| // Copyright 2021 The Tint Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "src/transform/promote_side_effects_to_decl.h" |
| |
| #include <string> |
| #include <unordered_map> |
| #include <utility> |
| |
| #include "src/program_builder.h" |
| #include "src/sem/block_statement.h" |
| #include "src/sem/call.h" |
| #include "src/sem/expression.h" |
| #include "src/sem/for_loop_statement.h" |
| #include "src/sem/if_statement.h" |
| #include "src/sem/statement.h" |
| #include "src/sem/type_constructor.h" |
| #include "src/utils/reverse.h" |
| |
| TINT_INSTANTIATE_TYPEINFO(tint::transform::PromoteSideEffectsToDecl); |
| TINT_INSTANTIATE_TYPEINFO(tint::transform::PromoteSideEffectsToDecl::Config); |
| |
| namespace tint { |
| namespace transform { |
| |
| /// Private implementation of PromoteSideEffectsToDecl transform |
| class PromoteSideEffectsToDecl::State { |
| private: |
| CloneContext& ctx; |
| const Config& cfg; |
| ProgramBuilder& b; |
| |
| /// Holds information about a for-loop that needs to be decomposed into a |
| /// loop, so that declaration statements can be inserted before the condition |
| /// expression or continuing statement. |
| struct LoopInfo { |
| ast::StatementList cond_decls; |
| ast::StatementList cont_decls; |
| }; |
| |
| /// Holds information about 'if's with 'else-if' statements that need to be |
| /// decomposed into 'if {else}' so that declaration statements can be inserted |
| /// before the condition expression. |
| struct IfInfo { |
| /// Info for each else-if that needs decomposing |
| struct ElseIfInfo { |
| /// Decls to insert before condition |
| ast::StatementList cond_decls; |
| }; |
| |
| /// 'else if's that need to be decomposed to 'else { if }' |
| std::unordered_map<const sem::ElseStatement*, ElseIfInfo> else_ifs; |
| }; |
| |
| // For-loops that need to be decomposed to loops. |
| std::unordered_map<const sem::ForLoopStatement*, LoopInfo> loops; |
| |
| /// If statements with 'else if's that need to be decomposed to 'else { if }' |
| std::unordered_map<const sem::IfStatement*, IfInfo> ifs; |
| |
| // Inserts `decl` before `sem_expr`, possibly marking a for-loop to be |
| // converted to a loop, or an else-if to an else { if }.. |
| bool InsertBefore(const sem::Expression* sem_expr, |
| const ast::VariableDeclStatement* decl) { |
| auto* sem_stmt = sem_expr->Stmt(); |
| auto* stmt = sem_stmt->Declaration(); |
| |
| if (auto* else_if = sem_stmt->As<sem::ElseStatement>()) { |
| // Expression used in 'else if' condition. |
| // Need to convert 'else if' to 'else { if }'. |
| auto& if_info = ifs[else_if->Parent()->As<sem::IfStatement>()]; |
| if_info.else_ifs[else_if].cond_decls.push_back(decl); |
| return true; |
| } |
| |
| if (auto* fl = sem_stmt->As<sem::ForLoopStatement>()) { |
| // Expression used in for-loop condition. |
| // For-loop needs to be decomposed to a loop. |
| loops[fl].cond_decls.emplace_back(decl); |
| return true; |
| } |
| |
| auto* parent = sem_stmt->Parent(); // The statement's parent |
| if (auto* block = parent->As<sem::BlockStatement>()) { |
| // Expression's statement sits in a block. Simple case. |
| // Insert the decl before the parent statement |
| ctx.InsertBefore(block->Declaration()->statements, stmt, decl); |
| return true; |
| } |
| |
| if (auto* fl = parent->As<sem::ForLoopStatement>()) { |
| // Expression is used in a for-loop. These require special care. |
| if (fl->Declaration()->initializer == stmt) { |
| // Expression used in for-loop initializer. |
| // Insert the let above the for-loop. |
| ctx.InsertBefore(fl->Block()->Declaration()->statements, |
| fl->Declaration(), decl); |
| return true; |
| } |
| |
| if (fl->Declaration()->continuing == stmt) { |
| // Expression used in for-loop continuing. |
| // For-loop needs to be decomposed to a loop. |
| loops[fl].cont_decls.emplace_back(decl); |
| return true; |
| } |
| |
| TINT_ICE(Transform, b.Diagnostics()) |
| << "unhandled use of expression in for-loop"; |
| return false; |
| } |
| |
| TINT_ICE(Transform, b.Diagnostics()) |
| << "unhandled expression parent statement type: " |
| << parent->TypeInfo().name; |
| return false; |
| } |
| |
| // Hoists array and structure initializers to a constant variable, declared |
| // just before the statement of usage. |
| bool TypeConstructorToLet(const ast::CallExpression* expr) { |
| auto* ctor = ctx.src->Sem().Get(expr); |
| if (!ctor->Target()->Is<sem::TypeConstructor>()) { |
| return true; |
| } |
| auto* sem_stmt = ctor->Stmt(); |
| if (!sem_stmt) { |
| // Expression is outside of a statement. This usually means the |
| // expression is part of a global (module-scope) constant declaration. |
| // These must be constexpr, and so cannot contain the type of |
| // expressions that must be sanitized. |
| return true; |
| } |
| |
| auto* stmt = sem_stmt->Declaration(); |
| |
| if (auto* src_var_decl = stmt->As<ast::VariableDeclStatement>()) { |
| if (src_var_decl->variable->constructor == expr) { |
| // This statement is just a variable declaration with the |
| // initializer as the constructor value. This is what we're |
| // attempting to transform to, and so ignore. |
| return true; |
| } |
| } |
| |
| auto* src_ty = ctor->Type(); |
| if (!src_ty->IsAnyOf<sem::Array, sem::Struct>()) { |
| // We only care about array and struct initializers |
| return true; |
| } |
| |
| // Construct the let that holds the hoisted initializer |
| auto name = b.Sym(); |
| auto* let = b.Const(name, nullptr, ctx.Clone(expr)); |
| auto* let_decl = b.Decl(let); |
| |
| if (!InsertBefore(ctor, let_decl)) { |
| return false; |
| } |
| |
| // Replace the initializer expression with a reference to the let |
| ctx.Replace(expr, b.Expr(name)); |
| return true; |
| } |
| |
| // Extracts array and matrix values that are dynamically indexed to a |
| // temporary `var` local that is then indexed. |
| bool DynamicIndexToVar(const ast::IndexAccessorExpression* access_expr) { |
| auto* index_expr = access_expr->index; |
| auto* object_expr = access_expr->object; |
| auto& sem = ctx.src->Sem(); |
| |
| if (sem.Get(index_expr)->ConstantValue()) { |
| // Index expression resolves to a compile time value. |
| // As this isn't a dynamic index, we can ignore this. |
| return true; |
| } |
| |
| auto* indexed = sem.Get(object_expr); |
| if (!indexed->Type()->IsAnyOf<sem::Array, sem::Matrix>()) { |
| // We only care about array and matrices. |
| return true; |
| } |
| |
| // Construct a `var` declaration to hold the value in memory. |
| // TODO(bclayton): group multiple accesses in the same object. |
| // e.g. arr[i] + arr[i+1] // Don't create two vars for this |
| auto var_name = b.Symbols().New("var_for_index"); |
| auto* var_decl = b.Decl(b.Var(var_name, nullptr, ctx.Clone(object_expr))); |
| |
| if (!InsertBefore(indexed, var_decl)) { |
| return false; |
| } |
| |
| // Replace the original index expression with the new `var`. |
| ctx.Replace(object_expr, b.Expr(var_name)); |
| return true; |
| } |
| |
| // Converts any for-loops marked for conversion to loops, inserting |
| // registered declaration statements before the condition or continuing |
| // statement. |
| void ForLoopsToLoops() { |
| if (loops.empty()) { |
| return; |
| } |
| |
| // At least one for-loop needs to be transformed into a loop. |
| ctx.ReplaceAll( |
| [&](const ast::ForLoopStatement* stmt) -> const ast::Statement* { |
| auto& sem = ctx.src->Sem(); |
| |
| if (auto* fl = sem.Get(stmt)) { |
| if (auto it = loops.find(fl); it != loops.end()) { |
| auto& info = it->second; |
| auto* for_loop = fl->Declaration(); |
| // For-loop needs to be decomposed to a loop. |
| // Build the loop body's statements. |
| // Start with any let declarations for the conditional |
| // expression. |
| auto body_stmts = info.cond_decls; |
| // If the for-loop has a condition, emit this next as: |
| // if (!cond) { break; } |
| if (auto* cond = for_loop->condition) { |
| // !condition |
| auto* not_cond = b.create<ast::UnaryOpExpression>( |
| ast::UnaryOp::kNot, ctx.Clone(cond)); |
| // { break; } |
| auto* break_body = b.Block(b.create<ast::BreakStatement>()); |
| // if (!condition) { break; } |
| body_stmts.emplace_back(b.If(not_cond, break_body)); |
| } |
| // Next emit the for-loop body |
| for (auto* body_stmt : for_loop->body->statements) { |
| body_stmts.emplace_back(ctx.Clone(body_stmt)); |
| } |
| |
| // Finally create the continuing block if there was one. |
| const ast::BlockStatement* continuing = nullptr; |
| if (auto* cont = for_loop->continuing) { |
| // Continuing block starts with any let declarations used by |
| // the continuing. |
| auto cont_stmts = info.cont_decls; |
| cont_stmts.emplace_back(ctx.Clone(cont)); |
| continuing = b.Block(cont_stmts); |
| } |
| |
| auto* body = b.Block(body_stmts); |
| auto* loop = b.Loop(body, continuing); |
| if (auto* init = for_loop->initializer) { |
| return b.Block(ctx.Clone(init), loop); |
| } |
| return loop; |
| } |
| } |
| return nullptr; |
| }); |
| } |
| |
| void ElseIfsToElseWithNestedIfs() { |
| if (ifs.empty()) { |
| return; |
| } |
| |
| ctx.ReplaceAll([&](const ast::IfStatement* if_stmt) // |
| -> const ast::IfStatement* { |
| auto& sem = ctx.src->Sem(); |
| auto* sem_if = sem.Get(if_stmt); |
| if (!sem_if) { |
| return nullptr; |
| } |
| |
| auto it = ifs.find(sem_if); |
| if (it == ifs.end()) { |
| return nullptr; |
| } |
| auto& if_info = it->second; |
| |
| // This if statement has "else if"s that need to be converted to "else |
| // { if }"s |
| |
| ast::ElseStatementList next_else_stmts; |
| next_else_stmts.reserve(if_stmt->else_statements.size()); |
| |
| for (auto* else_stmt : utils::Reverse(if_stmt->else_statements)) { |
| if (else_stmt->condition == nullptr) { |
| // The last 'else', keep as is |
| next_else_stmts.insert(next_else_stmts.begin(), ctx.Clone(else_stmt)); |
| |
| } else { |
| auto* sem_else_if = sem.Get(else_stmt); |
| |
| auto it2 = if_info.else_ifs.find(sem_else_if); |
| if (it2 == if_info.else_ifs.end()) { |
| // 'else if' we don't need to modify (no decls to insert), so |
| // keep as is |
| next_else_stmts.insert(next_else_stmts.begin(), |
| ctx.Clone(else_stmt)); |
| |
| } else { |
| // 'else if' we need to replace with 'else <decls> { if }' |
| auto& else_if_info = it2->second; |
| |
| // Build the else body's statements, starting with let decls for |
| // the conditional expression |
| auto& body_stmts = else_if_info.cond_decls; |
| |
| // Build nested if |
| body_stmts.emplace_back(b.If(ctx.Clone(else_stmt->condition), |
| ctx.Clone(else_stmt->body), |
| next_else_stmts)); |
| |
| // Build else |
| auto* else_with_nested_if = b.Else(b.Block(body_stmts)); |
| |
| // This will be used in parent if (either another nested if, or |
| // top-level if) |
| next_else_stmts = {else_with_nested_if}; |
| } |
| } |
| } |
| |
| // Build a new top-level if with new else statements |
| if (next_else_stmts.empty()) { |
| TINT_ICE(Transform, b.Diagnostics()) |
| << "Expected else statements to insert into new if"; |
| } |
| auto* new_if = b.If(ctx.Clone(if_stmt->condition), |
| ctx.Clone(if_stmt->body), next_else_stmts); |
| return new_if; |
| }); |
| } |
| |
| public: |
| /// Constructor |
| /// @param ctx_in the CloneContext primed with the input program and |
| /// @param cfg_in the transform config |
| /// ProgramBuilder |
| explicit State(CloneContext& ctx_in, const Config& cfg_in) |
| : ctx(ctx_in), cfg(cfg_in), b(*ctx_in.dst) {} |
| |
| /// Runs the transform |
| void Run() { |
| // Scan the AST nodes for expressions that need to be promoted to their own |
| // constant or variable declaration. |
| |
| // Note: Correct handling of nested expressions is guaranteed due to the |
| // depth-first traversal of the ast::Node::Clone() methods: |
| // |
| // The inner-most expressions are traversed first, and they are hoisted |
| // to variables declared just above the statement of use. The outer |
| // expression will then be hoisted, inserting themselves between the |
| // inner declaration and the statement of use. This pattern applies |
| // correctly to any nested depth. |
| // |
| // Depth-first traversal of the AST is guaranteed because AST nodes are |
| // fully immutable and require their children to be constructed first so |
| // their pointer can be passed to the parent's constructor. |
| |
| for (auto* node : ctx.src->ASTNodes().Objects()) { |
| if (cfg.type_ctor_to_let) { |
| if (auto* call_expr = node->As<ast::CallExpression>()) { |
| if (!TypeConstructorToLet(call_expr)) { |
| return; |
| } |
| } |
| } |
| |
| if (cfg.dynamic_index_to_var) { |
| if (auto* access_expr = node->As<ast::IndexAccessorExpression>()) { |
| if (!DynamicIndexToVar(access_expr)) { |
| return; |
| } |
| } |
| } |
| } |
| |
| ForLoopsToLoops(); |
| ElseIfsToElseWithNestedIfs(); |
| |
| ctx.Clone(); |
| } |
| }; |
| |
| PromoteSideEffectsToDecl::PromoteSideEffectsToDecl() = default; |
| PromoteSideEffectsToDecl::~PromoteSideEffectsToDecl() = default; |
| |
| void PromoteSideEffectsToDecl::Run(CloneContext& ctx, |
| const DataMap& inputs, |
| DataMap&) const { |
| auto* cfg = inputs.Get<Config>(); |
| if (cfg == nullptr) { |
| ctx.dst->Diagnostics().add_error( |
| diag::System::Transform, |
| "missing transform data for " + std::string(TypeInfo().name)); |
| return; |
| } |
| |
| State state(ctx, *cfg); |
| state.Run(); |
| } |
| |
| PromoteSideEffectsToDecl::Config::Config(bool type_ctor_to_let_in, |
| bool dynamic_index_to_var_in) |
| : type_ctor_to_let(type_ctor_to_let_in), |
| dynamic_index_to_var(dynamic_index_to_var_in) {} |
| |
| PromoteSideEffectsToDecl::Config::~Config() = default; |
| |
| } // namespace transform |
| } // namespace tint |