| // Copyright 2021 The Tint Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "gmock/gmock.h" |
| #include "src/resolver/resolver_test_helper.h" |
| #include "src/sem/reference_type.h" |
| #include "src/sem/type_constructor.h" |
| #include "src/sem/type_conversion.h" |
| |
| namespace tint { |
| namespace resolver { |
| namespace { |
| |
| using ::testing::HasSubstr; |
| |
| // Helpers and typedefs |
| using builder::alias; |
| using builder::alias1; |
| using builder::alias2; |
| using builder::alias3; |
| using builder::CreatePtrs; |
| using builder::CreatePtrsFor; |
| using builder::DataType; |
| using builder::f32; |
| using builder::i32; |
| using builder::mat2x2; |
| using builder::mat2x3; |
| using builder::mat3x2; |
| using builder::mat3x3; |
| using builder::mat4x4; |
| using builder::u32; |
| using builder::vec2; |
| using builder::vec3; |
| using builder::vec4; |
| |
| class ResolverTypeConstructorValidationTest : public resolver::TestHelper, |
| public testing::Test {}; |
| |
| namespace InferTypeTest { |
| struct Params { |
| builder::ast_type_func_ptr create_rhs_ast_type; |
| builder::ast_expr_func_ptr create_rhs_ast_value; |
| builder::sem_type_func_ptr create_rhs_sem_type; |
| }; |
| |
| template <typename T> |
| constexpr Params ParamsFor() { |
| return Params{DataType<T>::AST, DataType<T>::Expr, DataType<T>::Sem}; |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, InferTypeTest_Simple) { |
| // var a = 1; |
| // var b = a; |
| auto* a = Var("a", nullptr, ast::StorageClass::kNone, Expr(1)); |
| auto* b = Var("b", nullptr, ast::StorageClass::kNone, Expr("a")); |
| auto* a_ident = Expr("a"); |
| auto* b_ident = Expr("b"); |
| |
| WrapInFunction(a, b, Assign(a_ident, "a"), Assign(b_ident, "b")); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| ASSERT_TRUE(TypeOf(a_ident)->Is<sem::Reference>()); |
| EXPECT_TRUE( |
| TypeOf(a_ident)->As<sem::Reference>()->StoreType()->Is<sem::I32>()); |
| EXPECT_EQ(TypeOf(a_ident)->As<sem::Reference>()->StorageClass(), |
| ast::StorageClass::kFunction); |
| ASSERT_TRUE(TypeOf(b_ident)->Is<sem::Reference>()); |
| EXPECT_TRUE( |
| TypeOf(b_ident)->As<sem::Reference>()->StoreType()->Is<sem::I32>()); |
| EXPECT_EQ(TypeOf(b_ident)->As<sem::Reference>()->StorageClass(), |
| ast::StorageClass::kFunction); |
| } |
| |
| using InferTypeTest_FromConstructorExpression = ResolverTestWithParam<Params>; |
| TEST_P(InferTypeTest_FromConstructorExpression, All) { |
| // e.g. for vec3<f32> |
| // { |
| // var a = vec3<f32>(0.0, 0.0, 0.0) |
| // } |
| auto& params = GetParam(); |
| |
| auto* constructor_expr = params.create_rhs_ast_value(*this, 0); |
| |
| auto* a = Var("a", nullptr, ast::StorageClass::kNone, constructor_expr); |
| // Self-assign 'a' to force the expression to be resolved so we can test its |
| // type below |
| auto* a_ident = Expr("a"); |
| WrapInFunction(Decl(a), Assign(a_ident, "a")); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| auto* got = TypeOf(a_ident); |
| auto* expected = create<sem::Reference>(params.create_rhs_sem_type(*this), |
| ast::StorageClass::kFunction, |
| ast::Access::kReadWrite); |
| ASSERT_EQ(got, expected) << "got: " << FriendlyName(got) << "\n" |
| << "expected: " << FriendlyName(expected) << "\n"; |
| } |
| |
| static constexpr Params from_constructor_expression_cases[] = { |
| ParamsFor<bool>(), |
| ParamsFor<i32>(), |
| ParamsFor<u32>(), |
| ParamsFor<f32>(), |
| ParamsFor<vec3<i32>>(), |
| ParamsFor<vec3<u32>>(), |
| ParamsFor<vec3<f32>>(), |
| ParamsFor<mat3x3<f32>>(), |
| ParamsFor<alias<bool>>(), |
| ParamsFor<alias<i32>>(), |
| ParamsFor<alias<u32>>(), |
| ParamsFor<alias<f32>>(), |
| ParamsFor<alias<vec3<i32>>>(), |
| ParamsFor<alias<vec3<u32>>>(), |
| ParamsFor<alias<vec3<f32>>>(), |
| ParamsFor<alias<mat3x3<f32>>>(), |
| }; |
| INSTANTIATE_TEST_SUITE_P(ResolverTypeConstructorValidationTest, |
| InferTypeTest_FromConstructorExpression, |
| testing::ValuesIn(from_constructor_expression_cases)); |
| |
| using InferTypeTest_FromArithmeticExpression = ResolverTestWithParam<Params>; |
| TEST_P(InferTypeTest_FromArithmeticExpression, All) { |
| // e.g. for vec3<f32> |
| // { |
| // var a = vec3<f32>(2.0, 2.0, 2.0) * 3.0; |
| // } |
| auto& params = GetParam(); |
| |
| auto* arith_lhs_expr = params.create_rhs_ast_value(*this, 2); |
| auto* arith_rhs_expr = params.create_rhs_ast_value(*this, 3); |
| auto* constructor_expr = Mul(arith_lhs_expr, arith_rhs_expr); |
| |
| auto* a = Var("a", nullptr, constructor_expr); |
| // Self-assign 'a' to force the expression to be resolved so we can test its |
| // type below |
| auto* a_ident = Expr("a"); |
| WrapInFunction(Decl(a), Assign(a_ident, "a")); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| auto* got = TypeOf(a_ident); |
| auto* expected = create<sem::Reference>(params.create_rhs_sem_type(*this), |
| ast::StorageClass::kFunction, |
| ast::Access::kReadWrite); |
| ASSERT_EQ(got, expected) << "got: " << FriendlyName(got) << "\n" |
| << "expected: " << FriendlyName(expected) << "\n"; |
| } |
| static constexpr Params from_arithmetic_expression_cases[] = { |
| ParamsFor<i32>(), ParamsFor<u32>(), ParamsFor<f32>(), |
| ParamsFor<vec3<f32>>(), ParamsFor<mat3x3<f32>>(), |
| |
| // TODO(amaiorano): Uncomment once https://crbug.com/tint/680 is fixed |
| // ParamsFor<alias<ty_i32>>(), |
| // ParamsFor<alias<ty_u32>>(), |
| // ParamsFor<alias<ty_f32>>(), |
| // ParamsFor<alias<ty_vec3<f32>>>(), |
| // ParamsFor<alias<ty_mat3x3<f32>>>(), |
| }; |
| INSTANTIATE_TEST_SUITE_P(ResolverTypeConstructorValidationTest, |
| InferTypeTest_FromArithmeticExpression, |
| testing::ValuesIn(from_arithmetic_expression_cases)); |
| |
| using InferTypeTest_FromCallExpression = ResolverTestWithParam<Params>; |
| TEST_P(InferTypeTest_FromCallExpression, All) { |
| // e.g. for vec3<f32> |
| // |
| // fn foo() -> vec3<f32> { |
| // return vec3<f32>(); |
| // } |
| // |
| // fn bar() |
| // { |
| // var a = foo(); |
| // } |
| auto& params = GetParam(); |
| |
| Func("foo", {}, params.create_rhs_ast_type(*this), |
| {Return(Construct(params.create_rhs_ast_type(*this)))}, {}); |
| |
| auto* a = Var("a", nullptr, Call("foo")); |
| // Self-assign 'a' to force the expression to be resolved so we can test its |
| // type below |
| auto* a_ident = Expr("a"); |
| WrapInFunction(Decl(a), Assign(a_ident, "a")); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| auto* got = TypeOf(a_ident); |
| auto* expected = create<sem::Reference>(params.create_rhs_sem_type(*this), |
| ast::StorageClass::kFunction, |
| ast::Access::kReadWrite); |
| ASSERT_EQ(got, expected) << "got: " << FriendlyName(got) << "\n" |
| << "expected: " << FriendlyName(expected) << "\n"; |
| } |
| static constexpr Params from_call_expression_cases[] = { |
| ParamsFor<bool>(), |
| ParamsFor<i32>(), |
| ParamsFor<u32>(), |
| ParamsFor<f32>(), |
| ParamsFor<vec3<i32>>(), |
| ParamsFor<vec3<u32>>(), |
| ParamsFor<vec3<f32>>(), |
| ParamsFor<mat3x3<f32>>(), |
| ParamsFor<alias<bool>>(), |
| ParamsFor<alias<i32>>(), |
| ParamsFor<alias<u32>>(), |
| ParamsFor<alias<f32>>(), |
| ParamsFor<alias<vec3<i32>>>(), |
| ParamsFor<alias<vec3<u32>>>(), |
| ParamsFor<alias<vec3<f32>>>(), |
| ParamsFor<alias<mat3x3<f32>>>(), |
| }; |
| INSTANTIATE_TEST_SUITE_P(ResolverTypeConstructorValidationTest, |
| InferTypeTest_FromCallExpression, |
| testing::ValuesIn(from_call_expression_cases)); |
| |
| } // namespace InferTypeTest |
| |
| namespace ConversionConstructTest { |
| enum class Kind { |
| Construct, |
| Conversion, |
| }; |
| |
| struct Params { |
| Kind kind; |
| builder::ast_type_func_ptr lhs_type; |
| builder::ast_type_func_ptr rhs_type; |
| builder::ast_expr_func_ptr rhs_value_expr; |
| }; |
| |
| template <typename LhsType, typename RhsType> |
| constexpr Params ParamsFor(Kind kind) { |
| return Params{kind, DataType<LhsType>::AST, DataType<RhsType>::AST, |
| DataType<RhsType>::Expr}; |
| } |
| |
| static constexpr Params valid_cases[] = { |
| // Direct init (non-conversions) |
| ParamsFor<bool, bool>(Kind::Construct), // |
| ParamsFor<i32, i32>(Kind::Construct), // |
| ParamsFor<u32, u32>(Kind::Construct), // |
| ParamsFor<f32, f32>(Kind::Construct), // |
| ParamsFor<vec3<bool>, vec3<bool>>(Kind::Construct), // |
| ParamsFor<vec3<i32>, vec3<i32>>(Kind::Construct), // |
| ParamsFor<vec3<u32>, vec3<u32>>(Kind::Construct), // |
| ParamsFor<vec3<f32>, vec3<f32>>(Kind::Construct), // |
| |
| // Splat |
| ParamsFor<vec3<bool>, bool>(Kind::Construct), // |
| ParamsFor<vec3<i32>, i32>(Kind::Construct), // |
| ParamsFor<vec3<u32>, u32>(Kind::Construct), // |
| ParamsFor<vec3<f32>, f32>(Kind::Construct), // |
| |
| // Conversion |
| ParamsFor<bool, u32>(Kind::Conversion), // |
| ParamsFor<bool, i32>(Kind::Conversion), // |
| ParamsFor<bool, f32>(Kind::Conversion), // |
| |
| ParamsFor<i32, bool>(Kind::Conversion), // |
| ParamsFor<i32, u32>(Kind::Conversion), // |
| ParamsFor<i32, f32>(Kind::Conversion), // |
| |
| ParamsFor<u32, bool>(Kind::Conversion), // |
| ParamsFor<u32, i32>(Kind::Conversion), // |
| ParamsFor<u32, f32>(Kind::Conversion), // |
| |
| ParamsFor<f32, bool>(Kind::Conversion), // |
| ParamsFor<f32, u32>(Kind::Conversion), // |
| ParamsFor<f32, i32>(Kind::Conversion), // |
| |
| ParamsFor<vec3<bool>, vec3<u32>>(Kind::Conversion), // |
| ParamsFor<vec3<bool>, vec3<i32>>(Kind::Conversion), // |
| ParamsFor<vec3<bool>, vec3<f32>>(Kind::Conversion), // |
| |
| ParamsFor<vec3<i32>, vec3<bool>>(Kind::Conversion), // |
| ParamsFor<vec3<i32>, vec3<u32>>(Kind::Conversion), // |
| ParamsFor<vec3<i32>, vec3<f32>>(Kind::Conversion), // |
| |
| ParamsFor<vec3<u32>, vec3<bool>>(Kind::Conversion), // |
| ParamsFor<vec3<u32>, vec3<i32>>(Kind::Conversion), // |
| ParamsFor<vec3<u32>, vec3<f32>>(Kind::Conversion), // |
| |
| ParamsFor<vec3<f32>, vec3<bool>>(Kind::Conversion), // |
| ParamsFor<vec3<f32>, vec3<u32>>(Kind::Conversion), // |
| ParamsFor<vec3<f32>, vec3<i32>>(Kind::Conversion), // |
| }; |
| |
| using ConversionConstructorValidTest = ResolverTestWithParam<Params>; |
| TEST_P(ConversionConstructorValidTest, All) { |
| auto& params = GetParam(); |
| |
| // var a : <lhs_type1> = <lhs_type2>(<rhs_type>(<rhs_value_expr>)); |
| auto* lhs_type1 = params.lhs_type(*this); |
| auto* lhs_type2 = params.lhs_type(*this); |
| auto* rhs_type = params.rhs_type(*this); |
| auto* rhs_value_expr = params.rhs_value_expr(*this, 0); |
| |
| std::stringstream ss; |
| ss << FriendlyName(lhs_type1) << " = " << FriendlyName(lhs_type2) << "(" |
| << FriendlyName(rhs_type) << "(<rhs value expr>))"; |
| SCOPED_TRACE(ss.str()); |
| |
| auto* arg = Construct(rhs_type, rhs_value_expr); |
| auto* tc = Construct(lhs_type2, arg); |
| auto* a = Var("a", lhs_type1, ast::StorageClass::kNone, tc); |
| |
| // Self-assign 'a' to force the expression to be resolved so we can test its |
| // type below |
| auto* a_ident = Expr("a"); |
| WrapInFunction(Decl(a), Assign(a_ident, "a")); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| auto* call = Sem().Get(tc); |
| ASSERT_NE(call, nullptr); |
| switch (params.kind) { |
| case Kind::Construct: { |
| auto* ctor = call->Target()->As<sem::TypeConstructor>(); |
| ASSERT_NE(ctor, nullptr); |
| EXPECT_EQ(call->Type(), ctor->ReturnType()); |
| ASSERT_EQ(ctor->Parameters().size(), 1u); |
| EXPECT_EQ(ctor->Parameters()[0]->Type(), TypeOf(arg)); |
| break; |
| } |
| case Kind::Conversion: { |
| auto* conv = call->Target()->As<sem::TypeConversion>(); |
| ASSERT_NE(conv, nullptr); |
| EXPECT_EQ(call->Type(), conv->ReturnType()); |
| ASSERT_EQ(conv->Parameters().size(), 1u); |
| EXPECT_EQ(conv->Parameters()[0]->Type(), TypeOf(arg)); |
| break; |
| } |
| } |
| } |
| INSTANTIATE_TEST_SUITE_P(ResolverTypeConstructorValidationTest, |
| ConversionConstructorValidTest, |
| testing::ValuesIn(valid_cases)); |
| |
| constexpr CreatePtrs all_types[] = { |
| CreatePtrsFor<bool>(), // |
| CreatePtrsFor<u32>(), // |
| CreatePtrsFor<i32>(), // |
| CreatePtrsFor<f32>(), // |
| CreatePtrsFor<vec3<bool>>(), // |
| CreatePtrsFor<vec3<i32>>(), // |
| CreatePtrsFor<vec3<u32>>(), // |
| CreatePtrsFor<vec3<f32>>(), // |
| CreatePtrsFor<mat3x3<i32>>(), // |
| CreatePtrsFor<mat3x3<u32>>(), // |
| CreatePtrsFor<mat3x3<f32>>(), // |
| CreatePtrsFor<mat2x3<i32>>(), // |
| CreatePtrsFor<mat2x3<u32>>(), // |
| CreatePtrsFor<mat2x3<f32>>(), // |
| CreatePtrsFor<mat3x2<i32>>(), // |
| CreatePtrsFor<mat3x2<u32>>(), // |
| CreatePtrsFor<mat3x2<f32>>() // |
| }; |
| |
| using ConversionConstructorInvalidTest = |
| ResolverTestWithParam<std::tuple<CreatePtrs, // lhs |
| CreatePtrs // rhs |
| >>; |
| TEST_P(ConversionConstructorInvalidTest, All) { |
| auto& params = GetParam(); |
| |
| auto& lhs_params = std::get<0>(params); |
| auto& rhs_params = std::get<1>(params); |
| |
| // Skip test for valid cases |
| for (auto& v : valid_cases) { |
| if (v.lhs_type == lhs_params.ast && v.rhs_type == rhs_params.ast && |
| v.rhs_value_expr == rhs_params.expr) { |
| return; |
| } |
| } |
| // Skip non-conversions |
| if (lhs_params.ast == rhs_params.ast) { |
| return; |
| } |
| |
| // var a : <lhs_type1> = <lhs_type2>(<rhs_type>(<rhs_value_expr>)); |
| auto* lhs_type1 = lhs_params.ast(*this); |
| auto* lhs_type2 = lhs_params.ast(*this); |
| auto* rhs_type = rhs_params.ast(*this); |
| auto* rhs_value_expr = rhs_params.expr(*this, 0); |
| |
| std::stringstream ss; |
| ss << FriendlyName(lhs_type1) << " = " << FriendlyName(lhs_type2) << "(" |
| << FriendlyName(rhs_type) << "(<rhs value expr>))"; |
| SCOPED_TRACE(ss.str()); |
| |
| auto* a = Var("a", lhs_type1, ast::StorageClass::kNone, |
| Construct(lhs_type2, Construct(rhs_type, rhs_value_expr))); |
| |
| // Self-assign 'a' to force the expression to be resolved so we can test its |
| // type below |
| auto* a_ident = Expr("a"); |
| WrapInFunction(Decl(a), Assign(a_ident, "a")); |
| |
| ASSERT_FALSE(r()->Resolve()); |
| } |
| INSTANTIATE_TEST_SUITE_P(ResolverTypeConstructorValidationTest, |
| ConversionConstructorInvalidTest, |
| testing::Combine(testing::ValuesIn(all_types), |
| testing::ValuesIn(all_types))); |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| ConversionConstructorInvalid_TooManyInitializers) { |
| auto* a = Var("a", ty.f32(), ast::StorageClass::kNone, |
| Construct(Source{{12, 34}}, ty.f32(), Expr(1.0f), Expr(2.0f))); |
| WrapInFunction(a); |
| |
| ASSERT_FALSE(r()->Resolve()); |
| ASSERT_EQ(r()->error(), |
| "12:34 error: expected zero or one value in constructor, got 2"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| ConversionConstructorInvalid_InvalidInitializer) { |
| auto* a = |
| Var("a", ty.f32(), ast::StorageClass::kNone, |
| Construct(Source{{12, 34}}, ty.f32(), Construct(ty.array<f32, 4>()))); |
| WrapInFunction(a); |
| |
| ASSERT_FALSE(r()->Resolve()); |
| ASSERT_EQ(r()->error(), |
| "12:34 error: cannot construct 'f32' with a value of type " |
| "'array<f32, 4>'"); |
| } |
| |
| } // namespace ConversionConstructTest |
| |
| namespace ArrayConstructor { |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Array_ZeroValue_Pass) { |
| // array<u32, 10>(); |
| auto* tc = array<u32, 10>(); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| auto* call = Sem().Get(tc); |
| ASSERT_NE(call, nullptr); |
| EXPECT_TRUE(call->Type()->Is<sem::Array>()); |
| auto* ctor = call->Target()->As<sem::TypeConstructor>(); |
| ASSERT_NE(ctor, nullptr); |
| EXPECT_EQ(call->Type(), ctor->ReturnType()); |
| ASSERT_EQ(ctor->Parameters().size(), 0u); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Array_type_match) { |
| // array<u32, 3>(0u, 10u. 20u); |
| auto* tc = array<u32, 3>(Expr(0u), Expr(10u), Expr(20u)); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| auto* call = Sem().Get(tc); |
| ASSERT_NE(call, nullptr); |
| EXPECT_TRUE(call->Type()->Is<sem::Array>()); |
| auto* ctor = call->Target()->As<sem::TypeConstructor>(); |
| ASSERT_NE(ctor, nullptr); |
| EXPECT_EQ(call->Type(), ctor->ReturnType()); |
| ASSERT_EQ(ctor->Parameters().size(), 3u); |
| EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::U32>()); |
| EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<sem::U32>()); |
| EXPECT_TRUE(ctor->Parameters()[2]->Type()->Is<sem::U32>()); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Array_type_Mismatch_U32F32) { |
| // array<u32, 3>(0u, 1.0f, 20u); |
| auto* tc = array<u32, 3>(Expr(0u), Expr(Source{{12, 34}}, 1.0f), Expr(20u)); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "12:34 error: type in array constructor does not match array type: " |
| "expected 'u32', found 'f32'"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Array_ScalarArgumentTypeMismatch_F32I32) { |
| // array<f32, 1>(1); |
| auto* tc = array<f32, 1>(Expr(Source{{12, 34}}, 1)); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "12:34 error: type in array constructor does not match array type: " |
| "expected 'f32', found 'i32'"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Array_ScalarArgumentTypeMismatch_U32I32) { |
| // array<u32, 6>(1, 0u, 0u, 0u, 0u, 0u); |
| auto* tc = array<u32, 1>(Expr(Source{{12, 34}}, 1), Expr(0u), Expr(0u), |
| Expr(0u), Expr(0u)); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "12:34 error: type in array constructor does not match array type: " |
| "expected 'u32', found 'i32'"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Array_ScalarArgumentTypeMismatch_Vec2) { |
| // array<i32, 3>(1, vec2<i32>()); |
| auto* tc = |
| array<i32, 3>(Expr(1), Construct(Source{{12, 34}}, ty.vec2<i32>())); |
| WrapInFunction(tc); |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "12:34 error: type in array constructor does not match array type: " |
| "expected 'i32', found 'vec2<i32>'"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_ArrayOfVector_SubElemTypeMismatch_I32U32) { |
| // array<vec3<i32>, 2>(vec3<i32>(), vec3<u32>()); |
| auto* e0 = vec3<i32>(); |
| SetSource(Source::Location({12, 34})); |
| auto* e1 = vec3<u32>(); |
| auto* t = Construct(ty.array(ty.vec3<i32>(), 2), e0, e1); |
| WrapInFunction(t); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "12:34 error: type in array constructor does not match array type: " |
| "expected 'vec3<i32>', found 'vec3<u32>'"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_ArrayOfVector_SubElemTypeMismatch_I32Bool) { |
| // array<vec3<i32>, 2>(vec3<i32>(), vec3<bool>(true, true, false)); |
| SetSource(Source::Location({12, 34})); |
| auto* e0 = vec3<bool>(true, true, false); |
| auto* e1 = vec3<i32>(); |
| auto* t = Construct(ty.array(ty.vec3<i32>(), 2), e0, e1); |
| WrapInFunction(t); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "12:34 error: type in array constructor does not match array type: " |
| "expected 'vec3<i32>', found 'vec3<bool>'"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_ArrayOfArray_SubElemSizeMismatch) { |
| // array<array<i32, 2>, 2>(array<i32, 3>(), array<i32, 2>()); |
| SetSource(Source::Location({12, 34})); |
| auto* e0 = array<i32, 3>(); |
| auto* e1 = array<i32, 2>(); |
| auto* t = Construct(ty.array(ty.array<i32, 2>(), 2), e0, e1); |
| WrapInFunction(t); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "12:34 error: type in array constructor does not match array type: " |
| "expected 'array<i32, 2>', found 'array<i32, 3>'"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_ArrayOfArray_SubElemTypeMismatch) { |
| // array<array<i32, 2>, 2>(array<i32, 2>(), array<u32, 2>()); |
| auto* e0 = array<i32, 2>(); |
| SetSource(Source::Location({12, 34})); |
| auto* e1 = array<u32, 2>(); |
| auto* t = Construct(ty.array(ty.array<i32, 2>(), 2), e0, e1); |
| WrapInFunction(t); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "12:34 error: type in array constructor does not match array type: " |
| "expected 'array<i32, 2>', found 'array<u32, 2>'"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Array_TooFewElements) { |
| // array<i32, 4>(1, 2, 3); |
| SetSource(Source::Location({12, 34})); |
| auto* tc = array<i32, 4>(Expr(1), Expr(2), Expr(3)); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "12:34 error: array constructor has too few elements: expected 4, " |
| "found 3"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Array_TooManyElements) { |
| // array<i32, 4>(1, 2, 3, 4, 5); |
| SetSource(Source::Location({12, 34})); |
| auto* tc = array<i32, 4>(Expr(1), Expr(2), Expr(3), Expr(4), Expr(5)); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "12:34 error: array constructor has too many " |
| "elements: expected 4, " |
| "found 5"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Array_Runtime) { |
| // array<i32>(1); |
| auto* tc = array(ty.i32(), nullptr, Expr(Source{{12, 34}}, 1)); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), "error: cannot init a runtime-sized array"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Array_RuntimeZeroValue) { |
| // array<i32>(); |
| auto* tc = array(ty.i32(), nullptr); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), "error: cannot init a runtime-sized array"); |
| } |
| |
| } // namespace ArrayConstructor |
| |
| namespace ScalarConstructor { |
| |
| TEST_F(ResolverTypeConstructorValidationTest, Expr_Construct_i32_Success) { |
| auto* expr = Construct<i32>(Expr(123)); |
| WrapInFunction(expr); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(expr), nullptr); |
| ASSERT_TRUE(TypeOf(expr)->Is<sem::I32>()); |
| |
| auto* call = Sem().Get(expr); |
| ASSERT_NE(call, nullptr); |
| auto* ctor = call->Target()->As<sem::TypeConstructor>(); |
| ASSERT_NE(ctor, nullptr); |
| EXPECT_EQ(call->Type(), ctor->ReturnType()); |
| ASSERT_EQ(ctor->Parameters().size(), 1u); |
| EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::I32>()); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, Expr_Construct_u32_Success) { |
| auto* expr = Construct<u32>(Expr(123u)); |
| WrapInFunction(expr); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(expr), nullptr); |
| ASSERT_TRUE(TypeOf(expr)->Is<sem::U32>()); |
| |
| auto* call = Sem().Get(expr); |
| ASSERT_NE(call, nullptr); |
| auto* ctor = call->Target()->As<sem::TypeConstructor>(); |
| ASSERT_NE(ctor, nullptr); |
| EXPECT_EQ(call->Type(), ctor->ReturnType()); |
| ASSERT_EQ(ctor->Parameters().size(), 1u); |
| EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::U32>()); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, Expr_Construct_f32_Success) { |
| auto* expr = Construct<f32>(Expr(1.23f)); |
| WrapInFunction(expr); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(expr), nullptr); |
| ASSERT_TRUE(TypeOf(expr)->Is<sem::F32>()); |
| |
| auto* call = Sem().Get(expr); |
| ASSERT_NE(call, nullptr); |
| auto* ctor = call->Target()->As<sem::TypeConstructor>(); |
| ASSERT_NE(ctor, nullptr); |
| EXPECT_EQ(call->Type(), ctor->ReturnType()); |
| ASSERT_EQ(ctor->Parameters().size(), 1u); |
| EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::F32>()); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, Expr_Convert_f32_to_i32_Success) { |
| auto* expr = Construct<i32>(1.23f); |
| WrapInFunction(expr); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(expr), nullptr); |
| ASSERT_TRUE(TypeOf(expr)->Is<sem::I32>()); |
| |
| auto* call = Sem().Get(expr); |
| ASSERT_NE(call, nullptr); |
| auto* ctor = call->Target()->As<sem::TypeConversion>(); |
| ASSERT_NE(ctor, nullptr); |
| EXPECT_EQ(call->Type(), ctor->ReturnType()); |
| ASSERT_EQ(ctor->Parameters().size(), 1u); |
| EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::F32>()); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, Expr_Convert_i32_to_u32_Success) { |
| auto* expr = Construct<u32>(123); |
| WrapInFunction(expr); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(expr), nullptr); |
| ASSERT_TRUE(TypeOf(expr)->Is<sem::U32>()); |
| |
| auto* call = Sem().Get(expr); |
| ASSERT_NE(call, nullptr); |
| auto* ctor = call->Target()->As<sem::TypeConversion>(); |
| ASSERT_NE(ctor, nullptr); |
| EXPECT_EQ(call->Type(), ctor->ReturnType()); |
| ASSERT_EQ(ctor->Parameters().size(), 1u); |
| EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::I32>()); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, Expr_Convert_u32_to_f32_Success) { |
| auto* expr = Construct<f32>(123u); |
| WrapInFunction(expr); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(expr), nullptr); |
| ASSERT_TRUE(TypeOf(expr)->Is<sem::F32>()); |
| |
| auto* call = Sem().Get(expr); |
| ASSERT_NE(call, nullptr); |
| auto* ctor = call->Target()->As<sem::TypeConversion>(); |
| ASSERT_NE(ctor, nullptr); |
| EXPECT_EQ(call->Type(), ctor->ReturnType()); |
| ASSERT_EQ(ctor->Parameters().size(), 1u); |
| EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::U32>()); |
| } |
| |
| } // namespace ScalarConstructor |
| |
| namespace VectorConstructor { |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec2F32_Error_ScalarArgumentTypeMismatch) { |
| auto* tc = vec2<f32>(Expr(Source{{12, 34}}, 1), 1.0f); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "12:34 error: type in vector constructor does not match vector " |
| "type: expected 'f32', found 'i32'"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec2U32_Error_ScalarArgumentTypeMismatch) { |
| auto* tc = vec2<u32>(1u, Expr(Source{{12, 34}}, 1)); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "12:34 error: type in vector constructor does not match vector " |
| "type: expected 'u32', found 'i32'"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec2I32_Error_ScalarArgumentTypeMismatch) { |
| auto* tc = vec2<i32>(Expr(Source{{12, 34}}, 1u), 1); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "12:34 error: type in vector constructor does not match vector " |
| "type: expected 'i32', found 'u32'"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec2Bool_Error_ScalarArgumentTypeMismatch) { |
| auto* tc = vec2<bool>(true, Expr(Source{{12, 34}}, 1)); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "12:34 error: type in vector constructor does not match vector " |
| "type: expected 'bool', found 'i32'"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec2_Error_Vec3ArgumentCardinalityTooLarge) { |
| auto* tc = vec2<f32>(Construct(Source{{12, 34}}, ty.vec3<f32>())); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ( |
| r()->error(), |
| "12:34 error: attempted to construct 'vec2<f32>' with 3 component(s)"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec2_Error_Vec4ArgumentCardinalityTooLarge) { |
| auto* tc = vec2<f32>(Construct(Source{{12, 34}}, ty.vec4<f32>())); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ( |
| r()->error(), |
| "12:34 error: attempted to construct 'vec2<f32>' with 4 component(s)"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec2_Error_TooManyArgumentsScalar) { |
| auto* tc = |
| vec2<f32>(Expr(Source{{12, 34}}, 1.0f), Expr(Source{{12, 40}}, 1.0f), |
| Expr(Source{{12, 46}}, 1.0f)); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ( |
| r()->error(), |
| "12:34 error: attempted to construct 'vec2<f32>' with 3 component(s)"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec2_Error_TooManyArgumentsVector) { |
| auto* tc = vec2<f32>(Construct(Source{{12, 34}}, ty.vec2<f32>()), |
| Construct(Source{{12, 40}}, ty.vec2<f32>())); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ( |
| r()->error(), |
| "12:34 error: attempted to construct 'vec2<f32>' with 4 component(s)"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec2_Error_TooManyArgumentsVectorAndScalar) { |
| auto* tc = vec2<f32>(Construct(Source{{12, 34}}, ty.vec2<f32>()), |
| Expr(Source{{12, 40}}, 1.0f)); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ( |
| r()->error(), |
| "12:34 error: attempted to construct 'vec2<f32>' with 3 component(s)"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec2_Error_InvalidArgumentType) { |
| auto* tc = vec2<f32>(Construct(Source{{12, 34}}, ty.mat2x2<f32>())); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "12:34 error: expected vector or scalar type in vector " |
| "constructor; found: mat2x2<f32>"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec2_Success_ZeroValue) { |
| auto* tc = vec2<f32>(); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(tc), nullptr); |
| ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>()); |
| EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>()); |
| EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 2u); |
| |
| auto* call = Sem().Get(tc); |
| ASSERT_NE(call, nullptr); |
| auto* ctor = call->Target()->As<sem::TypeConstructor>(); |
| ASSERT_NE(ctor, nullptr); |
| EXPECT_EQ(call->Type(), ctor->ReturnType()); |
| ASSERT_EQ(ctor->Parameters().size(), 0u); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec2F32_Success_Scalar) { |
| auto* tc = vec2<f32>(1.0f, 1.0f); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(tc), nullptr); |
| ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>()); |
| EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>()); |
| EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 2u); |
| |
| auto* call = Sem().Get(tc); |
| ASSERT_NE(call, nullptr); |
| auto* ctor = call->Target()->As<sem::TypeConstructor>(); |
| ASSERT_NE(ctor, nullptr); |
| EXPECT_EQ(call->Type(), ctor->ReturnType()); |
| ASSERT_EQ(ctor->Parameters().size(), 2u); |
| EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::F32>()); |
| EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<sem::F32>()); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec2U32_Success_Scalar) { |
| auto* tc = vec2<u32>(1u, 1u); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(tc), nullptr); |
| ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>()); |
| EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::U32>()); |
| EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 2u); |
| |
| auto* call = Sem().Get(tc); |
| ASSERT_NE(call, nullptr); |
| auto* ctor = call->Target()->As<sem::TypeConstructor>(); |
| ASSERT_NE(ctor, nullptr); |
| EXPECT_EQ(call->Type(), ctor->ReturnType()); |
| ASSERT_EQ(ctor->Parameters().size(), 2u); |
| EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::U32>()); |
| EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<sem::U32>()); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec2I32_Success_Scalar) { |
| auto* tc = vec2<i32>(1, 1); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(tc), nullptr); |
| ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>()); |
| EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::I32>()); |
| EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 2u); |
| |
| auto* call = Sem().Get(tc); |
| ASSERT_NE(call, nullptr); |
| auto* ctor = call->Target()->As<sem::TypeConstructor>(); |
| ASSERT_NE(ctor, nullptr); |
| EXPECT_EQ(call->Type(), ctor->ReturnType()); |
| ASSERT_EQ(ctor->Parameters().size(), 2u); |
| EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::I32>()); |
| EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<sem::I32>()); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec2Bool_Success_Scalar) { |
| auto* tc = vec2<bool>(true, false); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(tc), nullptr); |
| ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>()); |
| EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::Bool>()); |
| EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 2u); |
| |
| auto* call = Sem().Get(tc); |
| ASSERT_NE(call, nullptr); |
| auto* ctor = call->Target()->As<sem::TypeConstructor>(); |
| ASSERT_NE(ctor, nullptr); |
| EXPECT_EQ(call->Type(), ctor->ReturnType()); |
| ASSERT_EQ(ctor->Parameters().size(), 2u); |
| EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::Bool>()); |
| EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<sem::Bool>()); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec2_Success_Identity) { |
| auto* tc = vec2<f32>(vec2<f32>()); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(tc), nullptr); |
| ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>()); |
| EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>()); |
| EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 2u); |
| |
| auto* call = Sem().Get(tc); |
| ASSERT_NE(call, nullptr); |
| auto* ctor = call->Target()->As<sem::TypeConstructor>(); |
| ASSERT_NE(ctor, nullptr); |
| EXPECT_EQ(call->Type(), ctor->ReturnType()); |
| ASSERT_EQ(ctor->Parameters().size(), 1u); |
| EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::Vector>()); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec2_Success_Vec2TypeConversion) { |
| auto* tc = vec2<f32>(vec2<i32>()); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(tc), nullptr); |
| ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>()); |
| EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>()); |
| EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 2u); |
| |
| auto* call = Sem().Get(tc); |
| ASSERT_NE(call, nullptr); |
| auto* ctor = call->Target()->As<sem::TypeConversion>(); |
| ASSERT_NE(ctor, nullptr); |
| EXPECT_EQ(call->Type(), ctor->ReturnType()); |
| ASSERT_EQ(ctor->Parameters().size(), 1u); |
| EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::Vector>()); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec3F32_Error_ScalarArgumentTypeMismatch) { |
| auto* tc = vec3<f32>(1.0f, 1.0f, Expr(Source{{12, 34}}, 1)); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "12:34 error: type in vector constructor does not match vector " |
| "type: expected 'f32', found 'i32'"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec3U32_Error_ScalarArgumentTypeMismatch) { |
| auto* tc = vec3<u32>(1u, Expr(Source{{12, 34}}, 1), 1u); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "12:34 error: type in vector constructor does not match vector " |
| "type: expected 'u32', found 'i32'"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec3I32_Error_ScalarArgumentTypeMismatch) { |
| auto* tc = vec3<i32>(1, Expr(Source{{12, 34}}, 1u), 1); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "12:34 error: type in vector constructor does not match vector " |
| "type: expected 'i32', found 'u32'"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec3Bool_Error_ScalarArgumentTypeMismatch) { |
| auto* tc = vec3<bool>(true, Expr(Source{{12, 34}}, 1), false); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "12:34 error: type in vector constructor does not match vector " |
| "type: expected 'bool', found 'i32'"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec3_Error_Vec4ArgumentCardinalityTooLarge) { |
| auto* tc = vec3<f32>(Construct(Source{{12, 34}}, ty.vec4<f32>())); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ( |
| r()->error(), |
| "12:34 error: attempted to construct 'vec3<f32>' with 4 component(s)"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec3_Error_TooFewArgumentsScalar) { |
| auto* tc = |
| vec3<f32>(Expr(Source{{12, 34}}, 1.0f), Expr(Source{{12, 40}}, 1.0f)); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ( |
| r()->error(), |
| "12:34 error: attempted to construct 'vec3<f32>' with 2 component(s)"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec3_Error_TooManyArgumentsScalar) { |
| auto* tc = |
| vec3<f32>(Expr(Source{{12, 34}}, 1.0f), Expr(Source{{12, 40}}, 1.0f), |
| Expr(Source{{12, 46}}, 1.0f), Expr(Source{{12, 52}}, 1.0f)); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ( |
| r()->error(), |
| "12:34 error: attempted to construct 'vec3<f32>' with 4 component(s)"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec3_Error_TooFewArgumentsVec2) { |
| auto* tc = vec3<f32>(Construct(Source{{12, 34}}, ty.vec2<f32>())); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ( |
| r()->error(), |
| "12:34 error: attempted to construct 'vec3<f32>' with 2 component(s)"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec3_Error_TooManyArgumentsVec2) { |
| auto* tc = vec3<f32>(Construct(Source{{12, 34}}, ty.vec2<f32>()), |
| Construct(Source{{12, 40}}, ty.vec2<f32>())); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ( |
| r()->error(), |
| "12:34 error: attempted to construct 'vec3<f32>' with 4 component(s)"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec3_Error_TooManyArgumentsVec2AndScalar) { |
| auto* tc = |
| vec3<f32>(Construct(Source{{12, 34}}, ty.vec2<f32>()), |
| Expr(Source{{12, 40}}, 1.0f), Expr(Source{{12, 46}}, 1.0f)); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ( |
| r()->error(), |
| "12:34 error: attempted to construct 'vec3<f32>' with 4 component(s)"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec3_Error_TooManyArgumentsVec3) { |
| auto* tc = vec3<f32>(Construct(Source{{12, 34}}, ty.vec3<f32>()), |
| Expr(Source{{12, 40}}, 1.0f)); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ( |
| r()->error(), |
| "12:34 error: attempted to construct 'vec3<f32>' with 4 component(s)"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec3_Error_InvalidArgumentType) { |
| auto* tc = vec3<f32>(Construct(Source{{12, 34}}, ty.mat2x2<f32>())); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "12:34 error: expected vector or scalar type in vector " |
| "constructor; found: mat2x2<f32>"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec3_Success_ZeroValue) { |
| auto* tc = vec3<f32>(); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(tc), nullptr); |
| ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>()); |
| EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>()); |
| EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 3u); |
| |
| auto* call = Sem().Get(tc); |
| ASSERT_NE(call, nullptr); |
| auto* ctor = call->Target()->As<sem::TypeConstructor>(); |
| ASSERT_NE(ctor, nullptr); |
| EXPECT_EQ(call->Type(), ctor->ReturnType()); |
| ASSERT_EQ(ctor->Parameters().size(), 0u); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec3F32_Success_Scalar) { |
| auto* tc = vec3<f32>(1.0f, 1.0f, 1.0f); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(tc), nullptr); |
| ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>()); |
| EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>()); |
| EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 3u); |
| |
| auto* call = Sem().Get(tc); |
| ASSERT_NE(call, nullptr); |
| auto* ctor = call->Target()->As<sem::TypeConstructor>(); |
| ASSERT_NE(ctor, nullptr); |
| EXPECT_EQ(call->Type(), ctor->ReturnType()); |
| ASSERT_EQ(ctor->Parameters().size(), 3u); |
| EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::F32>()); |
| EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<sem::F32>()); |
| EXPECT_TRUE(ctor->Parameters()[2]->Type()->Is<sem::F32>()); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec3U32_Success_Scalar) { |
| auto* tc = vec3<u32>(1u, 1u, 1u); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(tc), nullptr); |
| ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>()); |
| EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::U32>()); |
| EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 3u); |
| |
| auto* call = Sem().Get(tc); |
| ASSERT_NE(call, nullptr); |
| auto* ctor = call->Target()->As<sem::TypeConstructor>(); |
| ASSERT_NE(ctor, nullptr); |
| EXPECT_EQ(call->Type(), ctor->ReturnType()); |
| ASSERT_EQ(ctor->Parameters().size(), 3u); |
| EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::U32>()); |
| EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<sem::U32>()); |
| EXPECT_TRUE(ctor->Parameters()[2]->Type()->Is<sem::U32>()); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec3I32_Success_Scalar) { |
| auto* tc = vec3<i32>(1, 1, 1); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(tc), nullptr); |
| ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>()); |
| EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::I32>()); |
| EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 3u); |
| |
| auto* call = Sem().Get(tc); |
| ASSERT_NE(call, nullptr); |
| auto* ctor = call->Target()->As<sem::TypeConstructor>(); |
| ASSERT_NE(ctor, nullptr); |
| EXPECT_EQ(call->Type(), ctor->ReturnType()); |
| ASSERT_EQ(ctor->Parameters().size(), 3u); |
| EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::I32>()); |
| EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<sem::I32>()); |
| EXPECT_TRUE(ctor->Parameters()[2]->Type()->Is<sem::I32>()); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec3Bool_Success_Scalar) { |
| auto* tc = vec3<bool>(true, false, true); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(tc), nullptr); |
| ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>()); |
| EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::Bool>()); |
| EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 3u); |
| |
| auto* call = Sem().Get(tc); |
| ASSERT_NE(call, nullptr); |
| auto* ctor = call->Target()->As<sem::TypeConstructor>(); |
| ASSERT_NE(ctor, nullptr); |
| EXPECT_EQ(call->Type(), ctor->ReturnType()); |
| ASSERT_EQ(ctor->Parameters().size(), 3u); |
| EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::Bool>()); |
| EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<sem::Bool>()); |
| EXPECT_TRUE(ctor->Parameters()[2]->Type()->Is<sem::Bool>()); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec3_Success_Vec2AndScalar) { |
| auto* tc = vec3<f32>(vec2<f32>(), 1.0f); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(tc), nullptr); |
| ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>()); |
| EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>()); |
| EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 3u); |
| |
| auto* call = Sem().Get(tc); |
| ASSERT_NE(call, nullptr); |
| auto* ctor = call->Target()->As<sem::TypeConstructor>(); |
| ASSERT_NE(ctor, nullptr); |
| EXPECT_EQ(call->Type(), ctor->ReturnType()); |
| ASSERT_EQ(ctor->Parameters().size(), 2u); |
| EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::Vector>()); |
| EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<sem::F32>()); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec3_Success_ScalarAndVec2) { |
| auto* tc = vec3<f32>(1.0f, vec2<f32>()); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(tc), nullptr); |
| ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>()); |
| EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>()); |
| EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 3u); |
| |
| auto* call = Sem().Get(tc); |
| ASSERT_NE(call, nullptr); |
| auto* ctor = call->Target()->As<sem::TypeConstructor>(); |
| ASSERT_NE(ctor, nullptr); |
| EXPECT_EQ(call->Type(), ctor->ReturnType()); |
| ASSERT_EQ(ctor->Parameters().size(), 2u); |
| EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::F32>()); |
| EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<sem::Vector>()); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec3_Success_Identity) { |
| auto* tc = vec3<f32>(vec3<f32>()); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(tc), nullptr); |
| ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>()); |
| EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>()); |
| EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 3u); |
| |
| auto* call = Sem().Get(tc); |
| ASSERT_NE(call, nullptr); |
| auto* ctor = call->Target()->As<sem::TypeConstructor>(); |
| ASSERT_NE(ctor, nullptr); |
| EXPECT_EQ(call->Type(), ctor->ReturnType()); |
| ASSERT_EQ(ctor->Parameters().size(), 1u); |
| EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::Vector>()); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec3_Success_Vec3TypeConversion) { |
| auto* tc = vec3<f32>(vec3<i32>()); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(tc), nullptr); |
| ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>()); |
| EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>()); |
| EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 3u); |
| |
| auto* call = Sem().Get(tc); |
| ASSERT_NE(call, nullptr); |
| auto* ctor = call->Target()->As<sem::TypeConversion>(); |
| ASSERT_NE(ctor, nullptr); |
| EXPECT_EQ(call->Type(), ctor->ReturnType()); |
| ASSERT_EQ(ctor->Parameters().size(), 1u); |
| EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<sem::Vector>()); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec4F32_Error_ScalarArgumentTypeMismatch) { |
| auto* tc = vec4<f32>(1.0f, 1.0f, Expr(Source{{12, 34}}, 1), 1.0f); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "12:34 error: type in vector constructor does not match vector " |
| "type: expected 'f32', found 'i32'"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec4U32_Error_ScalarArgumentTypeMismatch) { |
| auto* tc = vec4<u32>(1u, 1u, Expr(Source{{12, 34}}, 1), 1u); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "12:34 error: type in vector constructor does not match vector " |
| "type: expected 'u32', found 'i32'"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec4I32_Error_ScalarArgumentTypeMismatch) { |
| auto* tc = vec4<i32>(1, 1, Expr(Source{{12, 34}}, 1u), 1); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "12:34 error: type in vector constructor does not match vector " |
| "type: expected 'i32', found 'u32'"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec4Bool_Error_ScalarArgumentTypeMismatch) { |
| auto* tc = vec4<bool>(true, false, Expr(Source{{12, 34}}, 1), true); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "12:34 error: type in vector constructor does not match vector " |
| "type: expected 'bool', found 'i32'"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec4_Error_TooFewArgumentsScalar) { |
| auto* tc = |
| vec4<f32>(Expr(Source{{12, 34}}, 1.0f), Expr(Source{{12, 40}}, 1.0f), |
| Expr(Source{{12, 46}}, 1.0f)); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ( |
| r()->error(), |
| "12:34 error: attempted to construct 'vec4<f32>' with 3 component(s)"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec4_Error_TooManyArgumentsScalar) { |
| auto* tc = |
| vec4<f32>(Expr(Source{{12, 34}}, 1.0f), Expr(Source{{12, 40}}, 1.0f), |
| Expr(Source{{12, 46}}, 1.0f), Expr(Source{{12, 52}}, 1.0f), |
| Expr(Source{{12, 58}}, 1.0f)); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ( |
| r()->error(), |
| "12:34 error: attempted to construct 'vec4<f32>' with 5 component(s)"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec4_Error_TooFewArgumentsVec2AndScalar) { |
| auto* tc = vec4<f32>(Construct(Source{{12, 34}}, ty.vec2<f32>()), |
| Expr(Source{{12, 40}}, 1.0f)); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ( |
| r()->error(), |
| "12:34 error: attempted to construct 'vec4<f32>' with 3 component(s)"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec4_Error_TooManyArgumentsVec2AndScalars) { |
| auto* tc = vec4<f32>( |
| Construct(Source{{12, 34}}, ty.vec2<f32>()), Expr(Source{{12, 40}}, 1.0f), |
| Expr(Source{{12, 46}}, 1.0f), Expr(Source{{12, 52}}, 1.0f)); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ( |
| r()->error(), |
| "12:34 error: attempted to construct 'vec4<f32>' with 5 component(s)"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec4_Error_TooManyArgumentsVec2Vec2Scalar) { |
| auto* tc = vec4<f32>(Construct(Source{{12, 34}}, ty.vec2<f32>()), |
| Construct(Source{{12, 40}}, ty.vec2<f32>()), |
| Expr(Source{{12, 46}}, 1.0f)); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ( |
| r()->error(), |
| "12:34 error: attempted to construct 'vec4<f32>' with 5 component(s)"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec4_Error_TooManyArgumentsVec2Vec2Vec2) { |
| auto* tc = vec4<f32>(Construct(Source{{12, 34}}, ty.vec2<f32>()), |
| Construct(Source{{12, 40}}, ty.vec2<f32>()), |
| Construct(Source{{12, 40}}, ty.vec2<f32>())); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ( |
| r()->error(), |
| "12:34 error: attempted to construct 'vec4<f32>' with 6 component(s)"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec4_Error_TooFewArgumentsVec3) { |
| auto* tc = vec4<f32>(Construct(Source{{12, 34}}, ty.vec3<f32>())); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ( |
| r()->error(), |
| "12:34 error: attempted to construct 'vec4<f32>' with 3 component(s)"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec4_Error_TooManyArgumentsVec3AndScalars) { |
| auto* tc = |
| vec4<f32>(Construct(Source{{12, 34}}, ty.vec3<f32>()), |
| Expr(Source{{12, 40}}, 1.0f), Expr(Source{{12, 46}}, 1.0f)); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ( |
| r()->error(), |
| "12:34 error: attempted to construct 'vec4<f32>' with 5 component(s)"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec4_Error_TooManyArgumentsVec3AndVec2) { |
| auto* tc = vec4<f32>(Construct(Source{{12, 34}}, ty.vec3<f32>()), |
| Construct(Source{{12, 40}}, ty.vec2<f32>())); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ( |
| r()->error(), |
| "12:34 error: attempted to construct 'vec4<f32>' with 5 component(s)"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec4_Error_TooManyArgumentsVec2AndVec3) { |
| auto* tc = vec4<f32>(Construct(Source{{12, 34}}, ty.vec2<f32>()), |
| Construct(Source{{12, 40}}, ty.vec3<f32>())); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ( |
| r()->error(), |
| "12:34 error: attempted to construct 'vec4<f32>' with 5 component(s)"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec4_Error_TooManyArgumentsVec3AndVec3) { |
| auto* tc = vec4<f32>(Construct(Source{{12, 34}}, ty.vec3<f32>()), |
| Construct(Source{{12, 40}}, ty.vec3<f32>())); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ( |
| r()->error(), |
| "12:34 error: attempted to construct 'vec4<f32>' with 6 component(s)"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec4_Error_InvalidArgumentType) { |
| auto* tc = vec4<f32>(Construct(Source{{12, 34}}, ty.mat2x2<f32>())); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "12:34 error: expected vector or scalar type in vector " |
| "constructor; found: mat2x2<f32>"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec4_Success_ZeroValue) { |
| auto* tc = vec4<f32>(); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(tc), nullptr); |
| ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>()); |
| EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>()); |
| EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 4u); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec4F32_Success_Scalar) { |
| auto* tc = vec4<f32>(1.0f, 1.0f, 1.0f, 1.0f); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(tc), nullptr); |
| ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>()); |
| EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>()); |
| EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 4u); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec4U32_Success_Scalar) { |
| auto* tc = vec4<u32>(1u, 1u, 1u, 1u); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(tc), nullptr); |
| ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>()); |
| EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::U32>()); |
| EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 4u); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec4I32_Success_Scalar) { |
| auto* tc = vec4<i32>(1, 1, 1, 1); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(tc), nullptr); |
| ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>()); |
| EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::I32>()); |
| EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 4u); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec4Bool_Success_Scalar) { |
| auto* tc = vec4<bool>(true, false, true, false); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(tc), nullptr); |
| ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>()); |
| EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::Bool>()); |
| EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 4u); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec4_Success_Vec2ScalarScalar) { |
| auto* tc = vec4<f32>(vec2<f32>(), 1.0f, 1.0f); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(tc), nullptr); |
| ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>()); |
| EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>()); |
| EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 4u); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec4_Success_ScalarVec2Scalar) { |
| auto* tc = vec4<f32>(1.0f, vec2<f32>(), 1.0f); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(tc), nullptr); |
| ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>()); |
| EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>()); |
| EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 4u); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec4_Success_ScalarScalarVec2) { |
| auto* tc = vec4<f32>(1.0f, 1.0f, vec2<f32>()); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(tc), nullptr); |
| ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>()); |
| EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>()); |
| EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 4u); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec4_Success_Vec2AndVec2) { |
| auto* tc = vec4<f32>(vec2<f32>(), vec2<f32>()); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(tc), nullptr); |
| ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>()); |
| EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>()); |
| EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 4u); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec4_Success_Vec3AndScalar) { |
| auto* tc = vec4<f32>(vec3<f32>(), 1.0f); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(tc), nullptr); |
| ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>()); |
| EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>()); |
| EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 4u); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec4_Success_ScalarAndVec3) { |
| auto* tc = vec4<f32>(1.0f, vec3<f32>()); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(tc), nullptr); |
| ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>()); |
| EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>()); |
| EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 4u); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec4_Success_Identity) { |
| auto* tc = vec4<f32>(vec4<f32>()); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(tc), nullptr); |
| ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>()); |
| EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>()); |
| EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 4u); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vec4_Success_Vec4TypeConversion) { |
| auto* tc = vec4<f32>(vec4<i32>()); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(tc), nullptr); |
| ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>()); |
| EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>()); |
| EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 4u); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_NestedVectorConstructors_InnerError) { |
| auto* tc = vec4<f32>(vec4<f32>(1.0f, 1.0f, |
| vec3<f32>(Expr(Source{{12, 34}}, 1.0f), |
| Expr(Source{{12, 34}}, 1.0f))), |
| 1.0f); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ( |
| r()->error(), |
| "12:34 error: attempted to construct 'vec3<f32>' with 2 component(s)"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_NestedVectorConstructors_Success) { |
| auto* tc = vec4<f32>(vec3<f32>(vec2<f32>(1.0f, 1.0f), 1.0f), 1.0f); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(tc), nullptr); |
| ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>()); |
| EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>()); |
| EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 4u); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vector_Alias_Argument_Error) { |
| auto* alias = Alias("UnsignedInt", ty.u32()); |
| Global("uint_var", ty.Of(alias), ast::StorageClass::kPrivate); |
| |
| auto* tc = vec2<f32>(Expr(Source{{12, 34}}, "uint_var")); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "12:34 error: type in vector constructor does not match vector " |
| "type: expected 'f32', found 'u32'"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vector_Alias_Argument_Success) { |
| auto* f32_alias = Alias("Float32", ty.f32()); |
| auto* vec2_alias = Alias("VectorFloat2", ty.vec2<f32>()); |
| Global("my_f32", ty.Of(f32_alias), ast::StorageClass::kPrivate); |
| Global("my_vec2", ty.Of(vec2_alias), ast::StorageClass::kPrivate); |
| |
| auto* tc = vec3<f32>("my_vec2", "my_f32"); |
| WrapInFunction(tc); |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vector_ElementTypeAlias_Error) { |
| auto* f32_alias = Alias("Float32", ty.f32()); |
| |
| // vec2<Float32>(1.0f, 1u) |
| auto* vec_type = ty.vec(ty.Of(f32_alias), 2); |
| auto* tc = |
| Construct(Source{{12, 34}}, vec_type, 1.0f, Expr(Source{{12, 40}}, 1u)); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "12:40 error: type in vector constructor does not match vector " |
| "type: expected 'f32', found 'u32'"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vector_ElementTypeAlias_Success) { |
| auto* f32_alias = Alias("Float32", ty.f32()); |
| |
| // vec2<Float32>(1.0f, 1.0f) |
| auto* vec_type = ty.vec(ty.Of(f32_alias), 2); |
| auto* tc = Construct(Source{{12, 34}}, vec_type, 1.0f, 1.0f); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vector_ArgumentElementTypeAlias_Error) { |
| auto* f32_alias = Alias("Float32", ty.f32()); |
| |
| // vec3<u32>(vec<Float32>(), 1.0f) |
| auto* vec_type = ty.vec(ty.Of(f32_alias), 2); |
| auto* tc = vec3<u32>(Construct(Source{{12, 34}}, vec_type), 1.0f); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "12:34 error: type in vector constructor does not match vector " |
| "type: expected 'u32', found 'f32'"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_Constructor_Vector_ArgumentElementTypeAlias_Success) { |
| auto* f32_alias = Alias("Float32", ty.f32()); |
| |
| // vec3<f32>(vec<Float32>(), 1.0f) |
| auto* vec_type = ty.vec(ty.Of(f32_alias), 2); |
| auto* tc = vec3<f32>(Construct(Source{{12, 34}}, vec_type), 1.0f); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| } |
| |
| } // namespace VectorConstructor |
| |
| namespace MatrixConstructor { |
| struct MatrixDimensions { |
| uint32_t rows; |
| uint32_t columns; |
| }; |
| |
| static std::string MatrixStr(const MatrixDimensions& dimensions) { |
| return "mat" + std::to_string(dimensions.columns) + "x" + |
| std::to_string(dimensions.rows) + "<f32>"; |
| } |
| |
| using MatrixConstructorTest = ResolverTestWithParam<MatrixDimensions>; |
| |
| TEST_P(MatrixConstructorTest, Expr_ColumnConstructor_Error_TooFewArguments) { |
| // matNxM<f32>(vecM<f32>(), ...); with N - 1 arguments |
| |
| const auto param = GetParam(); |
| |
| ast::ExpressionList args; |
| for (uint32_t i = 1; i <= param.columns - 1; i++) { |
| auto* vec_type = ty.vec<f32>(param.rows); |
| args.push_back(Construct(Source{{12, i}}, vec_type)); |
| } |
| |
| auto* matrix_type = ty.mat<f32>(param.columns, param.rows); |
| auto* tc = Construct(Source{}, matrix_type, std::move(args)); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_THAT(r()->error(), |
| HasSubstr("12:1 error: invalid constructor for " + |
| MatrixStr(param) + "\n\n3 candidates available:")); |
| } |
| |
| TEST_P(MatrixConstructorTest, Expr_ElementConstructor_Error_TooFewArguments) { |
| // matNxM<f32>(f32,...,f32); with N*M - 1 arguments |
| |
| const auto param = GetParam(); |
| |
| ast::ExpressionList args; |
| for (uint32_t i = 1; i <= param.columns * param.rows - 1; i++) { |
| args.push_back(Construct(Source{{12, i}}, ty.f32())); |
| } |
| |
| auto* matrix_type = ty.mat<f32>(param.columns, param.rows); |
| auto* tc = Construct(Source{}, matrix_type, std::move(args)); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_THAT(r()->error(), |
| HasSubstr("12:1 error: invalid constructor for " + |
| MatrixStr(param) + "\n\n3 candidates available:")); |
| } |
| |
| TEST_P(MatrixConstructorTest, Expr_ColumnConstructor_Error_TooManyArguments) { |
| // matNxM<f32>(vecM<f32>(), ...); with N + 1 arguments |
| |
| const auto param = GetParam(); |
| |
| ast::ExpressionList args; |
| for (uint32_t i = 1; i <= param.columns + 1; i++) { |
| auto* vec_type = ty.vec<f32>(param.rows); |
| args.push_back(Construct(Source{{12, i}}, vec_type)); |
| } |
| |
| auto* matrix_type = ty.mat<f32>(param.columns, param.rows); |
| auto* tc = Construct(Source{}, matrix_type, std::move(args)); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_THAT(r()->error(), |
| HasSubstr("12:1 error: invalid constructor for " + |
| MatrixStr(param) + "\n\n3 candidates available:")); |
| } |
| |
| TEST_P(MatrixConstructorTest, Expr_ElementConstructor_Error_TooManyArguments) { |
| // matNxM<f32>(f32,...,f32); with N*M + 1 arguments |
| |
| const auto param = GetParam(); |
| |
| ast::ExpressionList args; |
| for (uint32_t i = 1; i <= param.columns * param.rows + 1; i++) { |
| args.push_back(Construct(Source{{12, i}}, ty.f32())); |
| } |
| |
| auto* matrix_type = ty.mat<f32>(param.columns, param.rows); |
| auto* tc = Construct(Source{}, matrix_type, std::move(args)); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_THAT(r()->error(), |
| HasSubstr("12:1 error: invalid constructor for " + |
| MatrixStr(param) + "\n\n3 candidates available:")); |
| } |
| |
| TEST_P(MatrixConstructorTest, |
| Expr_ColumnConstructor_Error_InvalidArgumentType) { |
| // matNxM<f32>(vec<u32>, vec<u32>, ...); N arguments |
| |
| const auto param = GetParam(); |
| |
| ast::ExpressionList args; |
| for (uint32_t i = 1; i <= param.columns; i++) { |
| auto* vec_type = ty.vec<u32>(param.rows); |
| args.push_back(Construct(Source{{12, i}}, vec_type)); |
| } |
| |
| auto* matrix_type = ty.mat<f32>(param.columns, param.rows); |
| auto* tc = Construct(Source{}, matrix_type, std::move(args)); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_THAT(r()->error(), |
| HasSubstr("12:1 error: invalid constructor for " + |
| MatrixStr(param) + "\n\n3 candidates available:")); |
| } |
| |
| TEST_P(MatrixConstructorTest, |
| Expr_ElementConstructor_Error_InvalidArgumentType) { |
| // matNxM<f32>(u32, u32, ...); N*M arguments |
| |
| const auto param = GetParam(); |
| |
| ast::ExpressionList args; |
| for (uint32_t i = 1; i <= param.columns; i++) { |
| args.push_back(Expr(Source{{12, i}}, 1u)); |
| } |
| |
| auto* matrix_type = ty.mat<f32>(param.columns, param.rows); |
| auto* tc = Construct(Source{}, matrix_type, std::move(args)); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_THAT(r()->error(), |
| HasSubstr("12:1 error: invalid constructor for " + |
| MatrixStr(param) + "\n\n3 candidates available:")); |
| } |
| |
| TEST_P(MatrixConstructorTest, |
| Expr_ColumnConstructor_Error_TooFewRowsInVectorArgument) { |
| // matNxM<f32>(vecM<f32>(),...,vecM-1<f32>()); |
| |
| const auto param = GetParam(); |
| |
| // Skip the test if parameters would have resulted in an invalid vec1 type. |
| if (param.rows == 2) { |
| return; |
| } |
| |
| ast::ExpressionList args; |
| for (uint32_t i = 1; i <= param.columns - 1; i++) { |
| auto* valid_vec_type = ty.vec<f32>(param.rows); |
| args.push_back(Construct(Source{{12, i}}, valid_vec_type)); |
| } |
| const size_t kInvalidLoc = 2 * (param.columns - 1); |
| auto* invalid_vec_type = ty.vec<f32>(param.rows - 1); |
| args.push_back(Construct(Source{{12, kInvalidLoc}}, invalid_vec_type)); |
| |
| auto* matrix_type = ty.mat<f32>(param.columns, param.rows); |
| auto* tc = Construct(Source{}, matrix_type, std::move(args)); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_THAT(r()->error(), |
| HasSubstr("12:1 error: invalid constructor for " + |
| MatrixStr(param) + "\n\n3 candidates available:")); |
| } |
| |
| TEST_P(MatrixConstructorTest, |
| Expr_ColumnConstructor_Error_TooManyRowsInVectorArgument) { |
| // matNxM<f32>(vecM<f32>(),...,vecM+1<f32>()); |
| |
| const auto param = GetParam(); |
| |
| // Skip the test if parameters would have resuled in an invalid vec5 type. |
| if (param.rows == 4) { |
| return; |
| } |
| |
| ast::ExpressionList args; |
| for (uint32_t i = 1; i <= param.columns - 1; i++) { |
| auto* valid_vec_type = ty.vec<f32>(param.rows); |
| args.push_back(Construct(Source{{12, i}}, valid_vec_type)); |
| } |
| const size_t kInvalidLoc = 2 * (param.columns - 1); |
| auto* invalid_vec_type = ty.vec<f32>(param.rows + 1); |
| args.push_back(Construct(Source{{12, kInvalidLoc}}, invalid_vec_type)); |
| |
| auto* matrix_type = ty.mat<f32>(param.columns, param.rows); |
| auto* tc = Construct(Source{}, matrix_type, std::move(args)); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_THAT(r()->error(), |
| HasSubstr("12:1 error: invalid constructor for " + |
| MatrixStr(param) + "\n\n3 candidates available:")); |
| } |
| |
| TEST_P(MatrixConstructorTest, Expr_Constructor_ZeroValue_Success) { |
| // matNxM<f32>(); |
| |
| const auto param = GetParam(); |
| auto* matrix_type = ty.mat<f32>(param.columns, param.rows); |
| auto* tc = Construct(Source{{12, 40}}, matrix_type); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| } |
| |
| TEST_P(MatrixConstructorTest, Expr_Constructor_WithColumns_Success) { |
| // matNxM<f32>(vecM<f32>(), ...); with N arguments |
| |
| const auto param = GetParam(); |
| |
| ast::ExpressionList args; |
| for (uint32_t i = 1; i <= param.columns; i++) { |
| auto* vec_type = ty.vec<f32>(param.rows); |
| args.push_back(Construct(Source{{12, i}}, vec_type)); |
| } |
| |
| auto* matrix_type = ty.mat<f32>(param.columns, param.rows); |
| auto* tc = Construct(Source{}, matrix_type, std::move(args)); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| } |
| |
| TEST_P(MatrixConstructorTest, Expr_Constructor_WithElements_Success) { |
| // matNxM<f32>(f32,...,f32); with N*M arguments |
| |
| const auto param = GetParam(); |
| |
| ast::ExpressionList args; |
| for (uint32_t i = 1; i <= param.columns * param.rows; i++) { |
| args.push_back(Construct(Source{{12, i}}, ty.f32())); |
| } |
| |
| auto* matrix_type = ty.mat<f32>(param.columns, param.rows); |
| auto* tc = Construct(Source{}, matrix_type, std::move(args)); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| } |
| |
| TEST_P(MatrixConstructorTest, Expr_Constructor_ElementTypeAlias_Error) { |
| // matNxM<Float32>(vecM<u32>(), ...); with N arguments |
| |
| const auto param = GetParam(); |
| auto* f32_alias = Alias("Float32", ty.f32()); |
| |
| ast::ExpressionList args; |
| for (uint32_t i = 1; i <= param.columns; i++) { |
| auto* vec_type = ty.vec(ty.u32(), param.rows); |
| args.push_back(Construct(Source{{12, i}}, vec_type)); |
| } |
| |
| auto* matrix_type = ty.mat(ty.Of(f32_alias), param.columns, param.rows); |
| auto* tc = Construct(Source{}, matrix_type, std::move(args)); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_THAT(r()->error(), |
| HasSubstr("12:1 error: invalid constructor for " + |
| MatrixStr(param) + "\n\n3 candidates available:")); |
| } |
| |
| TEST_P(MatrixConstructorTest, Expr_Constructor_ElementTypeAlias_Success) { |
| // matNxM<Float32>(vecM<f32>(), ...); with N arguments |
| |
| const auto param = GetParam(); |
| auto* f32_alias = Alias("Float32", ty.f32()); |
| |
| ast::ExpressionList args; |
| for (uint32_t i = 1; i <= param.columns; i++) { |
| auto* vec_type = ty.vec<f32>(param.rows); |
| args.push_back(Construct(Source{{12, i}}, vec_type)); |
| } |
| |
| auto* matrix_type = ty.mat(ty.Of(f32_alias), param.columns, param.rows); |
| auto* tc = Construct(Source{}, matrix_type, std::move(args)); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| Expr_MatrixConstructor_ArgumentTypeAlias_Error) { |
| auto* alias = Alias("VectorUnsigned2", ty.vec2<u32>()); |
| auto* tc = |
| mat2x2<f32>(Construct(Source{{12, 34}}, ty.Of(alias)), vec2<f32>()); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| R"(12:34 error: invalid constructor for mat2x2<f32> |
| |
| 3 candidates available: |
| mat2x2<f32>() |
| mat2x2<f32>(f32,...,f32) // 4 arguments |
| mat2x2<f32>(vec2<f32>, vec2<f32>) |
| )"); |
| } |
| |
| TEST_P(MatrixConstructorTest, Expr_Constructor_ArgumentTypeAlias_Success) { |
| const auto param = GetParam(); |
| auto* matrix_type = ty.mat<f32>(param.columns, param.rows); |
| auto* vec_type = ty.vec<f32>(param.rows); |
| auto* vec_alias = Alias("VectorFloat2", vec_type); |
| |
| ast::ExpressionList args; |
| for (uint32_t i = 1; i <= param.columns; i++) { |
| args.push_back(Construct(Source{{12, i}}, ty.Of(vec_alias))); |
| } |
| |
| auto* tc = Construct(Source{}, matrix_type, std::move(args)); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| } |
| |
| TEST_P(MatrixConstructorTest, Expr_Constructor_ArgumentElementTypeAlias_Error) { |
| const auto param = GetParam(); |
| auto* matrix_type = ty.mat<f32>(param.columns, param.rows); |
| auto* f32_alias = Alias("UnsignedInt", ty.u32()); |
| |
| ast::ExpressionList args; |
| for (uint32_t i = 1; i <= param.columns; i++) { |
| auto* vec_type = ty.vec(ty.Of(f32_alias), param.rows); |
| args.push_back(Construct(Source{{12, i}}, vec_type)); |
| } |
| |
| auto* tc = Construct(Source{}, matrix_type, std::move(args)); |
| WrapInFunction(tc); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_THAT(r()->error(), |
| HasSubstr("12:1 error: invalid constructor for " + |
| MatrixStr(param) + "\n\n3 candidates available:")); |
| } |
| |
| TEST_P(MatrixConstructorTest, |
| Expr_Constructor_ArgumentElementTypeAlias_Success) { |
| const auto param = GetParam(); |
| auto* f32_alias = Alias("Float32", ty.f32()); |
| |
| ast::ExpressionList args; |
| for (uint32_t i = 1; i <= param.columns; i++) { |
| auto* vec_type = ty.vec(ty.Of(f32_alias), param.rows); |
| args.push_back(Construct(Source{{12, i}}, vec_type)); |
| } |
| |
| auto* matrix_type = ty.mat<f32>(param.columns, param.rows); |
| auto* tc = Construct(Source{}, matrix_type, std::move(args)); |
| WrapInFunction(tc); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| } |
| |
| INSTANTIATE_TEST_SUITE_P(ResolverTypeConstructorValidationTest, |
| MatrixConstructorTest, |
| testing::Values(MatrixDimensions{2, 2}, |
| MatrixDimensions{3, 2}, |
| MatrixDimensions{4, 2}, |
| MatrixDimensions{2, 3}, |
| MatrixDimensions{3, 3}, |
| MatrixDimensions{4, 3}, |
| MatrixDimensions{2, 4}, |
| MatrixDimensions{3, 4}, |
| MatrixDimensions{4, 4})); |
| } // namespace MatrixConstructor |
| |
| namespace StructConstructor { |
| using builder::CreatePtrs; |
| using builder::CreatePtrsFor; |
| using builder::f32; |
| using builder::i32; |
| using builder::mat2x2; |
| using builder::mat3x3; |
| using builder::mat4x4; |
| using builder::u32; |
| using builder::vec2; |
| using builder::vec3; |
| using builder::vec4; |
| |
| constexpr CreatePtrs all_types[] = { |
| CreatePtrsFor<bool>(), // |
| CreatePtrsFor<u32>(), // |
| CreatePtrsFor<i32>(), // |
| CreatePtrsFor<f32>(), // |
| CreatePtrsFor<vec4<bool>>(), // |
| CreatePtrsFor<vec2<i32>>(), // |
| CreatePtrsFor<vec3<u32>>(), // |
| CreatePtrsFor<vec4<f32>>(), // |
| CreatePtrsFor<mat2x2<f32>>(), // |
| CreatePtrsFor<mat3x3<f32>>(), // |
| CreatePtrsFor<mat4x4<f32>>() // |
| }; |
| |
| auto number_of_members = testing::Values(2u, 32u, 64u); |
| |
| using StructConstructorInputsTest = |
| ResolverTestWithParam<std::tuple<CreatePtrs, // struct member type |
| uint32_t>>; // number of struct members |
| TEST_P(StructConstructorInputsTest, TooFew) { |
| auto& param = GetParam(); |
| auto& str_params = std::get<0>(param); |
| uint32_t N = std::get<1>(param); |
| |
| ast::StructMemberList members; |
| ast::ExpressionList values; |
| for (uint32_t i = 0; i < N; i++) { |
| auto* struct_type = str_params.ast(*this); |
| members.push_back(Member("member_" + std::to_string(i), struct_type)); |
| if (i < N - 1) { |
| auto* ctor_value_expr = str_params.expr(*this, 0); |
| values.push_back(ctor_value_expr); |
| } |
| } |
| auto* s = Structure("s", members); |
| auto* tc = Construct(Source{{12, 34}}, ty.Of(s), values); |
| WrapInFunction(tc); |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "12:34 error: struct constructor has too few inputs: expected " + |
| std::to_string(N) + ", found " + std::to_string(N - 1)); |
| } |
| |
| TEST_P(StructConstructorInputsTest, TooMany) { |
| auto& param = GetParam(); |
| auto& str_params = std::get<0>(param); |
| uint32_t N = std::get<1>(param); |
| |
| ast::StructMemberList members; |
| ast::ExpressionList values; |
| for (uint32_t i = 0; i < N + 1; i++) { |
| if (i < N) { |
| auto* struct_type = str_params.ast(*this); |
| members.push_back(Member("member_" + std::to_string(i), struct_type)); |
| } |
| auto* ctor_value_expr = str_params.expr(*this, 0); |
| values.push_back(ctor_value_expr); |
| } |
| auto* s = Structure("s", members); |
| auto* tc = Construct(Source{{12, 34}}, ty.Of(s), values); |
| WrapInFunction(tc); |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "12:34 error: struct constructor has too many inputs: expected " + |
| std::to_string(N) + ", found " + std::to_string(N + 1)); |
| } |
| |
| INSTANTIATE_TEST_SUITE_P(ResolverTypeConstructorValidationTest, |
| StructConstructorInputsTest, |
| testing::Combine(testing::ValuesIn(all_types), |
| number_of_members)); |
| using StructConstructorTypeTest = |
| ResolverTestWithParam<std::tuple<CreatePtrs, // struct member type |
| CreatePtrs, // constructor value type |
| uint32_t>>; // number of struct members |
| TEST_P(StructConstructorTypeTest, AllTypes) { |
| auto& param = GetParam(); |
| auto& str_params = std::get<0>(param); |
| auto& ctor_params = std::get<1>(param); |
| uint32_t N = std::get<2>(param); |
| |
| if (str_params.ast == ctor_params.ast) { |
| return; |
| } |
| |
| ast::StructMemberList members; |
| ast::ExpressionList values; |
| // make the last value of the constructor to have a different type |
| uint32_t constructor_value_with_different_type = N - 1; |
| for (uint32_t i = 0; i < N; i++) { |
| auto* struct_type = str_params.ast(*this); |
| members.push_back(Member("member_" + std::to_string(i), struct_type)); |
| auto* ctor_value_expr = (i == constructor_value_with_different_type) |
| ? ctor_params.expr(*this, 0) |
| : str_params.expr(*this, 0); |
| values.push_back(ctor_value_expr); |
| } |
| auto* s = Structure("s", members); |
| auto* tc = Construct(ty.Of(s), values); |
| WrapInFunction(tc); |
| |
| std::string found = FriendlyName(ctor_params.ast(*this)); |
| std::string expected = FriendlyName(str_params.ast(*this)); |
| std::stringstream err; |
| err << "error: type in struct constructor does not match struct member "; |
| err << "type: expected '" << expected << "', found '" << found << "'"; |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), err.str()); |
| } |
| |
| INSTANTIATE_TEST_SUITE_P(ResolverTypeConstructorValidationTest, |
| StructConstructorTypeTest, |
| testing::Combine(testing::ValuesIn(all_types), |
| testing::ValuesIn(all_types), |
| number_of_members)); |
| |
| TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Struct_Nested) { |
| auto* inner_m = Member("m", ty.i32()); |
| auto* inner_s = Structure("inner_s", {inner_m}); |
| |
| auto* m0 = Member("m0", ty.i32()); |
| auto* m1 = Member("m1", ty.Of(inner_s)); |
| auto* m2 = Member("m2", ty.i32()); |
| auto* s = Structure("s", {m0, m1, m2}); |
| |
| auto* tc = Construct(Source{{12, 34}}, ty.Of(s), 1, 1, 1); |
| WrapInFunction(tc); |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "error: type in struct constructor does not match struct member " |
| "type: expected 'inner_s', found 'i32'"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Struct) { |
| auto* m = Member("m", ty.i32()); |
| auto* s = Structure("MyInputs", {m}); |
| auto* tc = Construct(Source{{12, 34}}, ty.Of(s)); |
| WrapInFunction(tc); |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Struct_Empty) { |
| auto* str = Structure("S", { |
| Member("a", ty.i32()), |
| Member("b", ty.f32()), |
| Member("c", ty.vec3<i32>()), |
| }); |
| |
| WrapInFunction(Construct(ty.Of(str))); |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| } |
| } // namespace StructConstructor |
| |
| TEST_F(ResolverTypeConstructorValidationTest, NonConstructibleType_Atomic) { |
| WrapInFunction( |
| Call("ignore", Construct(Source{{12, 34}}, ty.atomic(ty.i32())))); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), "12:34 error: type is not constructible"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| NonConstructibleType_AtomicArray) { |
| WrapInFunction(Call( |
| "ignore", Construct(Source{{12, 34}}, ty.array(ty.atomic(ty.i32()), 4)))); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ( |
| r()->error(), |
| "12:34 error: array constructor has non-constructible element type"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, |
| NonConstructibleType_AtomicStructMember) { |
| auto* str = Structure("S", {Member("a", ty.atomic(ty.i32()))}); |
| WrapInFunction(Call("ignore", Construct(Source{{12, 34}}, ty.Of(str)))); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "12:34 error: struct constructor has non-constructible type"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, NonConstructibleType_Sampler) { |
| WrapInFunction(Call( |
| "ignore", |
| Construct(Source{{12, 34}}, ty.sampler(ast::SamplerKind::kSampler)))); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), "12:34 error: type is not constructible"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, TypeConstructorAsStatement) { |
| WrapInFunction( |
| CallStmt(Construct(Source{{12, 34}}, ty.vec2<f32>(), 1.f, 2.f))); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "12:34 error: type constructor evaluated but not used"); |
| } |
| |
| TEST_F(ResolverTypeConstructorValidationTest, TypeConversionAsStatement) { |
| WrapInFunction(CallStmt(Construct(Source{{12, 34}}, ty.f32(), 1))); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), "12:34 error: type cast evaluated but not used"); |
| } |
| |
| } // namespace |
| } // namespace resolver |
| } // namespace tint |