blob: 520e8458a449050be68a65a1d24465ff796197c1 [file] [log] [blame]
// Copyright 2021 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/transform/promote_side_effects_to_decl.h"
#include <string>
#include <unordered_map>
#include <utility>
#include "src/program_builder.h"
#include "src/sem/block_statement.h"
#include "src/sem/call.h"
#include "src/sem/expression.h"
#include "src/sem/for_loop_statement.h"
#include "src/sem/if_statement.h"
#include "src/sem/statement.h"
#include "src/sem/type_constructor.h"
#include "src/utils/reverse.h"
TINT_INSTANTIATE_TYPEINFO(tint::transform::PromoteSideEffectsToDecl);
TINT_INSTANTIATE_TYPEINFO(tint::transform::PromoteSideEffectsToDecl::Config);
namespace tint {
namespace transform {
/// Private implementation of PromoteSideEffectsToDecl transform
class PromoteSideEffectsToDecl::State {
private:
CloneContext& ctx;
const Config& cfg;
ProgramBuilder& b;
/// Holds information about a for-loop that needs to be decomposed into a
/// loop, so that declaration statements can be inserted before the condition
/// expression or continuing statement.
struct LoopInfo {
ast::StatementList cond_decls;
ast::StatementList cont_decls;
};
/// Holds information about 'if's with 'else-if' statements that need to be
/// decomposed into 'if {else}' so that declaration statements can be inserted
/// before the condition expression.
struct IfInfo {
/// Info for each else-if that needs decomposing
struct ElseIfInfo {
/// Decls to insert before condition
ast::StatementList cond_decls;
};
/// 'else if's that need to be decomposed to 'else { if }'
std::unordered_map<const sem::ElseStatement*, ElseIfInfo> else_ifs;
};
// For-loops that need to be decomposed to loops.
std::unordered_map<const sem::ForLoopStatement*, LoopInfo> loops;
/// If statements with 'else if's that need to be decomposed to 'else { if }'
std::unordered_map<const sem::IfStatement*, IfInfo> ifs;
// Inserts `decl` before `sem_expr`, possibly marking a for-loop to be
// converted to a loop, or an else-if to an else { if }..
bool InsertBefore(const sem::Expression* sem_expr,
const ast::VariableDeclStatement* decl) {
auto* sem_stmt = sem_expr->Stmt();
auto* stmt = sem_stmt->Declaration();
if (auto* else_if = sem_stmt->As<sem::ElseStatement>()) {
// Expression used in 'else if' condition.
// Need to convert 'else if' to 'else { if }'.
auto& if_info = ifs[else_if->Parent()->As<sem::IfStatement>()];
if_info.else_ifs[else_if].cond_decls.push_back(decl);
return true;
}
if (auto* fl = sem_stmt->As<sem::ForLoopStatement>()) {
// Expression used in for-loop condition.
// For-loop needs to be decomposed to a loop.
loops[fl].cond_decls.emplace_back(decl);
return true;
}
auto* parent = sem_stmt->Parent(); // The statement's parent
if (auto* block = parent->As<sem::BlockStatement>()) {
// Expression's statement sits in a block. Simple case.
// Insert the decl before the parent statement
ctx.InsertBefore(block->Declaration()->statements, stmt, decl);
return true;
}
if (auto* fl = parent->As<sem::ForLoopStatement>()) {
// Expression is used in a for-loop. These require special care.
if (fl->Declaration()->initializer == stmt) {
// Expression used in for-loop initializer.
// Insert the let above the for-loop.
ctx.InsertBefore(fl->Block()->Declaration()->statements,
fl->Declaration(), decl);
return true;
}
if (fl->Declaration()->continuing == stmt) {
// Expression used in for-loop continuing.
// For-loop needs to be decomposed to a loop.
loops[fl].cont_decls.emplace_back(decl);
return true;
}
TINT_ICE(Transform, b.Diagnostics())
<< "unhandled use of expression in for-loop";
return false;
}
TINT_ICE(Transform, b.Diagnostics())
<< "unhandled expression parent statement type: "
<< parent->TypeInfo().name;
return false;
}
// Hoists array and structure initializers to a constant variable, declared
// just before the statement of usage.
bool TypeConstructorToLet(const ast::CallExpression* expr) {
auto* ctor = ctx.src->Sem().Get(expr);
if (!ctor->Target()->Is<sem::TypeConstructor>()) {
return true;
}
auto* sem_stmt = ctor->Stmt();
if (!sem_stmt) {
// Expression is outside of a statement. This usually means the
// expression is part of a global (module-scope) constant declaration.
// These must be constexpr, and so cannot contain the type of
// expressions that must be sanitized.
return true;
}
auto* stmt = sem_stmt->Declaration();
if (auto* src_var_decl = stmt->As<ast::VariableDeclStatement>()) {
if (src_var_decl->variable->constructor == expr) {
// This statement is just a variable declaration with the
// initializer as the constructor value. This is what we're
// attempting to transform to, and so ignore.
return true;
}
}
auto* src_ty = ctor->Type();
if (!src_ty->IsAnyOf<sem::Array, sem::Struct>()) {
// We only care about array and struct initializers
return true;
}
// Construct the let that holds the hoisted initializer
auto name = b.Sym();
auto* let = b.Const(name, nullptr, ctx.Clone(expr));
auto* let_decl = b.Decl(let);
if (!InsertBefore(ctor, let_decl)) {
return false;
}
// Replace the initializer expression with a reference to the let
ctx.Replace(expr, b.Expr(name));
return true;
}
// Extracts array and matrix values that are dynamically indexed to a
// temporary `var` local that is then indexed.
bool DynamicIndexToVar(const ast::IndexAccessorExpression* access_expr) {
auto* index_expr = access_expr->index;
auto* object_expr = access_expr->object;
auto& sem = ctx.src->Sem();
if (sem.Get(index_expr)->ConstantValue()) {
// Index expression resolves to a compile time value.
// As this isn't a dynamic index, we can ignore this.
return true;
}
auto* indexed = sem.Get(object_expr);
if (!indexed->Type()->IsAnyOf<sem::Array, sem::Matrix>()) {
// We only care about array and matrices.
return true;
}
// Construct a `var` declaration to hold the value in memory.
// TODO(bclayton): group multiple accesses in the same object.
// e.g. arr[i] + arr[i+1] // Don't create two vars for this
auto var_name = b.Symbols().New("var_for_index");
auto* var_decl = b.Decl(b.Var(var_name, nullptr, ctx.Clone(object_expr)));
if (!InsertBefore(indexed, var_decl)) {
return false;
}
// Replace the original index expression with the new `var`.
ctx.Replace(object_expr, b.Expr(var_name));
return true;
}
// Converts any for-loops marked for conversion to loops, inserting
// registered declaration statements before the condition or continuing
// statement.
void ForLoopsToLoops() {
if (loops.empty()) {
return;
}
// At least one for-loop needs to be transformed into a loop.
ctx.ReplaceAll(
[&](const ast::ForLoopStatement* stmt) -> const ast::Statement* {
auto& sem = ctx.src->Sem();
if (auto* fl = sem.Get(stmt)) {
if (auto it = loops.find(fl); it != loops.end()) {
auto& info = it->second;
auto* for_loop = fl->Declaration();
// For-loop needs to be decomposed to a loop.
// Build the loop body's statements.
// Start with any let declarations for the conditional
// expression.
auto body_stmts = info.cond_decls;
// If the for-loop has a condition, emit this next as:
// if (!cond) { break; }
if (auto* cond = for_loop->condition) {
// !condition
auto* not_cond = b.create<ast::UnaryOpExpression>(
ast::UnaryOp::kNot, ctx.Clone(cond));
// { break; }
auto* break_body = b.Block(b.create<ast::BreakStatement>());
// if (!condition) { break; }
body_stmts.emplace_back(b.If(not_cond, break_body));
}
// Next emit the for-loop body
body_stmts.emplace_back(ctx.Clone(for_loop->body));
// Finally create the continuing block if there was one.
const ast::BlockStatement* continuing = nullptr;
if (auto* cont = for_loop->continuing) {
// Continuing block starts with any let declarations used by
// the continuing.
auto cont_stmts = info.cont_decls;
cont_stmts.emplace_back(ctx.Clone(cont));
continuing = b.Block(cont_stmts);
}
auto* body = b.Block(body_stmts);
auto* loop = b.Loop(body, continuing);
if (auto* init = for_loop->initializer) {
return b.Block(ctx.Clone(init), loop);
}
return loop;
}
}
return nullptr;
});
}
void ElseIfsToElseWithNestedIfs() {
if (ifs.empty()) {
return;
}
ctx.ReplaceAll([&](const ast::IfStatement* if_stmt) //
-> const ast::IfStatement* {
auto& sem = ctx.src->Sem();
auto* sem_if = sem.Get(if_stmt);
if (!sem_if) {
return nullptr;
}
auto it = ifs.find(sem_if);
if (it == ifs.end()) {
return nullptr;
}
auto& if_info = it->second;
// This if statement has "else if"s that need to be converted to "else
// { if }"s
ast::ElseStatementList next_else_stmts;
next_else_stmts.reserve(if_stmt->else_statements.size());
for (auto* else_stmt : utils::Reverse(if_stmt->else_statements)) {
if (else_stmt->condition == nullptr) {
// The last 'else', keep as is
next_else_stmts.insert(next_else_stmts.begin(), ctx.Clone(else_stmt));
} else {
auto* sem_else_if = sem.Get(else_stmt);
auto it2 = if_info.else_ifs.find(sem_else_if);
if (it2 == if_info.else_ifs.end()) {
// 'else if' we don't need to modify (no decls to insert), so
// keep as is
next_else_stmts.insert(next_else_stmts.begin(),
ctx.Clone(else_stmt));
} else {
// 'else if' we need to replace with 'else <decls> { if }'
auto& else_if_info = it2->second;
// Build the else body's statements, starting with let decls for
// the conditional expression
auto& body_stmts = else_if_info.cond_decls;
// Build nested if
body_stmts.emplace_back(b.If(ctx.Clone(else_stmt->condition),
ctx.Clone(else_stmt->body),
next_else_stmts));
// Build else
auto* else_with_nested_if = b.Else(b.Block(body_stmts));
// This will be used in parent if (either another nested if, or
// top-level if)
next_else_stmts = {else_with_nested_if};
}
}
}
// Build a new top-level if with new else statements
if (next_else_stmts.empty()) {
TINT_ICE(Transform, b.Diagnostics())
<< "Expected else statements to insert into new if";
}
auto* new_if = b.If(ctx.Clone(if_stmt->condition),
ctx.Clone(if_stmt->body), next_else_stmts);
return new_if;
});
}
public:
/// Constructor
/// @param ctx_in the CloneContext primed with the input program and
/// @param cfg_in the transform config
/// ProgramBuilder
explicit State(CloneContext& ctx_in, const Config& cfg_in)
: ctx(ctx_in), cfg(cfg_in), b(*ctx_in.dst) {}
/// Runs the transform
void Run() {
// Scan the AST nodes for expressions that need to be promoted to their own
// constant or variable declaration.
// Note: Correct handling of nested expressions is guaranteed due to the
// depth-first traversal of the ast::Node::Clone() methods:
//
// The inner-most expressions are traversed first, and they are hoisted
// to variables declared just above the statement of use. The outer
// expression will then be hoisted, inserting themselves between the
// inner declaration and the statement of use. This pattern applies
// correctly to any nested depth.
//
// Depth-first traversal of the AST is guaranteed because AST nodes are
// fully immutable and require their children to be constructed first so
// their pointer can be passed to the parent's constructor.
for (auto* node : ctx.src->ASTNodes().Objects()) {
if (cfg.type_ctor_to_let) {
if (auto* call_expr = node->As<ast::CallExpression>()) {
if (!TypeConstructorToLet(call_expr)) {
return;
}
}
}
if (cfg.dynamic_index_to_var) {
if (auto* access_expr = node->As<ast::IndexAccessorExpression>()) {
if (!DynamicIndexToVar(access_expr)) {
return;
}
}
}
}
ForLoopsToLoops();
ElseIfsToElseWithNestedIfs();
ctx.Clone();
}
};
PromoteSideEffectsToDecl::PromoteSideEffectsToDecl() = default;
PromoteSideEffectsToDecl::~PromoteSideEffectsToDecl() = default;
void PromoteSideEffectsToDecl::Run(CloneContext& ctx,
const DataMap& inputs,
DataMap&) const {
auto* cfg = inputs.Get<Config>();
if (cfg == nullptr) {
ctx.dst->Diagnostics().add_error(
diag::System::Transform,
"missing transform data for " + std::string(TypeInfo().name));
return;
}
State state(ctx, *cfg);
state.Run();
}
PromoteSideEffectsToDecl::Config::Config(bool type_ctor_to_let_in,
bool dynamic_index_to_var_in)
: type_ctor_to_let(type_ctor_to_let_in),
dynamic_index_to_var(dynamic_index_to_var_in) {}
PromoteSideEffectsToDecl::Config::~Config() = default;
} // namespace transform
} // namespace tint