blob: 260d6fcd794ddedaa8534ec369e389be2f8afd68 [file] [log] [blame]
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/writer/msl/generator_impl.h"
#include "src/ast/array_accessor_expression.h"
#include "src/ast/as_expression.h"
#include "src/ast/assignment_statement.h"
#include "src/ast/binary_expression.h"
#include "src/ast/bool_literal.h"
#include "src/ast/break_statement.h"
#include "src/ast/call_expression.h"
#include "src/ast/case_statement.h"
#include "src/ast/cast_expression.h"
#include "src/ast/continue_statement.h"
#include "src/ast/decorated_variable.h"
#include "src/ast/else_statement.h"
#include "src/ast/float_literal.h"
#include "src/ast/function.h"
#include "src/ast/identifier_expression.h"
#include "src/ast/if_statement.h"
#include "src/ast/intrinsic.h"
#include "src/ast/location_decoration.h"
#include "src/ast/loop_statement.h"
#include "src/ast/member_accessor_expression.h"
#include "src/ast/return_statement.h"
#include "src/ast/sint_literal.h"
#include "src/ast/switch_statement.h"
#include "src/ast/type/alias_type.h"
#include "src/ast/type/array_type.h"
#include "src/ast/type/bool_type.h"
#include "src/ast/type/f32_type.h"
#include "src/ast/type/i32_type.h"
#include "src/ast/type/matrix_type.h"
#include "src/ast/type/pointer_type.h"
#include "src/ast/type/struct_type.h"
#include "src/ast/type/u32_type.h"
#include "src/ast/type/vector_type.h"
#include "src/ast/type/void_type.h"
#include "src/ast/uint_literal.h"
#include "src/ast/unary_op_expression.h"
#include "src/ast/variable_decl_statement.h"
namespace tint {
namespace writer {
namespace msl {
namespace {
const char kInStructNameSuffix[] = "in";
const char kOutStructNameSuffix[] = "out";
const char kTintStructInVarPrefix[] = "tint_in";
const char kTintStructOutVarPrefix[] = "tint_out";
bool last_is_break_or_fallthrough(const ast::StatementList& stmts) {
if (stmts.empty()) {
return false;
}
return stmts.back()->IsBreak() || stmts.back()->IsFallthrough();
}
} // namespace
GeneratorImpl::GeneratorImpl() = default;
GeneratorImpl::~GeneratorImpl() = default;
void GeneratorImpl::set_module_for_testing(ast::Module* mod) {
module_ = mod;
}
std::string GeneratorImpl::generate_name(const std::string& prefix) {
std::string name = prefix;
uint32_t i = 0;
while (namer_.IsMapped(name)) {
name = prefix + "_" + std::to_string(i);
++i;
}
namer_.RegisterRemappedName(name);
return name;
}
bool GeneratorImpl::Generate(const ast::Module& module) {
module_ = &module;
out_ << "#include <metal_stdlib>" << std::endl << std::endl;
for (const auto& global : module.global_variables()) {
global_variables_.set(global->name(), global.get());
}
for (auto* const alias : module.alias_types()) {
if (!EmitAliasType(alias)) {
return false;
}
}
if (!module.alias_types().empty()) {
out_ << std::endl;
}
for (const auto& ep : module.entry_points()) {
if (!EmitEntryPointData(ep.get())) {
return false;
}
}
for (const auto& func : module.functions()) {
if (!EmitFunction(func.get())) {
return false;
}
}
for (const auto& ep : module.entry_points()) {
if (!EmitEntryPointFunction(ep.get())) {
return false;
}
out_ << std::endl;
}
module_ = nullptr;
return true;
}
bool GeneratorImpl::EmitAliasType(const ast::type::AliasType* alias) {
make_indent();
out_ << "typedef ";
if (!EmitType(alias->type(), "")) {
return false;
}
out_ << " " << namer_.NameFor(alias->name()) << ";" << std::endl;
return true;
}
bool GeneratorImpl::EmitArrayAccessor(ast::ArrayAccessorExpression* expr) {
if (!EmitExpression(expr->array())) {
return false;
}
out_ << "[";
if (!EmitExpression(expr->idx_expr())) {
return false;
}
out_ << "]";
return true;
}
bool GeneratorImpl::EmitAs(ast::AsExpression* expr) {
out_ << "as_type<";
if (!EmitType(expr->type(), "")) {
return false;
}
out_ << ">(";
if (!EmitExpression(expr->expr())) {
return false;
}
out_ << ")";
return true;
}
bool GeneratorImpl::EmitAssign(ast::AssignmentStatement* stmt) {
make_indent();
if (!EmitExpression(stmt->lhs())) {
return false;
}
out_ << " = ";
if (!EmitExpression(stmt->rhs())) {
return false;
}
out_ << ";" << std::endl;
return true;
}
bool GeneratorImpl::EmitBinary(ast::BinaryExpression* expr) {
out_ << "(";
if (!EmitExpression(expr->lhs())) {
return false;
}
out_ << " ";
switch (expr->op()) {
case ast::BinaryOp::kAnd:
out_ << "&";
break;
case ast::BinaryOp::kOr:
out_ << "|";
break;
case ast::BinaryOp::kXor:
out_ << "^";
break;
case ast::BinaryOp::kLogicalAnd:
out_ << "&&";
break;
case ast::BinaryOp::kLogicalOr:
out_ << "||";
break;
case ast::BinaryOp::kEqual:
out_ << "==";
break;
case ast::BinaryOp::kNotEqual:
out_ << "!=";
break;
case ast::BinaryOp::kLessThan:
out_ << "<";
break;
case ast::BinaryOp::kGreaterThan:
out_ << ">";
break;
case ast::BinaryOp::kLessThanEqual:
out_ << "<=";
break;
case ast::BinaryOp::kGreaterThanEqual:
out_ << ">=";
break;
case ast::BinaryOp::kShiftLeft:
out_ << "<<";
break;
case ast::BinaryOp::kShiftRight:
// TODO(dsinclair): MSL is based on C++14, and >> in C++14 has
// implementation-defined behaviour for negative LHS. We may have to
// generate extra code to implement WGSL-specified behaviour for negative
// LHS.
out_ << R"(>>)";
break;
case ast::BinaryOp::kAdd:
out_ << "+";
break;
case ast::BinaryOp::kSubtract:
out_ << "-";
break;
case ast::BinaryOp::kMultiply:
out_ << "*";
break;
case ast::BinaryOp::kDivide:
out_ << "/";
break;
case ast::BinaryOp::kModulo:
out_ << "%";
break;
case ast::BinaryOp::kNone:
error_ = "missing binary operation type";
return false;
}
out_ << " ";
if (!EmitExpression(expr->rhs())) {
return false;
}
out_ << ")";
return true;
}
bool GeneratorImpl::EmitBreak(ast::BreakStatement*) {
make_indent();
out_ << "break;" << std::endl;
return true;
}
std::string GeneratorImpl::current_ep_var_name(VarType type) {
std::string name = "";
switch (type) {
case VarType::kIn: {
auto in_it = ep_name_to_in_data_.find(current_ep_name_);
if (in_it != ep_name_to_in_data_.end()) {
name = in_it->second.var_name;
}
break;
}
case VarType::kOut: {
auto out_it = ep_name_to_out_data_.find(current_ep_name_);
if (out_it != ep_name_to_out_data_.end()) {
name = out_it->second.var_name;
}
break;
}
}
return name;
}
bool GeneratorImpl::EmitCall(ast::CallExpression* expr) {
if (!expr->func()->IsIdentifier()) {
error_ = "invalid function name";
return 0;
}
auto* ident = expr->func()->AsIdentifier();
if (!ident->has_path() && ast::intrinsic::IsIntrinsic(ident->name())) {
// TODO(dsinclair): Generate intrinsic
error_ = "intrinsics not generated yet";
return false;
}
if (!ident->has_path()) {
auto name = ident->name();
auto it = ep_func_name_remapped_.find(current_ep_name_ + "_" + name);
if (it != ep_func_name_remapped_.end()) {
name = it->second;
}
out_ << name << "(";
bool first = true;
auto var_name = current_ep_var_name(VarType::kIn);
if (!var_name.empty()) {
out_ << var_name;
first = false;
}
var_name = current_ep_var_name(VarType::kOut);
if (!var_name.empty()) {
if (!first) {
out_ << ", ";
}
out_ << var_name;
first = false;
}
// TODO(dsinclair): Emit builtins
const auto& params = expr->params();
for (const auto& param : params) {
if (!first) {
out_ << ", ";
}
first = false;
if (!EmitExpression(param.get())) {
return false;
}
}
out_ << ")";
} else {
// TODO(dsinclair): Handle imported function
error_ = "imported calls not handled yet";
return false;
}
return true;
}
bool GeneratorImpl::EmitCase(ast::CaseStatement* stmt) {
make_indent();
if (stmt->IsDefault()) {
out_ << "default:";
} else {
bool first = true;
for (const auto& selector : stmt->selectors()) {
if (!first) {
out_ << std::endl;
make_indent();
}
first = false;
out_ << "case ";
if (!EmitLiteral(selector.get())) {
return false;
}
out_ << ":";
}
}
out_ << " {" << std::endl;
increment_indent();
for (const auto& s : stmt->body()) {
if (!EmitStatement(s.get())) {
return false;
}
}
if (!last_is_break_or_fallthrough(stmt->body())) {
make_indent();
out_ << "break;" << std::endl;
}
decrement_indent();
make_indent();
out_ << "}" << std::endl;
return true;
}
bool GeneratorImpl::EmitCast(ast::CastExpression* expr) {
if (!EmitType(expr->type(), "")) {
return false;
}
out_ << "(";
if (!EmitExpression(expr->expr())) {
return false;
}
out_ << ")";
return true;
}
bool GeneratorImpl::EmitConstructor(ast::ConstructorExpression* expr) {
if (expr->IsScalarConstructor()) {
return EmitScalarConstructor(expr->AsScalarConstructor());
}
return EmitTypeConstructor(expr->AsTypeConstructor());
}
bool GeneratorImpl::EmitContinue(ast::ContinueStatement*) {
make_indent();
out_ << "continue;" << std::endl;
return true;
}
bool GeneratorImpl::EmitTypeConstructor(ast::TypeConstructorExpression* expr) {
if (!EmitType(expr->type(), "")) {
return false;
}
out_ << "(";
// If the type constructor is empty then we need to construct with the zero
// value for all components.
if (expr->values().empty()) {
if (!EmitZeroValue(expr->type())) {
return false;
}
} else {
bool first = true;
for (const auto& e : expr->values()) {
if (!first) {
out_ << ", ";
}
first = false;
if (!EmitExpression(e.get())) {
return false;
}
}
}
out_ << ")";
return true;
}
bool GeneratorImpl::EmitZeroValue(ast::type::Type* type) {
if (type->IsBool()) {
out_ << "false";
} else if (type->IsF32()) {
out_ << "0.0f";
} else if (type->IsI32()) {
out_ << "0";
} else if (type->IsU32()) {
out_ << "0u";
} else if (type->IsVector()) {
return EmitZeroValue(type->AsVector()->type());
} else {
error_ = "Invalid type for zero emission: " + type->type_name();
return false;
}
return true;
}
bool GeneratorImpl::EmitScalarConstructor(
ast::ScalarConstructorExpression* expr) {
return EmitLiteral(expr->literal());
}
bool GeneratorImpl::EmitLiteral(ast::Literal* lit) {
if (lit->IsBool()) {
out_ << (lit->AsBool()->IsTrue() ? "true" : "false");
} else if (lit->IsFloat()) {
auto flags = out_.flags();
auto precision = out_.precision();
out_.flags(flags | std::ios_base::showpoint);
out_.precision(std::numeric_limits<float>::max_digits10);
out_ << lit->AsFloat()->value() << "f";
out_.precision(precision);
out_.flags(flags);
} else if (lit->IsSint()) {
out_ << lit->AsSint()->value();
} else if (lit->IsUint()) {
out_ << lit->AsUint()->value() << "u";
} else {
error_ = "unknown literal type";
return false;
}
return true;
}
bool GeneratorImpl::EmitEntryPointData(ast::EntryPoint* ep) {
auto* func = module_->FindFunctionByName(ep->function_name());
if (func == nullptr) {
error_ = "Unable to find entry point function: " + ep->function_name();
return false;
}
std::vector<std::pair<ast::Variable*, uint32_t>> in_locations;
std::vector<std::pair<ast::Variable*, uint32_t>> out_locations;
for (auto* var : func->referenced_module_variables()) {
if (!var->IsDecorated()) {
continue;
}
auto* decorated = var->AsDecorated();
ast::LocationDecoration* locn_deco = nullptr;
for (auto& deco : decorated->decorations()) {
if (deco->IsLocation()) {
locn_deco = deco.get()->AsLocation();
break;
}
}
if (locn_deco == nullptr) {
continue;
}
if (var->storage_class() == ast::StorageClass::kInput) {
in_locations.push_back({var, locn_deco->value()});
} else if (var->storage_class() == ast::StorageClass::kOutput) {
out_locations.push_back({var, locn_deco->value()});
}
}
auto ep_name = ep->name();
if (ep_name.empty()) {
ep_name = ep->function_name();
}
// TODO(dsinclair): There is a potential bug here. Entry points can have the
// same name in WGSL if they have different pipeline stages. This does not
// take that into account and will emit duplicate struct names. I'm ignoring
// this until https://github.com/gpuweb/gpuweb/issues/662 is resolved as it
// may remove this issue and entry point names will need to be unique.
if (!in_locations.empty()) {
auto in_struct_name = generate_name(ep_name + "_" + kInStructNameSuffix);
auto in_var_name = generate_name(kTintStructInVarPrefix);
ep_name_to_in_data_[ep_name] = {in_struct_name, in_var_name};
make_indent();
out_ << "struct " << in_struct_name << " {" << std::endl;
increment_indent();
for (auto& data : in_locations) {
auto* var = data.first;
uint32_t loc = data.second;
make_indent();
if (!EmitType(var->type(), var->name())) {
return false;
}
out_ << " " << var->name() << " [[";
if (ep->stage() == ast::PipelineStage::kVertex) {
out_ << "attribute(" << loc << ")";
} else if (ep->stage() == ast::PipelineStage::kFragment) {
out_ << "user(locn" << loc << ")";
} else {
error_ = "invalid location variable for pipeline stage";
return false;
}
out_ << "]];" << std::endl;
}
decrement_indent();
make_indent();
out_ << "};" << std::endl << std::endl;
}
if (!out_locations.empty()) {
auto out_struct_name = generate_name(ep_name + "_" + kOutStructNameSuffix);
auto out_var_name = generate_name(kTintStructOutVarPrefix);
ep_name_to_out_data_[ep_name] = {out_struct_name, out_var_name};
make_indent();
out_ << "struct " << out_struct_name << " {" << std::endl;
increment_indent();
for (auto& data : out_locations) {
auto* var = data.first;
uint32_t loc = data.second;
make_indent();
if (!EmitType(var->type(), var->name())) {
return false;
}
out_ << " " << var->name() << " [[";
if (ep->stage() == ast::PipelineStage::kVertex) {
out_ << "user(locn" << loc << ")";
} else if (ep->stage() == ast::PipelineStage::kFragment) {
out_ << "color(" << loc << ")";
} else {
error_ = "invalid location variable for pipeline stage";
return false;
}
out_ << "]];" << std::endl;
}
decrement_indent();
make_indent();
out_ << "};" << std::endl << std::endl;
}
return true;
}
bool GeneratorImpl::EmitExpression(ast::Expression* expr) {
if (expr->IsArrayAccessor()) {
return EmitArrayAccessor(expr->AsArrayAccessor());
}
if (expr->IsAs()) {
return EmitAs(expr->AsAs());
}
if (expr->IsBinary()) {
return EmitBinary(expr->AsBinary());
}
if (expr->IsCall()) {
return EmitCall(expr->AsCall());
}
if (expr->IsCast()) {
return EmitCast(expr->AsCast());
}
if (expr->IsConstructor()) {
return EmitConstructor(expr->AsConstructor());
}
if (expr->IsIdentifier()) {
return EmitIdentifier(expr->AsIdentifier());
}
if (expr->IsMemberAccessor()) {
return EmitMemberAccessor(expr->AsMemberAccessor());
}
if (expr->IsUnaryOp()) {
return EmitUnaryOp(expr->AsUnaryOp());
}
error_ = "unknown expression type: " + expr->str();
return false;
}
void GeneratorImpl::EmitStage(ast::PipelineStage stage) {
switch (stage) {
case ast::PipelineStage::kFragment:
out_ << "fragment";
break;
case ast::PipelineStage::kVertex:
out_ << "vertex";
break;
case ast::PipelineStage::kCompute:
out_ << "kernel";
break;
case ast::PipelineStage::kNone:
break;
}
return;
}
bool GeneratorImpl::EmitFunction(ast::Function* func) {
make_indent();
// Entry points will be emitted later, skip for now.
if (module_->IsFunctionEntryPoint(func->name())) {
return true;
}
// TODO(dsinclair): This could be smarter. If the input/outputs for multiple
// entry points are the same we could generate a single struct and then have
// this determine it's the same struct and just emit once.
bool emit_duplicate_functions =
func->ancestor_entry_points().size() > 0 &&
func->referenced_module_variables().size() > 0;
if (emit_duplicate_functions) {
for (const auto& ep_name : func->ancestor_entry_points()) {
if (!EmitFunctionInternal(func, emit_duplicate_functions, ep_name)) {
return false;
}
out_ << std::endl;
}
} else {
// Emit as non-duplicated
if (!EmitFunctionInternal(func, false, "")) {
return false;
}
out_ << std::endl;
}
return true;
}
bool GeneratorImpl::EmitFunctionInternal(ast::Function* func,
bool emit_duplicate_functions,
const std::string& ep_name) {
auto name = func->name();
if (!EmitType(func->return_type(), "")) {
return false;
}
out_ << " ";
if (emit_duplicate_functions) {
name = generate_name(name + "_" + ep_name);
ep_func_name_remapped_[ep_name + "_" + func->name()] = name;
} else {
name = namer_.NameFor(name);
}
out_ << name << "(";
bool first = true;
// If we're emitting duplicate functions that means the function takes
// the stage_in or stage_out value from the entry point, emit them.
//
// We emit both of them if they're there regardless of if they're both used.
if (emit_duplicate_functions) {
auto in_it = ep_name_to_in_data_.find(ep_name);
if (in_it != ep_name_to_in_data_.end()) {
out_ << "thread " << in_it->second.struct_name << "& "
<< in_it->second.var_name;
first = false;
}
auto out_it = ep_name_to_out_data_.find(ep_name);
if (out_it != ep_name_to_out_data_.end()) {
if (!first) {
out_ << ", ";
}
out_ << "thread " << out_it->second.struct_name << "& "
<< out_it->second.var_name;
first = false;
}
}
// TODO(dsinclair): Handle any entry point builtin params used here
for (const auto& v : func->params()) {
if (!first) {
out_ << ", ";
}
first = false;
if (!EmitType(v->type(), v->name())) {
return false;
}
// Array name is output as part of the type
if (!v->type()->IsArray()) {
out_ << " " << v->name();
}
}
out_ << ")";
current_ep_name_ = ep_name;
if (!EmitStatementBlockAndNewline(func->body())) {
return false;
}
current_ep_name_ = "";
return true;
}
bool GeneratorImpl::EmitEntryPointFunction(ast::EntryPoint* ep) {
make_indent();
current_ep_name_ = ep->name();
if (current_ep_name_.empty()) {
current_ep_name_ = ep->function_name();
}
auto* func = module_->FindFunctionByName(ep->function_name());
if (func == nullptr) {
error_ = "unable to find function for entry point: " + ep->function_name();
return false;
}
EmitStage(ep->stage());
out_ << " ";
// This is an entry point, the return type is the entry point output structure
// if one exists, or void otherwise.
auto out_data = ep_name_to_out_data_.find(current_ep_name_);
bool has_out_data = out_data != ep_name_to_out_data_.end();
if (has_out_data) {
out_ << out_data->second.struct_name;
} else {
out_ << "void";
}
out_ << " " << namer_.NameFor(current_ep_name_) << "(";
auto in_data = ep_name_to_in_data_.find(current_ep_name_);
if (in_data != ep_name_to_in_data_.end()) {
out_ << in_data->second.struct_name << " " << in_data->second.var_name
<< " [[stage_in]]";
}
// TODO(dsinclair): Output other builtin inputs
out_ << ") {" << std::endl;
increment_indent();
if (has_out_data) {
make_indent();
out_ << out_data->second.struct_name << " " << out_data->second.var_name
<< " = {};" << std::endl;
}
generating_entry_point_ = true;
for (const auto& s : func->body()) {
if (!EmitStatement(s.get())) {
return false;
}
}
generating_entry_point_ = false;
decrement_indent();
make_indent();
out_ << "}" << std::endl;
current_ep_name_ = "";
return true;
}
bool GeneratorImpl::EmitIdentifier(ast::IdentifierExpression* expr) {
auto* ident = expr->AsIdentifier();
if (ident->has_path()) {
// TODO(dsinclair): Handle identifier with path
error_ = "Identifier paths not handled yet.";
return false;
}
ast::Variable* var = nullptr;
if (global_variables_.get(ident->name(), &var)) {
if (var->IsDecorated() && var->AsDecorated()->HasLocationDecoration() &&
(var->storage_class() == ast::StorageClass::kInput ||
var->storage_class() == ast::StorageClass::kOutput)) {
auto var_type = var->storage_class() == ast::StorageClass::kInput
? VarType::kIn
: VarType::kOut;
auto name = current_ep_var_name(var_type);
if (name.empty()) {
error_ = "unable to find entry point data for variable";
return false;
}
out_ << name << ".";
}
}
out_ << namer_.NameFor(ident->name());
return true;
}
bool GeneratorImpl::EmitLoop(ast::LoopStatement* stmt) {
loop_emission_counter_++;
std::string guard = namer_.NameFor("tint_msl_is_first_" +
std::to_string(loop_emission_counter_));
if (stmt->has_continuing()) {
make_indent();
// Continuing variables get their own scope.
out_ << "{" << std::endl;
increment_indent();
make_indent();
out_ << "bool " << guard << " = true;" << std::endl;
}
make_indent();
out_ << "for(;;) {" << std::endl;
increment_indent();
if (stmt->has_continuing()) {
make_indent();
out_ << "if (!" << guard << ")";
if (!EmitStatementBlockAndNewline(stmt->continuing())) {
return false;
}
make_indent();
out_ << guard << " = false;" << std::endl;
out_ << std::endl;
}
for (const auto& s : stmt->body()) {
if (!EmitStatement(s.get())) {
return false;
}
}
decrement_indent();
make_indent();
out_ << "}" << std::endl;
// Close the scope for any continuing variables.
if (stmt->has_continuing()) {
decrement_indent();
make_indent();
out_ << "}" << std::endl;
}
return true;
}
bool GeneratorImpl::EmitKill(ast::KillStatement*) {
make_indent();
// TODO(dsinclair): Verify this is correct when the kill semantics are defined
// for WGSL (https://github.com/gpuweb/gpuweb/issues/361)
out_ << "discard_fragment();" << std::endl;
return true;
}
bool GeneratorImpl::EmitElse(ast::ElseStatement* stmt) {
if (stmt->HasCondition()) {
out_ << " else if (";
if (!EmitExpression(stmt->condition())) {
return false;
}
out_ << ")";
} else {
out_ << " else";
}
return EmitStatementBlock(stmt->body());
}
bool GeneratorImpl::EmitIf(ast::IfStatement* stmt) {
make_indent();
out_ << "if (";
if (!EmitExpression(stmt->condition())) {
return false;
}
out_ << ")";
if (!EmitStatementBlock(stmt->body())) {
return false;
}
for (const auto& e : stmt->else_statements()) {
if (!EmitElse(e.get())) {
return false;
}
}
out_ << std::endl;
return true;
}
bool GeneratorImpl::EmitMemberAccessor(ast::MemberAccessorExpression* expr) {
if (!EmitExpression(expr->structure())) {
return false;
}
out_ << ".";
return EmitExpression(expr->member());
}
bool GeneratorImpl::EmitReturn(ast::ReturnStatement* stmt) {
make_indent();
out_ << "return";
if (generating_entry_point_) {
auto out_data = ep_name_to_out_data_.find(current_ep_name_);
if (out_data != ep_name_to_out_data_.end()) {
out_ << " " << out_data->second.var_name;
}
} else if (stmt->has_value()) {
out_ << " ";
if (!EmitExpression(stmt->value())) {
return false;
}
}
out_ << ";" << std::endl;
return true;
}
bool GeneratorImpl::EmitStatementBlock(const ast::StatementList& statements) {
out_ << " {" << std::endl;
increment_indent();
for (const auto& s : statements) {
if (!EmitStatement(s.get())) {
return false;
}
}
decrement_indent();
make_indent();
out_ << "}";
return true;
}
bool GeneratorImpl::EmitStatementBlockAndNewline(
const ast::StatementList& statements) {
const bool result = EmitStatementBlock(statements);
if (result) {
out_ << std::endl;
}
return result;
}
bool GeneratorImpl::EmitStatement(ast::Statement* stmt) {
if (stmt->IsAssign()) {
return EmitAssign(stmt->AsAssign());
}
if (stmt->IsBreak()) {
return EmitBreak(stmt->AsBreak());
}
if (stmt->IsContinue()) {
return EmitContinue(stmt->AsContinue());
}
if (stmt->IsFallthrough()) {
make_indent();
out_ << "/* fallthrough */" << std::endl;
return true;
}
if (stmt->IsIf()) {
return EmitIf(stmt->AsIf());
}
if (stmt->IsKill()) {
return EmitKill(stmt->AsKill());
}
if (stmt->IsLoop()) {
return EmitLoop(stmt->AsLoop());
}
if (stmt->IsReturn()) {
return EmitReturn(stmt->AsReturn());
}
if (stmt->IsSwitch()) {
return EmitSwitch(stmt->AsSwitch());
}
if (stmt->IsVariableDecl()) {
return EmitVariable(stmt->AsVariableDecl()->variable());
}
error_ = "unknown statement type: " + stmt->str();
return false;
}
bool GeneratorImpl::EmitSwitch(ast::SwitchStatement* stmt) {
make_indent();
out_ << "switch(";
if (!EmitExpression(stmt->condition())) {
return false;
}
out_ << ") {" << std::endl;
increment_indent();
for (const auto& s : stmt->body()) {
if (!EmitCase(s.get())) {
return false;
}
}
decrement_indent();
make_indent();
out_ << "}" << std::endl;
return true;
}
bool GeneratorImpl::EmitType(ast::type::Type* type, const std::string& name) {
if (type->IsAlias()) {
auto* alias = type->AsAlias();
out_ << namer_.NameFor(alias->name());
} else if (type->IsArray()) {
auto* ary = type->AsArray();
ast::type::Type* base_type = ary;
std::vector<uint32_t> sizes;
while (base_type->IsArray()) {
if (base_type->AsArray()->IsRuntimeArray()) {
sizes.push_back(1);
} else {
sizes.push_back(base_type->AsArray()->size());
}
base_type = base_type->AsArray()->type();
}
if (!EmitType(base_type, "")) {
return false;
}
if (!name.empty()) {
out_ << " " << namer_.NameFor(name);
}
for (uint32_t size : sizes) {
out_ << "[" << size << "]";
}
} else if (type->IsBool()) {
out_ << "bool";
} else if (type->IsF32()) {
out_ << "float";
} else if (type->IsI32()) {
out_ << "int";
} else if (type->IsMatrix()) {
auto* mat = type->AsMatrix();
if (!EmitType(mat->type(), "")) {
return false;
}
out_ << mat->columns() << "x" << mat->rows();
} else if (type->IsPointer()) {
auto* ptr = type->AsPointer();
// TODO(dsinclair): Storage class?
if (!EmitType(ptr->type(), "")) {
return false;
}
out_ << "*";
} else if (type->IsStruct()) {
auto* str = type->AsStruct()->impl();
// TODO(dsinclair): Block decoration?
// if (str->decoration() != ast::StructDecoration::kNone) {
// }
out_ << "struct {" << std::endl;
increment_indent();
for (const auto& mem : str->members()) {
make_indent();
// TODO(dsinclair): Member decorations?
// if (!mem->decorations().empty()) {
// }
if (!EmitType(mem->type(), mem->name())) {
return false;
}
// Array member name will be output with the type
if (!mem->type()->IsArray()) {
out_ << " " << namer_.NameFor(mem->name());
}
out_ << ";" << std::endl;
}
decrement_indent();
make_indent();
out_ << "}";
} else if (type->IsU32()) {
out_ << "uint";
} else if (type->IsVector()) {
auto* vec = type->AsVector();
if (!EmitType(vec->type(), "")) {
return false;
}
out_ << vec->size();
} else if (type->IsVoid()) {
out_ << "void";
} else {
error_ = "unknown type in EmitType";
return false;
}
return true;
}
bool GeneratorImpl::EmitUnaryOp(ast::UnaryOpExpression* expr) {
switch (expr->op()) {
case ast::UnaryOp::kNot:
out_ << "!";
break;
case ast::UnaryOp::kNegation:
out_ << "-";
break;
}
out_ << "(";
if (!EmitExpression(expr->expr())) {
return false;
}
out_ << ")";
return true;
}
bool GeneratorImpl::EmitVariable(ast::Variable* var) {
make_indent();
// TODO(dsinclair): Handle variable decorations
if (var->IsDecorated()) {
error_ = "Variable decorations are not handled yet";
return false;
}
if (var->is_const()) {
out_ << "const ";
}
if (!EmitType(var->type(), var->name())) {
return false;
}
if (!var->type()->IsArray()) {
out_ << " " << var->name();
}
if (var->constructor() != nullptr) {
out_ << " = ";
if (!EmitExpression(var->constructor())) {
return false;
}
}
out_ << ";" << std::endl;
return true;
}
} // namespace msl
} // namespace writer
} // namespace tint