blob: c88f0d600eaf8b020d491339dd77f0037216e0fe [file] [log] [blame]
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "gmock/gmock.h"
#include "src/tint/reader/spirv/function.h"
#include "src/tint/reader/spirv/parser_impl_test_helper.h"
#include "src/tint/reader/spirv/spirv_tools_helpers_test.h"
#include "src/tint/utils/string.h"
namespace tint::reader::spirv {
namespace {
using SpvModuleScopeVarParserTest = SpvParserTest;
using ::testing::ElementsAre;
using ::testing::Eq;
using ::testing::HasSubstr;
using ::testing::Not;
std::string Preamble() {
return R"(
OpCapability Shader
OpMemoryModel Logical Simple
)";
}
std::string FragMain() {
return R"(
OpEntryPoint Fragment %main "main"
OpExecutionMode %main OriginUpperLeft
)";
}
std::string MainBody() {
return R"(
%main = OpFunction %void None %voidfn
%main_entry = OpLabel
OpReturn
OpFunctionEnd
)";
}
std::string CommonCapabilities() {
return R"(
OpCapability Shader
OpCapability SampleRateShading
OpMemoryModel Logical Simple
)";
}
std::string CommonTypes() {
return R"(
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%bool = OpTypeBool
%float = OpTypeFloat 32
%uint = OpTypeInt 32 0
%int = OpTypeInt 32 1
%ptr_bool = OpTypePointer Private %bool
%ptr_float = OpTypePointer Private %float
%ptr_uint = OpTypePointer Private %uint
%ptr_int = OpTypePointer Private %int
%true = OpConstantTrue %bool
%false = OpConstantFalse %bool
%float_0 = OpConstant %float 0.0
%float_1p5 = OpConstant %float 1.5
%uint_1 = OpConstant %uint 1
%int_m1 = OpConstant %int -1
%int_14 = OpConstant %int 14
%uint_2 = OpConstant %uint 2
%v2bool = OpTypeVector %bool 2
%v2uint = OpTypeVector %uint 2
%v2int = OpTypeVector %int 2
%v2float = OpTypeVector %float 2
%v4float = OpTypeVector %float 4
%m3v2float = OpTypeMatrix %v2float 3
%arr2uint = OpTypeArray %uint %uint_2
)";
}
std::string StructTypes() {
return R"(
%strct = OpTypeStruct %uint %float %arr2uint
)";
}
// Returns layout annotations for types in StructTypes()
std::string CommonLayout() {
return R"(
OpMemberDecorate %strct 0 Offset 0
OpMemberDecorate %strct 1 Offset 4
OpMemberDecorate %strct 2 Offset 8
OpDecorate %arr2uint ArrayStride 4
)";
}
TEST_F(SpvModuleScopeVarParserTest, NoVar) {
auto assembly = Preamble() + FragMain() + CommonTypes() + MainBody();
auto p = parser(test::Assemble(assembly));
EXPECT_TRUE(p->BuildAndParseInternalModule()) << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_ast = test::ToString(p->program());
EXPECT_THAT(module_ast, Not(HasSubstr("Variable"))) << module_ast;
}
TEST_F(SpvModuleScopeVarParserTest, BadStorageClass_NotAWebGPUStorageClass) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
%float = OpTypeFloat 32
%ptr = OpTypePointer CrossWorkgroup %float
%52 = OpVariable %ptr CrossWorkgroup
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
)" + MainBody()));
EXPECT_TRUE(p->BuildInternalModule());
// Normally we should run ParserImpl::RegisterTypes before emitting
// variables. But defensive coding in EmitModuleScopeVariables lets
// us catch this error.
EXPECT_FALSE(p->EmitModuleScopeVariables()) << p->error();
EXPECT_THAT(p->error(), HasSubstr("unknown SPIR-V storage class: 5"));
}
TEST_F(SpvModuleScopeVarParserTest, BadStorageClass_Function) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
%float = OpTypeFloat 32
%ptr = OpTypePointer Function %float
%52 = OpVariable %ptr Function
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
)" + MainBody()));
EXPECT_TRUE(p->BuildInternalModule());
// Normally we should run ParserImpl::RegisterTypes before emitting
// variables. But defensive coding in EmitModuleScopeVariables lets
// us catch this error.
EXPECT_FALSE(p->EmitModuleScopeVariables()) << p->error();
EXPECT_THAT(p->error(), HasSubstr("invalid SPIR-V storage class 7 for module scope "
"variable: %52 = OpVariable %3 Function"));
}
TEST_F(SpvModuleScopeVarParserTest, BadPointerType) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
%float = OpTypeFloat 32
%fn_ty = OpTypeFunction %float
%3 = OpTypePointer Private %fn_ty
%52 = OpVariable %3 Private
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
)" + MainBody()));
EXPECT_TRUE(p->BuildInternalModule());
// Normally we should run ParserImpl::RegisterTypes before emitting
// variables. But defensive coding in EmitModuleScopeVariables lets
// us catch this error.
EXPECT_FALSE(p->EmitModuleScopeVariables());
EXPECT_THAT(p->error(), HasSubstr("internal error: failed to register Tint "
"AST type for SPIR-V type with ID: 3"));
}
TEST_F(SpvModuleScopeVarParserTest, NonPointerType) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
%float = OpTypeFloat 32
%5 = OpTypeFunction %float
%3 = OpTypePointer Private %5
%52 = OpVariable %float Private
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
)" + MainBody()));
EXPECT_TRUE(p->BuildInternalModule());
EXPECT_FALSE(p->RegisterTypes());
EXPECT_THAT(p->error(), HasSubstr("SPIR-V pointer type with ID 3 has invalid pointee type 5"));
}
TEST_F(SpvModuleScopeVarParserTest, AnonWorkgroupVar) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
%float = OpTypeFloat 32
%ptr = OpTypePointer Workgroup %float
%52 = OpVariable %ptr Workgroup
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
)" + MainBody()));
EXPECT_TRUE(p->BuildAndParseInternalModule());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("var<workgroup> x_52 : f32;"));
}
TEST_F(SpvModuleScopeVarParserTest, NamedWorkgroupVar) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpName %52 "the_counter"
%float = OpTypeFloat 32
%ptr = OpTypePointer Workgroup %float
%52 = OpVariable %ptr Workgroup
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
)" + MainBody()));
EXPECT_TRUE(p->BuildAndParseInternalModule());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("var<workgroup> the_counter : f32;"));
}
TEST_F(SpvModuleScopeVarParserTest, PrivateVar) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpName %52 "my_own_private_idaho"
%float = OpTypeFloat 32
%ptr = OpTypePointer Private %float
%52 = OpVariable %ptr Private
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
)" + MainBody()));
EXPECT_TRUE(p->BuildAndParseInternalModule());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("var<private> my_own_private_idaho : f32;"));
}
TEST_F(SpvModuleScopeVarParserTest, BuiltinVertexIndex) {
// This is the simple case for the vertex_index builtin,
// where the SPIR-V uses the same store type as in WGSL.
// See later for tests where the SPIR-V store type is signed
// integer, as in GLSL.
auto p = parser(test::Assemble(Preamble() + R"(
OpEntryPoint Vertex %main "main" %52 %position
OpName %position "position"
OpDecorate %position BuiltIn Position
OpDecorate %52 BuiltIn VertexIndex
%uint = OpTypeInt 32 0
%ptr = OpTypePointer Input %uint
%52 = OpVariable %ptr Input
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%posty = OpTypePointer Output %v4float
%position = OpVariable %posty Output
)" + MainBody()));
EXPECT_TRUE(p->BuildAndParseInternalModule());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("var<private> x_52 : u32;"));
}
std::string PerVertexPreamble() {
return R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint Vertex %main "main" %1
OpDecorate %10 Block
OpMemberDecorate %10 0 BuiltIn Position
OpMemberDecorate %10 1 BuiltIn PointSize
OpMemberDecorate %10 2 BuiltIn ClipDistance
OpMemberDecorate %10 3 BuiltIn CullDistance
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%12 = OpTypeVector %float 4
%uint = OpTypeInt 32 0
%uint_0 = OpConstant %uint 0
%uint_1 = OpConstant %uint 1
%arr = OpTypeArray %float %uint_1
%10 = OpTypeStruct %12 %float %arr %arr
%11 = OpTypePointer Output %10
%1 = OpVariable %11 Output
)";
}
TEST_F(SpvModuleScopeVarParserTest, BuiltinPosition_StoreWholeStruct_NotSupported) {
// Glslang does not generate this code pattern.
const std::string assembly = PerVertexPreamble() + R"(
%nil = OpConstantNull %10 ; the whole struct
%main = OpFunction %void None %voidfn
%entry = OpLabel
OpStore %1 %nil ; store the whole struct
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_FALSE(p->BuildAndParseInternalModule()) << assembly;
EXPECT_THAT(p->error(), Eq("storing to the whole per-vertex structure is not "
"supported: OpStore %1 %13"))
<< p->error();
}
TEST_F(SpvModuleScopeVarParserTest, BuiltinPosition_IntermediateWholeStruct_NotSupported) {
const std::string assembly = PerVertexPreamble() + R"(
%main = OpFunction %void None %voidfn
%entry = OpLabel
%1000 = OpUndef %10
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_FALSE(p->BuildAndParseInternalModule()) << assembly;
EXPECT_THAT(p->error(), Eq("operations producing a per-vertex structure are "
"not supported: %1000 = OpUndef %10"))
<< p->error();
}
TEST_F(SpvModuleScopeVarParserTest, BuiltinPosition_IntermediatePtrWholeStruct_NotSupported) {
const std::string assembly = PerVertexPreamble() + R"(
%main = OpFunction %void None %voidfn
%entry = OpLabel
%1000 = OpCopyObject %11 %1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_FALSE(p->BuildAndParseInternalModule());
EXPECT_THAT(p->error(), Eq("operations producing a pointer to a per-vertex structure are "
"not supported: %1000 = OpCopyObject %11 %1"))
<< p->error();
}
TEST_F(SpvModuleScopeVarParserTest, BuiltinPosition_StorePosition) {
const std::string assembly = PerVertexPreamble() + R"(
%ptr_v4float = OpTypePointer Output %12
%nil = OpConstantNull %12
%main = OpFunction %void None %voidfn
%entry = OpLabel
%100 = OpAccessChain %ptr_v4float %1 %uint_0 ; address of the Position member
OpStore %100 %nil
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_TRUE(p->BuildAndParseInternalModule());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("gl_Position = vec4<f32>();")) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, BuiltinPosition_StorePosition_PerVertexStructOutOfOrderDecl) {
const std::string assembly = R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint Vertex %main "main" %1
; scramble the member indices
OpDecorate %10 Block
OpMemberDecorate %10 0 BuiltIn ClipDistance
OpMemberDecorate %10 1 BuiltIn CullDistance
OpMemberDecorate %10 2 BuiltIn Position
OpMemberDecorate %10 3 BuiltIn PointSize
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%12 = OpTypeVector %float 4
%uint = OpTypeInt 32 0
%uint_0 = OpConstant %uint 0
%uint_1 = OpConstant %uint 1
%uint_2 = OpConstant %uint 2
%arr = OpTypeArray %float %uint_1
%10 = OpTypeStruct %arr %arr %12 %float
%11 = OpTypePointer Output %10
%1 = OpVariable %11 Output
%ptr_v4float = OpTypePointer Output %12
%nil = OpConstantNull %12
%main = OpFunction %void None %voidfn
%entry = OpLabel
%100 = OpAccessChain %ptr_v4float %1 %uint_2 ; address of the Position member
OpStore %100 %nil
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_TRUE(p->BuildAndParseInternalModule());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("gl_Position = vec4<f32>();")) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, BuiltinPosition_StorePositionMember_OneAccessChain) {
const std::string assembly = PerVertexPreamble() + R"(
%ptr_float = OpTypePointer Output %float
%nil = OpConstantNull %float
%main = OpFunction %void None %voidfn
%entry = OpLabel
%100 = OpAccessChain %ptr_float %1 %uint_0 %uint_1 ; address of the Position.y member
OpStore %100 %nil
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_TRUE(p->BuildAndParseInternalModule());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("gl_Position.y = 0.0f;")) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, BuiltinPosition_StorePositionMember_TwoAccessChain) {
// The algorithm is smart enough to collapse it down.
const std::string assembly = PerVertexPreamble() + R"(
%ptr = OpTypePointer Output %12
%ptr_float = OpTypePointer Output %float
%nil = OpConstantNull %float
%main = OpFunction %void None %voidfn
%entry = OpLabel
%100 = OpAccessChain %ptr %1 %uint_0 ; address of the Position member
%101 = OpAccessChain %ptr_float %100 %uint_1 ; address of the Position.y member
OpStore %101 %nil
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_TRUE(p->BuildAndParseInternalModule());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("gl_Position.y = 0.0f;")) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, BuiltinPointSize_Write1_IsErased) {
const std::string assembly = PerVertexPreamble() + R"(
%ptr = OpTypePointer Output %float
%one = OpConstant %float 1.0
%main = OpFunction %void None %voidfn
%entry = OpLabel
%100 = OpAccessChain %ptr %1 %uint_1 ; address of the PointSize member
OpStore %100 %one
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_TRUE(p->BuildAndParseInternalModule());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_EQ(module_str, R"(var<private> gl_Position : vec4<f32>;
fn main_1() {
return;
}
struct main_out {
@builtin(position)
gl_Position : vec4<f32>,
}
@vertex
fn main() -> main_out {
main_1();
return main_out(gl_Position);
}
)") << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, BuiltinPointSize_WriteNon1_IsError) {
const std::string assembly = PerVertexPreamble() + R"(
%ptr = OpTypePointer Output %float
%999 = OpConstant %float 2.0
%main = OpFunction %void None %voidfn
%entry = OpLabel
%100 = OpAccessChain %ptr %1 %uint_1 ; address of the PointSize member
OpStore %100 %999
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_FALSE(p->BuildAndParseInternalModule());
EXPECT_THAT(p->error(), HasSubstr("cannot store a value other than constant 1.0 to "
"PointSize builtin: OpStore %100 %999"));
}
TEST_F(SpvModuleScopeVarParserTest, BuiltinPointSize_ReadReplaced) {
const std::string assembly = PerVertexPreamble() + R"(
%ptr = OpTypePointer Output %float
%nil = OpConstantNull %12
%private_ptr = OpTypePointer Private %float
%900 = OpVariable %private_ptr Private
%main = OpFunction %void None %voidfn
%entry = OpLabel
%100 = OpAccessChain %ptr %1 %uint_1 ; address of the PointSize member
%99 = OpLoad %float %100
OpStore %900 %99
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_TRUE(p->BuildAndParseInternalModule());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_EQ(module_str, R"(var<private> x_900 : f32;
var<private> gl_Position : vec4<f32>;
fn main_1() {
x_900 = 1.0f;
return;
}
struct main_out {
@builtin(position)
gl_Position : vec4<f32>,
}
@vertex
fn main() -> main_out {
main_1();
return main_out(gl_Position);
}
)") << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, BuiltinPointSize_WriteViaCopyObjectPriorAccess_Unsupported) {
const std::string assembly = PerVertexPreamble() + R"(
%ptr = OpTypePointer Output %float
%nil = OpConstantNull %12
%main = OpFunction %void None %voidfn
%entry = OpLabel
%20 = OpCopyObject %11 %1
%100 = OpAccessChain %20 %1 %uint_1 ; address of the PointSize member
OpStore %100 %nil
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_FALSE(p->BuildAndParseInternalModule()) << p->error();
EXPECT_THAT(p->error(),
HasSubstr("operations producing a pointer to a per-vertex structure are "
"not supported: %20 = OpCopyObject %11 %1"));
}
TEST_F(SpvModuleScopeVarParserTest, BuiltinPointSize_WriteViaCopyObjectPostAccessChainErased) {
const std::string assembly = PerVertexPreamble() + R"(
%ptr = OpTypePointer Output %float
%one = OpConstant %float 1.0
%main = OpFunction %void None %voidfn
%entry = OpLabel
%100 = OpAccessChain %ptr %1 %uint_1 ; address of the PointSize member
%101 = OpCopyObject %ptr %100
OpStore %101 %one
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_TRUE(p->BuildAndParseInternalModule()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_EQ(module_str, R"(var<private> gl_Position : vec4<f32>;
fn main_1() {
return;
}
struct main_out {
@builtin(position)
gl_Position : vec4<f32>,
}
@vertex
fn main() -> main_out {
main_1();
return main_out(gl_Position);
}
)") << module_str;
}
std::string LoosePointSizePreamble(std::string stage = "Vertex") {
return R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint )" +
stage + R"( %500 "main" %1
)" + (stage == "Vertex" ? " %2 " : "") +
+(stage == "Fragment" ? "OpExecutionMode %500 OriginUpperLeft" : "") +
+(stage == "Vertex" ? " OpDecorate %2 BuiltIn Position " : "") +
R"(
OpDecorate %1 BuiltIn PointSize
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%uint = OpTypeInt 32 0
%uint_0 = OpConstant %uint 0
%uint_1 = OpConstant %uint 1
%11 = OpTypePointer Output %float
%1 = OpVariable %11 Output
%12 = OpTypePointer Output %v4float
%2 = OpVariable %12 Output
)";
}
TEST_F(SpvModuleScopeVarParserTest, BuiltinPointSize_Loose_Write1_IsErased) {
const std::string assembly = LoosePointSizePreamble() + R"(
%ptr = OpTypePointer Output %float
%one = OpConstant %float 1.0
%500 = OpFunction %void None %voidfn
%entry = OpLabel
OpStore %1 %one
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_TRUE(p->BuildAndParseInternalModule());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_EQ(module_str, R"(var<private> x_2 : vec4<f32>;
fn main_1() {
return;
}
struct main_out {
@builtin(position)
x_2_1 : vec4<f32>,
}
@vertex
fn main() -> main_out {
main_1();
return main_out(x_2);
}
)") << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, BuiltinPointSize_Loose_WriteNon1_IsError) {
const std::string assembly = LoosePointSizePreamble() + R"(
%ptr = OpTypePointer Output %float
%999 = OpConstant %float 2.0
%500 = OpFunction %void None %voidfn
%entry = OpLabel
OpStore %1 %999
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_FALSE(p->BuildAndParseInternalModule());
EXPECT_THAT(p->error(), HasSubstr("cannot store a value other than constant 1.0 to "
"PointSize builtin: OpStore %1 %999"));
}
TEST_F(SpvModuleScopeVarParserTest, BuiltinPointSize_Loose_ReadReplaced_Vertex) {
const std::string assembly = LoosePointSizePreamble() + R"(
%ptr = OpTypePointer Private %float
%900 = OpVariable %ptr Private
%500 = OpFunction %void None %voidfn
%entry = OpLabel
%99 = OpLoad %float %1
OpStore %900 %99
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_TRUE(p->BuildAndParseInternalModule());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_EQ(module_str, R"(var<private> x_2 : vec4<f32>;
var<private> x_900 : f32;
fn main_1() {
x_900 = 1.0f;
return;
}
struct main_out {
@builtin(position)
x_2_1 : vec4<f32>,
}
@vertex
fn main() -> main_out {
main_1();
return main_out(x_2);
}
)") << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, BuiltinPointSize_Loose_ReadReplaced_Fragment) {
const std::string assembly = LoosePointSizePreamble("Fragment") + R"(
%ptr = OpTypePointer Private %float
%900 = OpVariable %ptr Private
%500 = OpFunction %void None %voidfn
%entry = OpLabel
%99 = OpLoad %float %1
OpStore %900 %99
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
// This example is invalid because you PointSize is not valid in Vulkan
// Fragment shaders.
EXPECT_FALSE(p->Parse());
EXPECT_FALSE(p->success());
EXPECT_THAT(p->error(), HasSubstr("VUID-PointSize-PointSize-04314"));
}
TEST_F(SpvModuleScopeVarParserTest, BuiltinPointSize_Loose_WriteViaCopyObjectPriorAccess_Erased) {
const std::string assembly = LoosePointSizePreamble() + R"(
%one = OpConstant %float 1.0
%500 = OpFunction %void None %voidfn
%entry = OpLabel
%20 = OpCopyObject %11 %1
%100 = OpAccessChain %11 %20
OpStore %100 %one
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_TRUE(p->BuildAndParseInternalModule()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_EQ(module_str, R"(var<private> x_2 : vec4<f32>;
fn main_1() {
return;
}
struct main_out {
@builtin(position)
x_2_1 : vec4<f32>,
}
@vertex
fn main() -> main_out {
main_1();
return main_out(x_2);
}
)") << module_str;
}
TEST_F(SpvModuleScopeVarParserTest,
BuiltinPointSize_Loose_WriteViaCopyObjectPostAccessChainErased) {
const std::string assembly = LoosePointSizePreamble() + R"(
%one = OpConstant %float 1.0
%500 = OpFunction %void None %voidfn
%entry = OpLabel
%100 = OpAccessChain %11 %1
%101 = OpCopyObject %11 %100
OpStore %101 %one
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_TRUE(p->BuildAndParseInternalModule()) << p->error();
EXPECT_TRUE(p->error().empty()) << p->error();
const auto module_str = test::ToString(p->program());
EXPECT_EQ(module_str, R"(var<private> x_2 : vec4<f32>;
fn main_1() {
return;
}
struct main_out {
@builtin(position)
x_2_1 : vec4<f32>,
}
@vertex
fn main() -> main_out {
main_1();
return main_out(x_2);
}
)") << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, BuiltinClipDistance_NotSupported) {
const std::string assembly = PerVertexPreamble() + R"(
%ptr_float = OpTypePointer Output %float
%nil = OpConstantNull %float
%uint_2 = OpConstant %uint 2
%main = OpFunction %void None %voidfn
%entry = OpLabel
; address of the first entry in ClipDistance
%100 = OpAccessChain %ptr_float %1 %uint_2 %uint_0
OpStore %100 %nil
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_FALSE(p->BuildAndParseInternalModule());
EXPECT_EQ(p->error(),
"accessing per-vertex member 2 is not supported. Only Position is "
"supported, and PointSize is ignored");
}
TEST_F(SpvModuleScopeVarParserTest, BuiltinCullDistance_NotSupported) {
const std::string assembly = PerVertexPreamble() + R"(
%ptr_float = OpTypePointer Output %float
%nil = OpConstantNull %float
%uint_3 = OpConstant %uint 3
%main = OpFunction %void None %voidfn
%entry = OpLabel
; address of the first entry in CullDistance
%100 = OpAccessChain %ptr_float %1 %uint_3 %uint_0
OpStore %100 %nil
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_FALSE(p->BuildAndParseInternalModule());
EXPECT_EQ(p->error(),
"accessing per-vertex member 3 is not supported. Only Position is "
"supported, and PointSize is ignored");
}
TEST_F(SpvModuleScopeVarParserTest, BuiltinPerVertex_MemberIndex_NotConstant) {
const std::string assembly = PerVertexPreamble() + R"(
%ptr_float = OpTypePointer Output %float
%nil = OpConstantNull %float
%main = OpFunction %void None %voidfn
%entry = OpLabel
%sum = OpIAdd %uint %uint_0 %uint_0
%100 = OpAccessChain %ptr_float %1 %sum
OpStore %100 %nil
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_FALSE(p->BuildAndParseInternalModule());
EXPECT_THAT(p->error(), Eq("first index of access chain into per-vertex structure is not "
"a constant: %100 = OpAccessChain %13 %1 %16"));
}
TEST_F(SpvModuleScopeVarParserTest, BuiltinPerVertex_MemberIndex_NotConstantInteger) {
const std::string assembly = PerVertexPreamble() + R"(
%ptr_float = OpTypePointer Output %float
%nil = OpConstantNull %float
%main = OpFunction %void None %voidfn
%entry = OpLabel
; nil is bad here!
%100 = OpAccessChain %ptr_float %1 %nil
OpStore %100 %nil
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
EXPECT_FALSE(p->BuildAndParseInternalModule());
EXPECT_THAT(p->error(), Eq("first index of access chain into per-vertex structure is not "
"a constant integer: %100 = OpAccessChain %13 %1 %14"));
}
TEST_F(SpvModuleScopeVarParserTest, ScalarInitializers) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%1 = OpVariable %ptr_bool Private %true
%2 = OpVariable %ptr_bool Private %false
%3 = OpVariable %ptr_int Private %int_m1
%4 = OpVariable %ptr_uint Private %uint_1
%5 = OpVariable %ptr_float Private %float_1p5
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr(R"(var<private> x_1 : bool = true;
var<private> x_2 : bool = false;
var<private> x_3 : i32 = -1i;
var<private> x_4 : u32 = 1u;
var<private> x_5 : f32 = 1.5f;
)"));
}
TEST_F(SpvModuleScopeVarParserTest, ScalarNullInitializers) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%null_bool = OpConstantNull %bool
%null_int = OpConstantNull %int
%null_uint = OpConstantNull %uint
%null_float = OpConstantNull %float
%1 = OpVariable %ptr_bool Private %null_bool
%2 = OpVariable %ptr_int Private %null_int
%3 = OpVariable %ptr_uint Private %null_uint
%4 = OpVariable %ptr_float Private %null_float
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr(R"(var<private> x_1 : bool = false;
var<private> x_2 : i32 = 0i;
var<private> x_3 : u32 = 0u;
var<private> x_4 : f32 = 0.0f;
)"));
}
TEST_F(SpvModuleScopeVarParserTest, ScalarUndefInitializers) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%undef_bool = OpUndef %bool
%undef_int = OpUndef %int
%undef_uint = OpUndef %uint
%undef_float = OpUndef %float
%1 = OpVariable %ptr_bool Private %undef_bool
%2 = OpVariable %ptr_int Private %undef_int
%3 = OpVariable %ptr_uint Private %undef_uint
%4 = OpVariable %ptr_float Private %undef_float
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr(R"(var<private> x_1 : bool = false;
var<private> x_2 : i32 = 0i;
var<private> x_3 : u32 = 0u;
var<private> x_4 : f32 = 0.0f;
)"));
// This example module emits ok, but is not valid SPIR-V in the first place.
p->DeliberatelyInvalidSpirv();
}
TEST_F(SpvModuleScopeVarParserTest, VectorInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%ptr = OpTypePointer Private %v2float
%two = OpConstant %float 2.0
%const = OpConstantComposite %v2float %float_1p5 %two
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("var<private> x_200 : vec2<f32> = vec2<f32>(1.5f, 2.0f);"));
}
TEST_F(SpvModuleScopeVarParserTest, VectorBoolNullInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%ptr = OpTypePointer Private %v2bool
%const = OpConstantNull %v2bool
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("var<private> x_200 : vec2<bool> = vec2<bool>();"));
}
TEST_F(SpvModuleScopeVarParserTest, VectorBoolUndefInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%ptr = OpTypePointer Private %v2bool
%const = OpUndef %v2bool
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("var<private> x_200 : vec2<bool> = vec2<bool>();"));
// This example module emits ok, but is not valid SPIR-V in the first place.
p->DeliberatelyInvalidSpirv();
}
TEST_F(SpvModuleScopeVarParserTest, VectorUintNullInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%ptr = OpTypePointer Private %v2uint
%const = OpConstantNull %v2uint
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("var<private> x_200 : vec2<u32> = vec2<u32>();"));
}
TEST_F(SpvModuleScopeVarParserTest, VectorUintUndefInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%ptr = OpTypePointer Private %v2uint
%const = OpUndef %v2uint
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("var<private> x_200 : vec2<u32> = vec2<u32>();"));
// This example module emits ok, but is not valid SPIR-V in the first place.
p->DeliberatelyInvalidSpirv();
}
TEST_F(SpvModuleScopeVarParserTest, VectorIntNullInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%ptr = OpTypePointer Private %v2int
%const = OpConstantNull %v2int
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("var<private> x_200 : vec2<i32> = vec2<i32>();"));
}
TEST_F(SpvModuleScopeVarParserTest, VectorIntUndefInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%ptr = OpTypePointer Private %v2int
%const = OpUndef %v2int
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("var<private> x_200 : vec2<i32> = vec2<i32>();"));
// This example module emits ok, but is not valid SPIR-V in the first place.
p->DeliberatelyInvalidSpirv();
}
TEST_F(SpvModuleScopeVarParserTest, VectorFloatNullInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%ptr = OpTypePointer Private %v2float
%const = OpConstantNull %v2float
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("var<private> x_200 : vec2<f32> = vec2<f32>();"));
}
TEST_F(SpvModuleScopeVarParserTest, VectorFloatUndefInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%ptr = OpTypePointer Private %v2float
%const = OpUndef %v2float
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("var<private> x_200 : vec2<f32> = vec2<f32>();"));
// This example module emits ok, but is not valid SPIR-V in the first place.
p->DeliberatelyInvalidSpirv();
}
TEST_F(SpvModuleScopeVarParserTest, MatrixInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%ptr = OpTypePointer Private %m3v2float
%two = OpConstant %float 2.0
%three = OpConstant %float 3.0
%four = OpConstant %float 4.0
%v0 = OpConstantComposite %v2float %float_1p5 %two
%v1 = OpConstantComposite %v2float %two %three
%v2 = OpConstantComposite %v2float %three %four
%const = OpConstantComposite %m3v2float %v0 %v1 %v2
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("var<private> x_200 : mat3x2<f32> = mat3x2<f32>("
"vec2<f32>(1.5f, 2.0f), "
"vec2<f32>(2.0f, 3.0f), "
"vec2<f32>(3.0f, 4.0f));"));
}
TEST_F(SpvModuleScopeVarParserTest, MatrixNullInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%ptr = OpTypePointer Private %m3v2float
%const = OpConstantNull %m3v2float
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("var<private> x_200 : mat3x2<f32> = mat3x2<f32>();"));
}
TEST_F(SpvModuleScopeVarParserTest, MatrixUndefInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%ptr = OpTypePointer Private %m3v2float
%const = OpUndef %m3v2float
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("var<private> x_200 : mat3x2<f32> = mat3x2<f32>();"));
// This example module emits ok, but is not valid SPIR-V in the first place.
p->DeliberatelyInvalidSpirv();
}
TEST_F(SpvModuleScopeVarParserTest, ArrayInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%ptr = OpTypePointer Private %arr2uint
%two = OpConstant %uint 2
%const = OpConstantComposite %arr2uint %uint_1 %two
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str,
HasSubstr("var<private> x_200 : array<u32, 2u> = array<u32, 2u>(1u, 2u);"));
}
TEST_F(SpvModuleScopeVarParserTest, ArrayNullInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%ptr = OpTypePointer Private %arr2uint
%const = OpConstantNull %arr2uint
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("var<private> x_200 : array<u32, 2u> = array<u32, 2u>();"));
}
TEST_F(SpvModuleScopeVarParserTest, ArrayUndefInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + R"(
%ptr = OpTypePointer Private %arr2uint
%const = OpUndef %arr2uint
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("var<private> x_200 : array<u32, 2u> = array<u32, 2u>();"));
// This example module emits ok, but is not valid SPIR-V in the first place.
p->DeliberatelyInvalidSpirv();
}
TEST_F(SpvModuleScopeVarParserTest, StructInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + StructTypes() + R"(
%ptr = OpTypePointer Private %strct
%two = OpConstant %uint 2
%arrconst = OpConstantComposite %arr2uint %uint_1 %two
%const = OpConstantComposite %strct %uint_1 %float_1p5 %arrconst
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str,
HasSubstr("var<private> x_200 : S = S(1u, 1.5f, array<u32, 2u>(1u, 2u));"))
<< module_str;
}
TEST_F(SpvModuleScopeVarParserTest, StructNullInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + StructTypes() + R"(
%ptr = OpTypePointer Private %strct
%const = OpConstantNull %strct
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("var<private> x_200 : S = S(0u, 0.0f, array<u32, 2u>());"))
<< module_str;
}
TEST_F(SpvModuleScopeVarParserTest, StructUndefInitializer) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonTypes() + StructTypes() + R"(
%ptr = OpTypePointer Private %strct
%const = OpUndef %strct
%200 = OpVariable %ptr Private %const
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("var<private> x_200 : S = S(0u, 0.0f, array<u32, 2u>());"))
<< module_str;
// This example module emits ok, but is not valid SPIR-V in the first place.
p->DeliberatelyInvalidSpirv();
}
TEST_F(SpvModuleScopeVarParserTest, DescriptorGroupDecoration_Valid) {
auto p = parser(test::Assemble(Preamble() + FragMain() + CommonLayout() + R"(
OpDecorate %1 DescriptorSet 3
OpDecorate %1 Binding 9 ; Required to pass WGSL validation
OpDecorate %strct Block
)" + CommonTypes() + StructTypes() +
R"(
%ptr_sb_strct = OpTypePointer StorageBuffer %strct
%1 = OpVariable %ptr_sb_strct StorageBuffer
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("@group(3) @binding(9) var<storage, read_write> x_1 : S;"))
<< module_str;
}
TEST_F(SpvModuleScopeVarParserTest, BindingDecoration_Valid) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpDecorate %1 DescriptorSet 0 ; WGSL validation requires this already
OpDecorate %1 Binding 3
OpDecorate %strct Block
)" + CommonLayout() + CommonTypes() +
StructTypes() +
R"(
%ptr_sb_strct = OpTypePointer StorageBuffer %strct
%1 = OpVariable %ptr_sb_strct StorageBuffer
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("@group(0) @binding(3) var<storage, read_write> x_1 : S;"))
<< module_str;
}
TEST_F(SpvModuleScopeVarParserTest, StructMember_NonReadableDecoration_Dropped) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpDecorate %1 DescriptorSet 0
OpDecorate %1 Binding 0
OpDecorate %strct Block
OpMemberDecorate %strct 0 NonReadable
)" + CommonLayout() + CommonTypes() +
StructTypes() + R"(
%ptr_sb_strct = OpTypePointer StorageBuffer %strct
%1 = OpVariable %ptr_sb_strct StorageBuffer
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr(R"(type Arr = @stride(4) array<u32, 2u>;
struct S {
field0 : u32,
field1 : f32,
field2 : Arr,
}
@group(0) @binding(0) var<storage, read_write> x_1 : S;
)")) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, ColMajorDecoration_Dropped) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpName %myvar "myvar"
OpDecorate %myvar DescriptorSet 0
OpDecorate %myvar Binding 0
OpDecorate %s Block
OpMemberDecorate %s 0 ColMajor
OpMemberDecorate %s 0 Offset 0
OpMemberDecorate %s 0 MatrixStride 8
%float = OpTypeFloat 32
%v2float = OpTypeVector %float 2
%m3v2float = OpTypeMatrix %v2float 3
%s = OpTypeStruct %m3v2float
%ptr_sb_s = OpTypePointer StorageBuffer %s
%myvar = OpVariable %ptr_sb_s StorageBuffer
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr(R"(struct S {
field0 : mat3x2<f32>,
}
@group(0) @binding(0) var<storage, read_write> myvar : S;
)")) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, MatrixStrideDecoration_Natural_Dropped) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpName %myvar "myvar"
OpDecorate %myvar DescriptorSet 0
OpDecorate %myvar Binding 0
OpDecorate %s Block
OpMemberDecorate %s 0 MatrixStride 8
OpMemberDecorate %s 0 Offset 0
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%v2float = OpTypeVector %float 2
%m3v2float = OpTypeMatrix %v2float 3
%s = OpTypeStruct %m3v2float
%ptr_sb_s = OpTypePointer StorageBuffer %s
%myvar = OpVariable %ptr_sb_s StorageBuffer
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr(R"(struct S {
field0 : mat3x2<f32>,
}
@group(0) @binding(0) var<storage, read_write> myvar : S;
)")) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, MatrixStrideDecoration) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpName %myvar "myvar"
OpDecorate %myvar DescriptorSet 0
OpDecorate %myvar Binding 0
OpDecorate %s Block
OpMemberDecorate %s 0 MatrixStride 64
OpMemberDecorate %s 0 Offset 0
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%v2float = OpTypeVector %float 2
%m3v2float = OpTypeMatrix %v2float 3
%s = OpTypeStruct %m3v2float
%ptr_sb_s = OpTypePointer StorageBuffer %s
%myvar = OpVariable %ptr_sb_s StorageBuffer
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr(R"(struct S {
@stride(64) @internal(disable_validation__ignore_stride)
field0 : mat3x2<f32>,
}
@group(0) @binding(0) var<storage, read_write> myvar : S;
)")) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, RowMajorDecoration_IsError) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpName %myvar "myvar"
OpDecorate %s Block
OpMemberDecorate %s 0 RowMajor
OpMemberDecorate %s 0 Offset 0
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%v2float = OpTypeVector %float 2
%m3v2float = OpTypeMatrix %v2float 3
%s = OpTypeStruct %m3v2float
%ptr_sb_s = OpTypePointer StorageBuffer %s
%myvar = OpVariable %ptr_sb_s StorageBuffer
)" + MainBody()));
EXPECT_FALSE(p->BuildAndParseInternalModuleExceptFunctions());
EXPECT_THAT(
p->error(),
Eq(R"(WGSL does not support row-major matrices: can't translate member 0 of %3 = OpTypeStruct %8)"))
<< p->error();
}
TEST_F(SpvModuleScopeVarParserTest, StorageBuffer_NonWritable_AllMembers) {
// Variable should have access(read)
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpDecorate %s Block
OpDecorate %1 DescriptorSet 0
OpDecorate %1 Binding 0
OpMemberDecorate %s 0 NonWritable
OpMemberDecorate %s 1 NonWritable
OpMemberDecorate %s 0 Offset 0
OpMemberDecorate %s 1 Offset 4
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%s = OpTypeStruct %float %float
%ptr_sb_s = OpTypePointer StorageBuffer %s
%1 = OpVariable %ptr_sb_s StorageBuffer
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr(R"(struct S {
field0 : f32,
field1 : f32,
}
@group(0) @binding(0) var<storage, read> x_1 : S;
)")) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, StorageBuffer_NonWritable_NotAllMembers) {
// Variable should have access(read_write)
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpDecorate %1 DescriptorSet 0
OpDecorate %1 Binding 0
OpDecorate %s Block
OpMemberDecorate %s 0 NonWritable
OpMemberDecorate %s 0 Offset 0
OpMemberDecorate %s 1 Offset 4
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%s = OpTypeStruct %float %float
%ptr_sb_s = OpTypePointer StorageBuffer %s
%1 = OpVariable %ptr_sb_s StorageBuffer
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr(R"(struct S {
field0 : f32,
field1 : f32,
}
@group(0) @binding(0) var<storage, read_write> x_1 : S;
)")) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest,
StorageBuffer_NonWritable_NotAllMembers_DuplicatedOnSameMember) { // NOLINT
// Variable should have access(read_write)
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpDecorate %s Block
OpDecorate %1 DescriptorSet 0
OpDecorate %1 Binding 0
OpMemberDecorate %s 0 NonWritable
OpMemberDecorate %s 0 NonWritable ; same member. Don't double-count it
OpMemberDecorate %s 0 Offset 0
OpMemberDecorate %s 1 Offset 4
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%s = OpTypeStruct %float %float
%ptr_sb_s = OpTypePointer StorageBuffer %s
%1 = OpVariable %ptr_sb_s StorageBuffer
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr(R"(struct S {
field0 : f32,
field1 : f32,
}
@group(0) @binding(0) var<storage, read_write> x_1 : S;
)")) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, ScalarSpecConstant_DeclareConst_Id_TooBig) {
// Override IDs must be between 0 and 65535
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpDecorate %1 SpecId 65536
%bool = OpTypeBool
%1 = OpSpecConstantTrue %bool
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
)" + MainBody()));
EXPECT_FALSE(p->Parse());
EXPECT_EQ(p->error(),
"SpecId too large. WGSL override IDs must be between 0 and 65535: "
"ID %1 has SpecId 65536");
}
TEST_F(SpvModuleScopeVarParserTest, ScalarSpecConstant_DeclareConst_Id_MaxValid) {
// Override IDs must be between 0 and 65535
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpDecorate %1 SpecId 65535
%bool = OpTypeBool
%1 = OpSpecConstantTrue %bool
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
)" + MainBody()));
EXPECT_TRUE(p->Parse());
EXPECT_EQ(p->error(), "");
}
TEST_F(SpvModuleScopeVarParserTest, ScalarSpecConstant_DeclareConst_True) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpName %c "myconst"
OpDecorate %c SpecId 12
%bool = OpTypeBool
%c = OpSpecConstantTrue %bool
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("@id(12) override myconst : bool = true;")) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, ScalarSpecConstant_DeclareConst_False) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpName %c "myconst"
OpDecorate %c SpecId 12
%bool = OpTypeBool
%c = OpSpecConstantFalse %bool
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("@id(12) override myconst : bool = false;")) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, ScalarSpecConstant_DeclareConst_U32) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpName %c "myconst"
OpDecorate %c SpecId 12
%uint = OpTypeInt 32 0
%c = OpSpecConstant %uint 42
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("@id(12) override myconst : u32 = 42u;")) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, ScalarSpecConstant_DeclareConst_I32) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpName %c "myconst"
OpDecorate %c SpecId 12
%int = OpTypeInt 32 1
%c = OpSpecConstant %int 42
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("@id(12) override myconst : i32 = 42i;")) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, ScalarSpecConstant_DeclareConst_F32) {
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpName %c "myconst"
OpDecorate %c SpecId 12
%float = OpTypeFloat 32
%c = OpSpecConstant %float 2.5
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("@id(12) override myconst : f32 = 2.5f;")) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, ScalarSpecConstant_DeclareConst_F32_WithoutSpecId) {
// When we don't have a spec ID, declare an undecorated module-scope constant.
auto p = parser(test::Assemble(Preamble() + FragMain() + R"(
OpName %c "myconst"
%float = OpTypeFloat 32
%c = OpSpecConstant %float 2.5
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
)" + MainBody()));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
EXPECT_THAT(module_str, HasSubstr("override myconst : f32 = 2.5f;")) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, ScalarSpecConstant_UsedInFunction) {
const auto assembly = Preamble() + FragMain() + R"(
OpName %c "myconst"
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%c = OpSpecConstant %float 2.5
%floatfn = OpTypeFunction %float
%100 = OpFunction %float None %floatfn
%entry = OpLabel
%1 = OpFAdd %float %c %c
OpReturnValue %1
OpFunctionEnd
)" + MainBody();
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_TRUE(p->error().empty());
Program program = p->program();
const auto got = test::ToString(program, fe.ast_body());
EXPECT_THAT(got, HasSubstr("return (myconst + myconst);")) << got;
}
// Returns the start of a shader for testing SampleId,
// parameterized by store type of %int or %uint
std::string SampleIdPreamble(std::string store_type) {
return R"(
OpCapability Shader
OpCapability SampleRateShading
OpMemoryModel Logical Simple
OpEntryPoint Fragment %main "main" %1
OpExecutionMode %main OriginUpperLeft
OpDecorate %1 BuiltIn SampleId
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%uint = OpTypeInt 32 0
%int = OpTypeInt 32 1
%ptr_ty = OpTypePointer Input )" +
store_type + R"(
%1 = OpVariable %ptr_ty Input
)";
}
TEST_F(SpvModuleScopeVarParserTest, SampleId_I32_Load_Direct) {
const std::string assembly = SampleIdPreamble("%int") + R"(
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpLoad %int %1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected =
R"(var<private> x_1 : i32;
fn main_1() {
let x_2 : i32 = x_1;
return;
}
@fragment
fn main(@builtin(sample_index) x_1_param : u32) {
x_1 = bitcast<i32>(x_1_param);
main_1();
}
)";
EXPECT_EQ(module_str, expected) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, SampleId_I32_Load_CopyObject) {
const std::string assembly = SampleIdPreamble("%int") + R"(
%main = OpFunction %void None %voidfn
%entry = OpLabel
%copy_ptr = OpCopyObject %ptr_ty %1
%2 = OpLoad %int %copy_ptr
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected =
R"(Module{
Variable{
x_1
private
undefined
__i32
}
Function main_1 -> __void
()
{
VariableDeclStatement{
VariableConst{
x_11
none
undefined
__ptr_private__i32
{
UnaryOp[not set]{
address-of
Identifier[not set]{x_1}
}
}
}
}
VariableDeclStatement{
VariableConst{
x_2
none
undefined
__i32
{
UnaryOp[not set]{
indirection
Identifier[not set]{x_14}
}
}
}
}
Return{}
}
Function main -> __void
StageDecoration{fragment}
(
VariableConst{
Decorations{
BuiltinDecoration{sample_index}
}
x_1_param
none
undefined
__u32
}
)
{
Assignment{
Identifier[not set]{x_1}
Bitcast[not set]<__i32>{
Identifier[not set]{x_1_param}
}
}
Call[not set]{
Identifier[not set]{main_1}
(
)
}
}
}
)";
}
TEST_F(SpvModuleScopeVarParserTest, SampleId_I32_Load_AccessChain) {
const std::string assembly = SampleIdPreamble("%int") + R"(
%main = OpFunction %void None %voidfn
%entry = OpLabel
%copy_ptr = OpAccessChain %ptr_ty %1
%2 = OpLoad %int %copy_ptr
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : i32;
fn main_1() {
let x_2 : i32 = x_1;
return;
}
@fragment
fn main(@builtin(sample_index) x_1_param : u32) {
x_1 = bitcast<i32>(x_1_param);
main_1();
}
)";
EXPECT_EQ(module_str, expected);
}
TEST_F(SpvModuleScopeVarParserTest, SampleId_I32_FunctParam) {
const std::string assembly = SampleIdPreamble("%int") + R"(
%helper_ty = OpTypeFunction %int %ptr_ty
%helper = OpFunction %int None %helper_ty
%param = OpFunctionParameter %ptr_ty
%helper_entry = OpLabel
%3 = OpLoad %int %param
OpReturnValue %3
OpFunctionEnd
%main = OpFunction %void None %voidfn
%entry = OpLabel
%result = OpFunctionCall %int %helper %1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
// This example is invalid because you can't pass pointer-to-Input
// as a function parameter.
EXPECT_FALSE(p->Parse());
EXPECT_FALSE(p->success());
EXPECT_THAT(p->error(), HasSubstr("Invalid storage class for pointer operand 1"));
}
TEST_F(SpvModuleScopeVarParserTest, SampleId_U32_Load_Direct) {
const std::string assembly = SampleIdPreamble("%uint") + R"(
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpLoad %uint %1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : u32;
fn main_1() {
let x_2 : u32 = x_1;
return;
}
@fragment
fn main(@builtin(sample_index) x_1_param : u32) {
x_1 = x_1_param;
main_1();
}
)";
EXPECT_EQ(module_str, expected) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, SampleId_U32_Load_CopyObject) {
const std::string assembly = SampleIdPreamble("%uint") + R"(
%main = OpFunction %void None %voidfn
%entry = OpLabel
%copy_ptr = OpCopyObject %ptr_ty %1
%2 = OpLoad %uint %copy_ptr
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : u32;
fn main_1() {
let x_11 : ptr<private, u32> = &(x_1);
let x_2 : u32 = *(x_11);
return;
}
@fragment
fn main(@builtin(sample_index) x_1_param : u32) {
x_1 = x_1_param;
main_1();
}
)";
EXPECT_EQ(module_str, expected) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, SampleId_U32_Load_AccessChain) {
const std::string assembly = SampleIdPreamble("%uint") + R"(
%main = OpFunction %void None %voidfn
%entry = OpLabel
%copy_ptr = OpAccessChain %ptr_ty %1
%2 = OpLoad %uint %copy_ptr
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : u32;
fn main_1() {
let x_2 : u32 = x_1;
return;
}
@fragment
fn main(@builtin(sample_index) x_1_param : u32) {
x_1 = x_1_param;
main_1();
}
)";
EXPECT_EQ(module_str, expected) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, SampleId_U32_FunctParam) {
const std::string assembly = SampleIdPreamble("%uint") + R"(
%helper_ty = OpTypeFunction %uint %ptr_ty
%helper = OpFunction %uint None %helper_ty
%param = OpFunctionParameter %ptr_ty
%helper_entry = OpLabel
%3 = OpLoad %uint %param
OpReturnValue %3
OpFunctionEnd
%main = OpFunction %void None %voidfn
%entry = OpLabel
%result = OpFunctionCall %uint %helper %1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
// This example is invalid because you can't pass pointer-to-Input
// as a function parameter.
EXPECT_FALSE(p->Parse());
EXPECT_THAT(p->error(), HasSubstr("Invalid storage class for pointer operand 1"));
}
// Returns the start of a shader for testing SampleMask
// parameterized by store type.
std::string SampleMaskPreamble(std::string store_type, uint32_t stride = 0u) {
return std::string(R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint Fragment %main "main" %1
OpExecutionMode %main OriginUpperLeft
OpDecorate %1 BuiltIn SampleMask
)") +
(stride > 0u ? R"(
OpDecorate %uarr1 ArrayStride 4
OpDecorate %uarr2 ArrayStride 4
OpDecorate %iarr1 ArrayStride 4
OpDecorate %iarr2 ArrayStride 4
)"
: "") +
R"(
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%uint = OpTypeInt 32 0
%int = OpTypeInt 32 1
%int_12 = OpConstant %int 12
%uint_0 = OpConstant %uint 0
%uint_1 = OpConstant %uint 1
%uint_2 = OpConstant %uint 2
%uarr1 = OpTypeArray %uint %uint_1
%uarr2 = OpTypeArray %uint %uint_2
%iarr1 = OpTypeArray %int %uint_1
%iarr2 = OpTypeArray %int %uint_2
%iptr_in_ty = OpTypePointer Input %int
%uptr_in_ty = OpTypePointer Input %uint
%iptr_out_ty = OpTypePointer Output %int
%uptr_out_ty = OpTypePointer Output %uint
%in_ty = OpTypePointer Input )" +
store_type + R"(
%out_ty = OpTypePointer Output )" +
store_type + R"(
)";
}
TEST_F(SpvModuleScopeVarParserTest, SampleMask_In_ArraySize2_Error) {
const std::string assembly = SampleMaskPreamble("%uarr2") + R"(
%1 = OpVariable %in_ty Input
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpAccessChain %uptr_in_ty %1 %uint_0
%3 = OpLoad %int %2
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_FALSE(p->BuildAndParseInternalModule());
EXPECT_THAT(p->error(), HasSubstr("WGSL supports a sample mask of at most 32 bits. "
"SampleMask must be an array of 1 element"))
<< p->error() << assembly;
}
TEST_F(SpvModuleScopeVarParserTest, SampleMask_In_U32_Direct) {
const std::string assembly = SampleMaskPreamble("%uarr1") + R"(
%1 = OpVariable %in_ty Input
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpAccessChain %uptr_in_ty %1 %uint_0
%3 = OpLoad %uint %2
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : array<u32, 1u>;
fn main_1() {
let x_3 : u32 = x_1[0i];
return;
}
@fragment
fn main(@builtin(sample_mask) x_1_param : u32) {
x_1[0i] = x_1_param;
main_1();
}
)";
EXPECT_EQ(module_str, expected);
}
TEST_F(SpvModuleScopeVarParserTest, SampleMask_In_U32_CopyObject) {
const std::string assembly = SampleMaskPreamble("%uarr1") + R"(
%1 = OpVariable %in_ty Input
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpAccessChain %uptr_in_ty %1 %uint_0
%3 = OpCopyObject %uptr_in_ty %2
%4 = OpLoad %uint %3
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : array<u32, 1u>;
fn main_1() {
let x_4 : u32 = x_1[0i];
return;
}
@fragment
fn main(@builtin(sample_mask) x_1_param : u32) {
x_1[0i] = x_1_param;
main_1();
}
)";
EXPECT_EQ(module_str, expected) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, SampleMask_In_U32_AccessChain) {
const std::string assembly = SampleMaskPreamble("%uarr1") + R"(
%1 = OpVariable %in_ty Input
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpAccessChain %uptr_in_ty %1 %uint_0
%3 = OpAccessChain %uptr_in_ty %2
%4 = OpLoad %uint %3
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : array<u32, 1u>;
fn main_1() {
let x_4 : u32 = x_1[0i];
return;
}
@fragment
fn main(@builtin(sample_mask) x_1_param : u32) {
x_1[0i] = x_1_param;
main_1();
}
)";
EXPECT_EQ(module_str, expected);
}
TEST_F(SpvModuleScopeVarParserTest, SampleMask_In_I32_Direct) {
const std::string assembly = SampleMaskPreamble("%iarr1") + R"(
%1 = OpVariable %in_ty Input
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpAccessChain %iptr_in_ty %1 %uint_0
%3 = OpLoad %int %2
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : array<i32, 1u>;
fn main_1() {
let x_3 : i32 = x_1[0i];
return;
}
@fragment
fn main(@builtin(sample_mask) x_1_param : u32) {
x_1[0i] = bitcast<i32>(x_1_param);
main_1();
}
)";
EXPECT_EQ(module_str, expected) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, SampleMask_In_I32_CopyObject) {
const std::string assembly = SampleMaskPreamble("%iarr1") + R"(
%1 = OpVariable %in_ty Input
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpAccessChain %iptr_in_ty %1 %uint_0
%3 = OpCopyObject %iptr_in_ty %2
%4 = OpLoad %int %3
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : array<i32, 1u>;
fn main_1() {
let x_4 : i32 = x_1[0i];
return;
}
@fragment
fn main(@builtin(sample_mask) x_1_param : u32) {
x_1[0i] = bitcast<i32>(x_1_param);
main_1();
}
)";
EXPECT_EQ(module_str, expected) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, SampleMask_In_I32_AccessChain) {
const std::string assembly = SampleMaskPreamble("%iarr1") + R"(
%1 = OpVariable %in_ty Input
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpAccessChain %iptr_in_ty %1 %uint_0
%3 = OpAccessChain %iptr_in_ty %2
%4 = OpLoad %int %3
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : array<i32, 1u>;
fn main_1() {
let x_4 : i32 = x_1[0i];
return;
}
@fragment
fn main(@builtin(sample_mask) x_1_param : u32) {
x_1[0i] = bitcast<i32>(x_1_param);
main_1();
}
)";
EXPECT_EQ(module_str, expected) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, SampleMask_Out_ArraySize2_Error) {
const std::string assembly = SampleMaskPreamble("%uarr2") + R"(
%1 = OpVariable %out_ty Output
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpAccessChain %uptr_out_ty %1 %uint_0
OpStore %2 %uint_0
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_FALSE(p->BuildAndParseInternalModule());
EXPECT_THAT(p->error(), HasSubstr("WGSL supports a sample mask of at most 32 bits. "
"SampleMask must be an array of 1 element"))
<< p->error() << assembly;
}
TEST_F(SpvModuleScopeVarParserTest, SampleMask_Out_U32_Direct) {
const std::string assembly = SampleMaskPreamble("%uarr1") + R"(
%1 = OpVariable %out_ty Output
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpAccessChain %uptr_out_ty %1 %uint_0
OpStore %2 %uint_0
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : array<u32, 1u>;
fn main_1() {
x_1[0i] = 0u;
return;
}
struct main_out {
@builtin(sample_mask)
x_1_1 : u32,
}
@fragment
fn main() -> main_out {
main_1();
return main_out(x_1[0i]);
}
)";
EXPECT_EQ(module_str, expected);
}
TEST_F(SpvModuleScopeVarParserTest, SampleMask_Out_U32_CopyObject) {
const std::string assembly = SampleMaskPreamble("%uarr1") + R"(
%1 = OpVariable %out_ty Output
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpAccessChain %uptr_out_ty %1 %uint_0
%3 = OpCopyObject %uptr_out_ty %2
OpStore %2 %uint_0
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : array<u32, 1u>;
fn main_1() {
x_1[0i] = 0u;
return;
}
struct main_out {
@builtin(sample_mask)
x_1_1 : u32,
}
@fragment
fn main() -> main_out {
main_1();
return main_out(x_1[0i]);
}
)";
EXPECT_EQ(module_str, expected);
}
TEST_F(SpvModuleScopeVarParserTest, SampleMask_Out_U32_AccessChain) {
const std::string assembly = SampleMaskPreamble("%uarr1") + R"(
%1 = OpVariable %out_ty Output
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpAccessChain %uptr_out_ty %1 %uint_0
%3 = OpAccessChain %uptr_out_ty %2
OpStore %2 %uint_0
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : array<u32, 1u>;
fn main_1() {
x_1[0i] = 0u;
return;
}
struct main_out {
@builtin(sample_mask)
x_1_1 : u32,
}
@fragment
fn main() -> main_out {
main_1();
return main_out(x_1[0i]);
}
)";
EXPECT_EQ(module_str, expected);
}
TEST_F(SpvModuleScopeVarParserTest, SampleMask_Out_I32_Direct) {
const std::string assembly = SampleMaskPreamble("%iarr1") + R"(
%1 = OpVariable %out_ty Output
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpAccessChain %iptr_out_ty %1 %uint_0
OpStore %2 %int_12
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : array<i32, 1u>;
fn main_1() {
x_1[0i] = 12i;
return;
}
struct main_out {
@builtin(sample_mask)
x_1_1 : u32,
}
@fragment
fn main() -> main_out {
main_1();
return main_out(bitcast<u32>(x_1[0i]));
}
)";
EXPECT_EQ(module_str, expected);
}
TEST_F(SpvModuleScopeVarParserTest, SampleMask_Out_I32_CopyObject) {
const std::string assembly = SampleMaskPreamble("%iarr1") + R"(
%1 = OpVariable %out_ty Output
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpAccessChain %iptr_out_ty %1 %uint_0
%3 = OpCopyObject %iptr_out_ty %2
OpStore %2 %int_12
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : array<i32, 1u>;
fn main_1() {
x_1[0i] = 12i;
return;
}
struct main_out {
@builtin(sample_mask)
x_1_1 : u32,
}
@fragment
fn main() -> main_out {
main_1();
return main_out(bitcast<u32>(x_1[0i]));
}
)";
EXPECT_EQ(module_str, expected);
}
TEST_F(SpvModuleScopeVarParserTest, SampleMask_Out_I32_AccessChain) {
const std::string assembly = SampleMaskPreamble("%iarr1") + R"(
%1 = OpVariable %out_ty Output
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpAccessChain %iptr_out_ty %1 %uint_0
%3 = OpAccessChain %iptr_out_ty %2
OpStore %2 %int_12
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : array<i32, 1u>;
fn main_1() {
x_1[0i] = 12i;
return;
}
struct main_out {
@builtin(sample_mask)
x_1_1 : u32,
}
@fragment
fn main() -> main_out {
main_1();
return main_out(bitcast<u32>(x_1[0i]));
}
)";
EXPECT_EQ(module_str, expected);
}
TEST_F(SpvModuleScopeVarParserTest, SampleMask_In_WithStride) {
const std::string assembly = SampleMaskPreamble("%uarr1", 4u) + R"(
%1 = OpVariable %in_ty Input
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpAccessChain %uptr_in_ty %1 %uint_0
%3 = OpLoad %uint %2
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(type Arr = @stride(4) array<u32, 1u>;
type Arr_1 = @stride(4) array<u32, 2u>;
type Arr_2 = @stride(4) array<i32, 1u>;
type Arr_3 = @stride(4) array<i32, 2u>;
var<private> x_1 : Arr;
fn main_1() {
let x_3 : u32 = x_1[0i];
return;
}
@fragment
fn main(@builtin(sample_mask) x_1_param : u32) {
x_1[0i] = x_1_param;
main_1();
}
)";
EXPECT_EQ(module_str, expected);
}
TEST_F(SpvModuleScopeVarParserTest, SampleMask_Out_WithStride) {
const std::string assembly = SampleMaskPreamble("%uarr1", 4u) + R"(
%1 = OpVariable %out_ty Output
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpAccessChain %uptr_out_ty %1 %uint_0
OpStore %2 %uint_0
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(type Arr = @stride(4) array<u32, 1u>;
type Arr_1 = @stride(4) array<u32, 2u>;
type Arr_2 = @stride(4) array<i32, 1u>;
type Arr_3 = @stride(4) array<i32, 2u>;
var<private> x_1 : Arr;
fn main_1() {
x_1[0i] = 0u;
return;
}
struct main_out {
@builtin(sample_mask)
x_1_1 : u32,
}
@fragment
fn main() -> main_out {
main_1();
return main_out(x_1[0i]);
}
)";
EXPECT_EQ(module_str, expected);
}
// Returns the start of a shader for testing VertexIndex,
// parameterized by store type of %int or %uint
std::string VertexIndexPreamble(std::string store_type) {
return R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint Vertex %main "main" %position %1
OpDecorate %position BuiltIn Position
OpDecorate %1 BuiltIn VertexIndex
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%float = OpTypeFloat 32
%uint = OpTypeInt 32 0
%int = OpTypeInt 32 1
%ptr_ty = OpTypePointer Input )" +
store_type + R"(
%1 = OpVariable %ptr_ty Input
%v4float = OpTypeVector %float 4
%posty = OpTypePointer Output %v4float
%position = OpVariable %posty Output
)";
}
TEST_F(SpvModuleScopeVarParserTest, VertexIndex_I32_Load_Direct) {
const std::string assembly = VertexIndexPreamble("%int") + R"(
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpLoad %int %1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : i32;
var<private> x_4 : vec4<f32>;
fn main_1() {
let x_2 : i32 = x_1;
return;
}
struct main_out {
@builtin(position)
x_4_1 : vec4<f32>,
}
@vertex
fn main(@builtin(vertex_index) x_1_param : u32) -> main_out {
x_1 = bitcast<i32>(x_1_param);
main_1();
return main_out(x_4);
}
)";
EXPECT_EQ(module_str, expected) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, VertexIndex_UsedTwice_DifferentConstructs) {
// Test crbug.com/tint/1577
// Builtin variables must not be hoisted. Before the fix, the reader
// would see two uses of the variable in different constructs and try
// to hoist it. Only function-local definitions should be hoisted.
const std::string assembly = VertexIndexPreamble("%uint") + R"(
%bool = OpTypeBool
%900 = OpConstantTrue %bool
%main = OpFunction %void None %voidfn
%entry = OpLabel
%2 = OpLoad %uint %1 ; used in outer selection
OpSelectionMerge %99 None
OpBranchConditional %900 %30 %99
%30 = OpLabel
%3 = OpLoad %uint %1 ; used in inner selection
OpSelectionMerge %40 None
OpBranchConditional %900 %35 %40
%35 = OpLabel
OpBranch %40
%40 = OpLabel
OpBranch %99
%99 = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : u32;
var<private> x_5 : vec4<f32>;
fn main_1() {
let x_2 : u32 = x_1;
if (true) {
let x_3 : u32 = x_1;
if (true) {
}
}
return;
}
struct main_out {
@builtin(position)
x_5_1 : vec4<f32>,
}
@vertex
fn main(@builtin(vertex_index) x_1_param : u32) -> main_out {
x_1 = x_1_param;
main_1();
return main_out(x_5);
}
)";
EXPECT_EQ(module_str, expected) << module_str;
}
TEST_F(SpvModuleScopeVarParserTest, VertexIndex_I32_Load_CopyObject) {
const std::string assembly = VertexIndexPreamble("%int") + R"(
%main = OpFunction %void None %voidfn
%entry = OpLabel
%copy_ptr = OpCopyObject %ptr_ty %1
%2 = OpLoad %int %copy_ptr
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
EXPECT_TRUE(p->error().empty());
const auto module_str = test::ToString(p->program());
const std::string expected = R"(var<private> x_1 : i32;
var<private> x_4 : vec4<f32>;
fn main_1() {
let x_14 : ptr<private, i32> = &(x_1);
let x_2 : i32 = *(x_14);
return;
}
struct main_out {
@builtin(position)
x_4_1 : vec4<f32>,
}
@vertex
fn main(@builtin(vertex_index) x_1_param : u32) -> main_out {
x_1 = bitcast<i32>(x_1_param);