blob: 77146600db160ff2533890cb057735514a862ae5 [file] [log] [blame]
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/ast/call_statement.h"
#include "src/ast/variable_decl_statement.h"
#include "src/writer/hlsl/test_helper.h"
namespace tint {
namespace writer {
namespace hlsl {
namespace {
using HlslGeneratorImplTest_Binary = TestHelper;
struct BinaryData {
const char* result;
ast::BinaryOp op;
enum Types { All = 0b11, Integer = 0b10, Float = 0b01 };
Types valid_for = Types::All;
};
inline std::ostream& operator<<(std::ostream& out, BinaryData data) {
out << data.op;
return out;
}
using HlslBinaryTest = TestParamHelper<BinaryData>;
TEST_P(HlslBinaryTest, Emit_f32) {
auto params = GetParam();
if ((params.valid_for & BinaryData::Types::Float) == 0) {
return;
}
// Skip ops that are illegal for this type
if (params.op == ast::BinaryOp::kAnd || params.op == ast::BinaryOp::kOr ||
params.op == ast::BinaryOp::kXor ||
params.op == ast::BinaryOp::kShiftLeft ||
params.op == ast::BinaryOp::kShiftRight) {
return;
}
Global("left", ty.f32(), ast::StorageClass::kPrivate);
Global("right", ty.f32(), ast::StorageClass::kPrivate);
auto* left = Expr("left");
auto* right = Expr("right");
auto* expr = create<ast::BinaryExpression>(params.op, left, right);
WrapInFunction(expr);
GeneratorImpl& gen = Build();
std::stringstream out;
ASSERT_TRUE(gen.EmitExpression(out, expr)) << gen.error();
EXPECT_EQ(out.str(), params.result);
}
TEST_P(HlslBinaryTest, Emit_u32) {
auto params = GetParam();
if ((params.valid_for & BinaryData::Types::Integer) == 0) {
return;
}
Global("left", ty.u32(), ast::StorageClass::kPrivate);
Global("right", ty.u32(), ast::StorageClass::kPrivate);
auto* left = Expr("left");
auto* right = Expr("right");
auto* expr = create<ast::BinaryExpression>(params.op, left, right);
WrapInFunction(expr);
GeneratorImpl& gen = Build();
std::stringstream out;
ASSERT_TRUE(gen.EmitExpression(out, expr)) << gen.error();
EXPECT_EQ(out.str(), params.result);
}
TEST_P(HlslBinaryTest, Emit_i32) {
auto params = GetParam();
if ((params.valid_for & BinaryData::Types::Integer) == 0) {
return;
}
// Skip ops that are illegal for this type
if (params.op == ast::BinaryOp::kShiftLeft ||
params.op == ast::BinaryOp::kShiftRight) {
return;
}
Global("left", ty.i32(), ast::StorageClass::kPrivate);
Global("right", ty.i32(), ast::StorageClass::kPrivate);
auto* left = Expr("left");
auto* right = Expr("right");
auto* expr = create<ast::BinaryExpression>(params.op, left, right);
WrapInFunction(expr);
GeneratorImpl& gen = Build();
std::stringstream out;
ASSERT_TRUE(gen.EmitExpression(out, expr)) << gen.error();
EXPECT_EQ(out.str(), params.result);
}
INSTANTIATE_TEST_SUITE_P(
HlslGeneratorImplTest,
HlslBinaryTest,
testing::Values(
BinaryData{"(left & right)", ast::BinaryOp::kAnd},
BinaryData{"(left | right)", ast::BinaryOp::kOr},
BinaryData{"(left ^ right)", ast::BinaryOp::kXor},
BinaryData{"(left == right)", ast::BinaryOp::kEqual},
BinaryData{"(left != right)", ast::BinaryOp::kNotEqual},
BinaryData{"(left < right)", ast::BinaryOp::kLessThan},
BinaryData{"(left > right)", ast::BinaryOp::kGreaterThan},
BinaryData{"(left <= right)", ast::BinaryOp::kLessThanEqual},
BinaryData{"(left >= right)", ast::BinaryOp::kGreaterThanEqual},
BinaryData{"(left << right)", ast::BinaryOp::kShiftLeft},
BinaryData{"(left >> right)", ast::BinaryOp::kShiftRight},
BinaryData{"(left + right)", ast::BinaryOp::kAdd},
BinaryData{"(left - right)", ast::BinaryOp::kSubtract},
BinaryData{"(left * right)", ast::BinaryOp::kMultiply},
// NOTE: Integer divide covered by DivOrModBy* tests below
BinaryData{"(left / right)", ast::BinaryOp::kDivide,
BinaryData::Types::Float},
// NOTE: Integer modulo covered by DivOrModBy* tests below
BinaryData{"(left % right)", ast::BinaryOp::kModulo,
BinaryData::Types::Float}));
TEST_F(HlslGeneratorImplTest_Binary, Multiply_VectorScalar) {
auto* lhs = vec3<f32>(1.f, 1.f, 1.f);
auto* rhs = Expr(1.f);
auto* expr =
create<ast::BinaryExpression>(ast::BinaryOp::kMultiply, lhs, rhs);
WrapInFunction(expr);
GeneratorImpl& gen = Build();
std::stringstream out;
EXPECT_TRUE(gen.EmitExpression(out, expr)) << gen.error();
EXPECT_EQ(out.str(),
"(float3(1.0f, 1.0f, 1.0f) * "
"1.0f)");
}
TEST_F(HlslGeneratorImplTest_Binary, Multiply_ScalarVector) {
auto* lhs = Expr(1.f);
auto* rhs = vec3<f32>(1.f, 1.f, 1.f);
auto* expr =
create<ast::BinaryExpression>(ast::BinaryOp::kMultiply, lhs, rhs);
WrapInFunction(expr);
GeneratorImpl& gen = Build();
std::stringstream out;
EXPECT_TRUE(gen.EmitExpression(out, expr)) << gen.error();
EXPECT_EQ(out.str(),
"(1.0f * float3(1.0f, 1.0f, "
"1.0f))");
}
TEST_F(HlslGeneratorImplTest_Binary, Multiply_MatrixScalar) {
Global("mat", ty.mat3x3<f32>(), ast::StorageClass::kPrivate);
auto* lhs = Expr("mat");
auto* rhs = Expr(1.f);
auto* expr =
create<ast::BinaryExpression>(ast::BinaryOp::kMultiply, lhs, rhs);
WrapInFunction(expr);
GeneratorImpl& gen = Build();
std::stringstream out;
EXPECT_TRUE(gen.EmitExpression(out, expr)) << gen.error();
EXPECT_EQ(out.str(), "(mat * 1.0f)");
}
TEST_F(HlslGeneratorImplTest_Binary, Multiply_ScalarMatrix) {
Global("mat", ty.mat3x3<f32>(), ast::StorageClass::kPrivate);
auto* lhs = Expr(1.f);
auto* rhs = Expr("mat");
auto* expr =
create<ast::BinaryExpression>(ast::BinaryOp::kMultiply, lhs, rhs);
WrapInFunction(expr);
GeneratorImpl& gen = Build();
std::stringstream out;
EXPECT_TRUE(gen.EmitExpression(out, expr)) << gen.error();
EXPECT_EQ(out.str(), "(1.0f * mat)");
}
TEST_F(HlslGeneratorImplTest_Binary, Multiply_MatrixVector) {
Global("mat", ty.mat3x3<f32>(), ast::StorageClass::kPrivate);
auto* lhs = Expr("mat");
auto* rhs = vec3<f32>(1.f, 1.f, 1.f);
auto* expr =
create<ast::BinaryExpression>(ast::BinaryOp::kMultiply, lhs, rhs);
WrapInFunction(expr);
GeneratorImpl& gen = Build();
std::stringstream out;
EXPECT_TRUE(gen.EmitExpression(out, expr)) << gen.error();
EXPECT_EQ(out.str(), "mul(float3(1.0f, 1.0f, 1.0f), mat)");
}
TEST_F(HlslGeneratorImplTest_Binary, Multiply_VectorMatrix) {
Global("mat", ty.mat3x3<f32>(), ast::StorageClass::kPrivate);
auto* lhs = vec3<f32>(1.f, 1.f, 1.f);
auto* rhs = Expr("mat");
auto* expr =
create<ast::BinaryExpression>(ast::BinaryOp::kMultiply, lhs, rhs);
WrapInFunction(expr);
GeneratorImpl& gen = Build();
std::stringstream out;
EXPECT_TRUE(gen.EmitExpression(out, expr)) << gen.error();
EXPECT_EQ(out.str(), "mul(mat, float3(1.0f, 1.0f, 1.0f))");
}
TEST_F(HlslGeneratorImplTest_Binary, Multiply_MatrixMatrix) {
Global("lhs", ty.mat3x3<f32>(), ast::StorageClass::kPrivate);
Global("rhs", ty.mat3x3<f32>(), ast::StorageClass::kPrivate);
auto* expr = create<ast::BinaryExpression>(ast::BinaryOp::kMultiply,
Expr("lhs"), Expr("rhs"));
WrapInFunction(expr);
GeneratorImpl& gen = Build();
std::stringstream out;
EXPECT_TRUE(gen.EmitExpression(out, expr)) << gen.error();
EXPECT_EQ(out.str(), "mul(rhs, lhs)");
}
TEST_F(HlslGeneratorImplTest_Binary, Logical_And) {
Global("a", ty.bool_(), ast::StorageClass::kPrivate);
Global("b", ty.bool_(), ast::StorageClass::kPrivate);
auto* expr = create<ast::BinaryExpression>(ast::BinaryOp::kLogicalAnd,
Expr("a"), Expr("b"));
WrapInFunction(expr);
GeneratorImpl& gen = Build();
std::stringstream out;
ASSERT_TRUE(gen.EmitExpression(out, expr)) << gen.error();
EXPECT_EQ(out.str(), "(tint_tmp)");
EXPECT_EQ(gen.result(), R"(bool tint_tmp = a;
if (tint_tmp) {
tint_tmp = b;
}
)");
}
TEST_F(HlslGeneratorImplTest_Binary, Logical_Multi) {
// (a && b) || (c || d)
Global("a", ty.bool_(), ast::StorageClass::kPrivate);
Global("b", ty.bool_(), ast::StorageClass::kPrivate);
Global("c", ty.bool_(), ast::StorageClass::kPrivate);
Global("d", ty.bool_(), ast::StorageClass::kPrivate);
auto* expr = create<ast::BinaryExpression>(
ast::BinaryOp::kLogicalOr,
create<ast::BinaryExpression>(ast::BinaryOp::kLogicalAnd, Expr("a"),
Expr("b")),
create<ast::BinaryExpression>(ast::BinaryOp::kLogicalOr, Expr("c"),
Expr("d")));
WrapInFunction(expr);
GeneratorImpl& gen = Build();
std::stringstream out;
ASSERT_TRUE(gen.EmitExpression(out, expr)) << gen.error();
EXPECT_EQ(out.str(), "(tint_tmp)");
EXPECT_EQ(gen.result(), R"(bool tint_tmp_1 = a;
if (tint_tmp_1) {
tint_tmp_1 = b;
}
bool tint_tmp = (tint_tmp_1);
if (!tint_tmp) {
bool tint_tmp_2 = c;
if (!tint_tmp_2) {
tint_tmp_2 = d;
}
tint_tmp = (tint_tmp_2);
}
)");
}
TEST_F(HlslGeneratorImplTest_Binary, Logical_Or) {
Global("a", ty.bool_(), ast::StorageClass::kPrivate);
Global("b", ty.bool_(), ast::StorageClass::kPrivate);
auto* expr = create<ast::BinaryExpression>(ast::BinaryOp::kLogicalOr,
Expr("a"), Expr("b"));
WrapInFunction(expr);
GeneratorImpl& gen = Build();
std::stringstream out;
ASSERT_TRUE(gen.EmitExpression(out, expr)) << gen.error();
EXPECT_EQ(out.str(), "(tint_tmp)");
EXPECT_EQ(gen.result(), R"(bool tint_tmp = a;
if (!tint_tmp) {
tint_tmp = b;
}
)");
}
TEST_F(HlslGeneratorImplTest_Binary, If_WithLogical) {
// if (a && b) {
// return 1;
// } else if (b || c) {
// return 2;
// } else {
// return 3;
// }
Global("a", ty.bool_(), ast::StorageClass::kPrivate);
Global("b", ty.bool_(), ast::StorageClass::kPrivate);
Global("c", ty.bool_(), ast::StorageClass::kPrivate);
auto* expr = If(create<ast::BinaryExpression>(ast::BinaryOp::kLogicalAnd,
Expr("a"), Expr("b")),
Block(Return(1)),
Else(create<ast::BinaryExpression>(ast::BinaryOp::kLogicalOr,
Expr("b"), Expr("c")),
Block(Return(2))),
Else(Block(Return(3))));
Func("func", {}, ty.i32(), {WrapInStatement(expr)});
GeneratorImpl& gen = Build();
ASSERT_TRUE(gen.EmitStatement(expr)) << gen.error();
EXPECT_EQ(gen.result(), R"(bool tint_tmp = a;
if (tint_tmp) {
tint_tmp = b;
}
if ((tint_tmp)) {
return 1;
} else {
bool tint_tmp_1 = b;
if (!tint_tmp_1) {
tint_tmp_1 = c;
}
if ((tint_tmp_1)) {
return 2;
} else {
return 3;
}
}
)");
}
TEST_F(HlslGeneratorImplTest_Binary, Return_WithLogical) {
// return (a && b) || c;
Global("a", ty.bool_(), ast::StorageClass::kPrivate);
Global("b", ty.bool_(), ast::StorageClass::kPrivate);
Global("c", ty.bool_(), ast::StorageClass::kPrivate);
auto* expr = Return(create<ast::BinaryExpression>(
ast::BinaryOp::kLogicalOr,
create<ast::BinaryExpression>(ast::BinaryOp::kLogicalAnd, Expr("a"),
Expr("b")),
Expr("c")));
Func("func", {}, ty.bool_(), {WrapInStatement(expr)});
GeneratorImpl& gen = Build();
ASSERT_TRUE(gen.EmitStatement(expr)) << gen.error();
EXPECT_EQ(gen.result(), R"(bool tint_tmp_1 = a;
if (tint_tmp_1) {
tint_tmp_1 = b;
}
bool tint_tmp = (tint_tmp_1);
if (!tint_tmp) {
tint_tmp = c;
}
return (tint_tmp);
)");
}
TEST_F(HlslGeneratorImplTest_Binary, Assign_WithLogical) {
// a = (b || c) && d;
Global("a", ty.bool_(), ast::StorageClass::kPrivate);
Global("b", ty.bool_(), ast::StorageClass::kPrivate);
Global("c", ty.bool_(), ast::StorageClass::kPrivate);
Global("d", ty.bool_(), ast::StorageClass::kPrivate);
auto* expr = Assign(
Expr("a"), create<ast::BinaryExpression>(
ast::BinaryOp::kLogicalAnd,
create<ast::BinaryExpression>(ast::BinaryOp::kLogicalOr,
Expr("b"), Expr("c")),
Expr("d")));
WrapInFunction(expr);
GeneratorImpl& gen = Build();
ASSERT_TRUE(gen.EmitStatement(expr)) << gen.error();
EXPECT_EQ(gen.result(), R"(bool tint_tmp_1 = b;
if (!tint_tmp_1) {
tint_tmp_1 = c;
}
bool tint_tmp = (tint_tmp_1);
if (tint_tmp) {
tint_tmp = d;
}
a = (tint_tmp);
)");
}
TEST_F(HlslGeneratorImplTest_Binary, Decl_WithLogical) {
// var a : bool = (b && c) || d;
Global("b", ty.bool_(), ast::StorageClass::kPrivate);
Global("c", ty.bool_(), ast::StorageClass::kPrivate);
Global("d", ty.bool_(), ast::StorageClass::kPrivate);
auto* var = Var("a", ty.bool_(), ast::StorageClass::kNone,
create<ast::BinaryExpression>(
ast::BinaryOp::kLogicalOr,
create<ast::BinaryExpression>(ast::BinaryOp::kLogicalAnd,
Expr("b"), Expr("c")),
Expr("d")));
auto* decl = Decl(var);
WrapInFunction(decl);
GeneratorImpl& gen = Build();
ASSERT_TRUE(gen.EmitStatement(decl)) << gen.error();
EXPECT_EQ(gen.result(), R"(bool tint_tmp_1 = b;
if (tint_tmp_1) {
tint_tmp_1 = c;
}
bool tint_tmp = (tint_tmp_1);
if (!tint_tmp) {
tint_tmp = d;
}
bool a = (tint_tmp);
)");
}
TEST_F(HlslGeneratorImplTest_Binary, Call_WithLogical) {
// foo(a && b, c || d, (a || c) && (b || d))
Func("foo",
{
Param(Sym(), ty.bool_()),
Param(Sym(), ty.bool_()),
Param(Sym(), ty.bool_()),
},
ty.void_(), ast::StatementList{}, ast::AttributeList{});
Global("a", ty.bool_(), ast::StorageClass::kPrivate);
Global("b", ty.bool_(), ast::StorageClass::kPrivate);
Global("c", ty.bool_(), ast::StorageClass::kPrivate);
Global("d", ty.bool_(), ast::StorageClass::kPrivate);
ast::ExpressionList params;
params.push_back(create<ast::BinaryExpression>(ast::BinaryOp::kLogicalAnd,
Expr("a"), Expr("b")));
params.push_back(create<ast::BinaryExpression>(ast::BinaryOp::kLogicalOr,
Expr("c"), Expr("d")));
params.push_back(create<ast::BinaryExpression>(
ast::BinaryOp::kLogicalAnd,
create<ast::BinaryExpression>(ast::BinaryOp::kLogicalOr, Expr("a"),
Expr("c")),
create<ast::BinaryExpression>(ast::BinaryOp::kLogicalOr, Expr("b"),
Expr("d"))));
auto* expr = CallStmt(Call("foo", params));
WrapInFunction(expr);
GeneratorImpl& gen = Build();
ASSERT_TRUE(gen.EmitStatement(expr)) << gen.error();
EXPECT_EQ(gen.result(), R"(bool tint_tmp = a;
if (tint_tmp) {
tint_tmp = b;
}
bool tint_tmp_1 = c;
if (!tint_tmp_1) {
tint_tmp_1 = d;
}
bool tint_tmp_3 = a;
if (!tint_tmp_3) {
tint_tmp_3 = c;
}
bool tint_tmp_2 = (tint_tmp_3);
if (tint_tmp_2) {
bool tint_tmp_4 = b;
if (!tint_tmp_4) {
tint_tmp_4 = d;
}
tint_tmp_2 = (tint_tmp_4);
}
foo((tint_tmp), (tint_tmp_1), (tint_tmp_2));
)");
}
namespace HlslGeneratorDivMod {
struct Params {
enum class Type { Div, Mod };
Type type;
};
struct HlslGeneratorDivModTest : TestParamHelper<Params> {
std::string Token() {
return GetParam().type == Params::Type::Div ? "/" : "%";
}
template <typename... Args>
auto Op(Args... args) {
return GetParam().type == Params::Type::Div
? Div(std::forward<Args>(args)...)
: Mod(std::forward<Args>(args)...);
}
};
INSTANTIATE_TEST_SUITE_P(HlslGeneratorImplTest,
HlslGeneratorDivModTest,
testing::Values(Params{Params::Type::Div},
Params{Params::Type::Mod}));
TEST_P(HlslGeneratorDivModTest, DivOrModByLiteralZero_i32) {
Func("fn", {}, ty.void_(),
{
Decl(Var("a", ty.i32())),
Decl(Const("r", nullptr, Op("a", 0))),
});
GeneratorImpl& gen = Build();
ASSERT_TRUE(gen.Generate());
EXPECT_EQ(gen.result(), R"(void fn() {
int a = 0;
const int r = (a )" + Token() +
R"( 1);
}
)");
}
TEST_P(HlslGeneratorDivModTest, DivOrModByLiteralZero_u32) {
Func("fn", {}, ty.void_(),
{
Decl(Var("a", ty.u32())),
Decl(Const("r", nullptr, Op("a", 0u))),
});
GeneratorImpl& gen = Build();
ASSERT_TRUE(gen.Generate());
EXPECT_EQ(gen.result(), R"(void fn() {
uint a = 0u;
const uint r = (a )" + Token() +
R"( 1u);
}
)");
} // namespace HlslGeneratorDivMod
TEST_P(HlslGeneratorDivModTest, DivOrModByLiteralZero_vec_by_vec_i32) {
Func("fn", {}, ty.void_(),
{
Decl(Var("a", nullptr, vec4<i32>(100, 100, 100, 100))),
Decl(Const("r", nullptr, Op("a", vec4<i32>(50, 0, 25, 0)))),
});
GeneratorImpl& gen = Build();
ASSERT_TRUE(gen.Generate());
EXPECT_EQ(gen.result(), R"(void fn() {
int4 a = int4(100, 100, 100, 100);
const int4 r = (a )" + Token() +
R"( int4(50, 1, 25, 1));
}
)");
} // namespace
TEST_P(HlslGeneratorDivModTest, DivOrModByLiteralZero_vec_by_scalar_i32) {
Func("fn", {}, ty.void_(),
{
Decl(Var("a", nullptr, vec4<i32>(100, 100, 100, 100))),
Decl(Const("r", nullptr, Op("a", 0))),
});
GeneratorImpl& gen = Build();
ASSERT_TRUE(gen.Generate());
EXPECT_EQ(gen.result(), R"(void fn() {
int4 a = int4(100, 100, 100, 100);
const int4 r = (a )" + Token() +
R"( 1);
}
)");
} // namespace hlsl
TEST_P(HlslGeneratorDivModTest, DivOrModByIdentifier_i32) {
Func("fn", {Param("b", ty.i32())}, ty.void_(),
{
Decl(Var("a", ty.i32())),
Decl(Const("r", nullptr, Op("a", "b"))),
});
GeneratorImpl& gen = Build();
ASSERT_TRUE(gen.Generate());
EXPECT_EQ(gen.result(), R"(void fn(int b) {
int a = 0;
const int r = (a )" + Token() +
R"( (b == 0 ? 1 : b));
}
)");
} // namespace writer
TEST_P(HlslGeneratorDivModTest, DivOrModByIdentifier_u32) {
Func("fn", {Param("b", ty.u32())}, ty.void_(),
{
Decl(Var("a", ty.u32())),
Decl(Const("r", nullptr, Op("a", "b"))),
});
GeneratorImpl& gen = Build();
ASSERT_TRUE(gen.Generate());
EXPECT_EQ(gen.result(), R"(void fn(uint b) {
uint a = 0u;
const uint r = (a )" + Token() +
R"( (b == 0u ? 1u : b));
}
)");
} // namespace tint
TEST_P(HlslGeneratorDivModTest, DivOrModByIdentifier_vec_by_vec_i32) {
Func("fn", {Param("b", ty.vec3<i32>())}, ty.void_(),
{
Decl(Var("a", ty.vec3<i32>())),
Decl(Const("r", nullptr, Op("a", "b"))),
});
GeneratorImpl& gen = Build();
ASSERT_TRUE(gen.Generate());
EXPECT_EQ(gen.result(), R"(void fn(int3 b) {
int3 a = int3(0, 0, 0);
const int3 r = (a )" + Token() +
R"( (b == int3(0, 0, 0) ? int3(1, 1, 1) : b));
}
)");
}
TEST_P(HlslGeneratorDivModTest, DivOrModByIdentifier_vec_by_scalar_i32) {
Func("fn", {Param("b", ty.i32())}, ty.void_(),
{
Decl(Var("a", ty.vec3<i32>())),
Decl(Const("r", nullptr, Op("a", "b"))),
});
GeneratorImpl& gen = Build();
ASSERT_TRUE(gen.Generate());
EXPECT_EQ(gen.result(), R"(void fn(int b) {
int3 a = int3(0, 0, 0);
const int3 r = (a )" + Token() +
R"( (b == 0 ? 1 : b));
}
)");
}
TEST_P(HlslGeneratorDivModTest, DivOrModByExpression_i32) {
Func("zero", {}, ty.i32(),
{
Return(Expr(0)),
});
Func("fn", {}, ty.void_(),
{
Decl(Var("a", ty.i32())),
Decl(Const("r", nullptr, Op("a", Call("zero")))),
});
GeneratorImpl& gen = Build();
ASSERT_TRUE(gen.Generate());
EXPECT_EQ(gen.result(), R"(int value_or_one_if_zero_int(int value) {
return value == 0 ? 1 : value;
}
int zero() {
return 0;
}
void fn() {
int a = 0;
const int r = (a )" + Token() +
R"( value_or_one_if_zero_int(zero()));
}
)");
}
TEST_P(HlslGeneratorDivModTest, DivOrModByExpression_u32) {
Func("zero", {}, ty.u32(),
{
Return(Expr(0u)),
});
Func("fn", {}, ty.void_(),
{
Decl(Var("a", ty.u32())),
Decl(Const("r", nullptr, Op("a", Call("zero")))),
});
GeneratorImpl& gen = Build();
ASSERT_TRUE(gen.Generate());
EXPECT_EQ(gen.result(), R"(uint value_or_one_if_zero_uint(uint value) {
return value == 0u ? 1u : value;
}
uint zero() {
return 0u;
}
void fn() {
uint a = 0u;
const uint r = (a )" + Token() +
R"( value_or_one_if_zero_uint(zero()));
}
)");
}
TEST_P(HlslGeneratorDivModTest, DivOrModByExpression_vec_by_vec_i32) {
Func("zero", {}, ty.vec3<i32>(),
{
Return(vec3<i32>(0, 0, 0)),
});
Func("fn", {}, ty.void_(),
{
Decl(Var("a", ty.vec3<i32>())),
Decl(Const("r", nullptr, Op("a", Call("zero")))),
});
GeneratorImpl& gen = Build();
ASSERT_TRUE(gen.Generate());
EXPECT_EQ(gen.result(), R"(int3 value_or_one_if_zero_int3(int3 value) {
return value == int3(0, 0, 0) ? int3(1, 1, 1) : value;
}
int3 zero() {
return int3(0, 0, 0);
}
void fn() {
int3 a = int3(0, 0, 0);
const int3 r = (a )" + Token() +
R"( value_or_one_if_zero_int3(zero()));
}
)");
}
TEST_P(HlslGeneratorDivModTest, DivOrModByExpression_vec_by_scalar_i32) {
Func("zero", {}, ty.i32(),
{
Return(0),
});
Func("fn", {}, ty.void_(),
{
Decl(Var("a", ty.vec3<i32>())),
Decl(Const("r", nullptr, Op("a", Call("zero")))),
});
GeneratorImpl& gen = Build();
ASSERT_TRUE(gen.Generate());
EXPECT_EQ(gen.result(), R"(int value_or_one_if_zero_int(int value) {
return value == 0 ? 1 : value;
}
int zero() {
return 0;
}
void fn() {
int3 a = int3(0, 0, 0);
const int3 r = (a )" + Token() +
R"( value_or_one_if_zero_int(zero()));
}
)");
}
} // namespace HlslGeneratorDivMod
} // namespace
} // namespace hlsl
} // namespace writer
} // namespace tint