::Vector>()) { |
| return true; |
| } |
| if (type->Is<sem::Matrix>()) { |
| return true; |
| } |
| if (type->Is<sem::Atomic>()) { |
| return true; |
| } |
| if (auto* arr = type->As<sem::Array>()) { |
| return !arr->IsRuntimeSized() && IsFixedFootprint(arr->ElemType()); |
| } |
| if (auto* str = type->As<sem::Struct>()) { |
| for (auto* member : str->Members()) { |
| if (!IsFixedFootprint(member->Type())) { |
| return false; |
| } |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| // https://gpuweb.github.io/gpuweb/wgsl.html#storable-types |
| bool Resolver::IsStorable(const sem::Type* type) const { |
| return IsPlain(type) || type->IsAnyOf<sem::Texture, sem::Sampler>(); |
| } |
| |
| // https://gpuweb.github.io/gpuweb/wgsl.html#host-shareable-types |
| bool Resolver::IsHostShareable(const sem::Type* type) const { |
| if (type->IsAnyOf<sem::I32, sem::U32, sem::F32>()) { |
| return true; |
| } |
| if (auto* vec = type->As<sem::Vector>()) { |
| return IsHostShareable(vec->type()); |
| } |
| if (auto* mat = type->As<sem::Matrix>()) { |
| return IsHostShareable(mat->type()); |
| } |
| if (auto* arr = type->As<sem::Array>()) { |
| return IsHostShareable(arr->ElemType()); |
| } |
| if (auto* str = type->As<sem::Struct>()) { |
| for (auto* member : str->Members()) { |
| if (!IsHostShareable(member->Type())) { |
| return false; |
| } |
| } |
| return true; |
| } |
| if (auto* atomic = type->As<sem::Atomic>()) { |
| return IsHostShareable(atomic->Type()); |
| } |
| return false; |
| } |
| |
| bool Resolver::IsIntrinsic(Symbol symbol) const { |
| std::string name = builder_->Symbols().NameFor(symbol); |
| return sem::ParseIntrinsicType(name) != sem::IntrinsicType::kNone; |
| } |
| |
| bool Resolver::IsCallStatement(const ast::Expression* expr) const { |
| return current_statement_ && |
| Is<ast::CallStatement>(current_statement_->Declaration(), |
| [&](auto* stmt) { return stmt->expr == expr; }); |
| } |
| |
| const ast::Statement* Resolver::ClosestContinuing(bool stop_at_loop) const { |
| for (const auto* s = current_statement_; s != nullptr; s = s->Parent()) { |
| if (stop_at_loop && s->Is<sem::LoopStatement>()) { |
| break; |
| } |
| if (s->Is<sem::LoopContinuingBlockStatement>()) { |
| return s->Declaration(); |
| } |
| if (auto* f = As<sem::ForLoopStatement>(s->Parent())) { |
| if (f->Declaration()->continuing == s->Declaration()) { |
| return s->Declaration(); |
| } |
| if (stop_at_loop) { |
| break; |
| } |
| } |
| } |
| return nullptr; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Resolver::TypeConversionSig |
| //////////////////////////////////////////////////////////////////////////////// |
| bool Resolver::TypeConversionSig::operator==( |
| const TypeConversionSig& rhs) const { |
| return target == rhs.target && source == rhs.source; |
| } |
| std::size_t Resolver::TypeConversionSig::Hasher::operator()( |
| const TypeConversionSig& sig) const { |
| return utils::Hash(sig.target, sig.source); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Resolver::TypeConstructorSig |
| //////////////////////////////////////////////////////////////////////////////// |
| Resolver::TypeConstructorSig::TypeConstructorSig( |
| const sem::Type* ty, |
| const std::vector<const sem::Type*> params) |
| : type(ty), parameters(params) {} |
| Resolver::TypeConstructorSig::TypeConstructorSig(const TypeConstructorSig&) = |
| default; |
| Resolver::TypeConstructorSig::~TypeConstructorSig() = default; |
| |
| bool Resolver::TypeConstructorSig::operator==( |
| const TypeConstructorSig& rhs) const { |
| return type == rhs.type && parameters == rhs.parameters; |
| } |
| std::size_t Resolver::TypeConstructorSig::Hasher::operator()( |
| const TypeConstructorSig& sig) const { |
| return utils::Hash(sig.type, sig.parameters); |
| } |
| |
| } // namespace resolver |
| } // namespace tint |