blob: 777cd0145f5aa405331183fe7cadb8a79e834d6d [file] [log] [blame]
// Copyright 2023 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string>
#include <utility>
#include "gmock/gmock.h"
#include "src/tint/lang/core/ir/builder.h"
#include "src/tint/lang/core/ir/ir_helper_test.h"
#include "src/tint/lang/core/ir/validator.h"
#include "src/tint/lang/core/type/array.h"
#include "src/tint/lang/core/type/matrix.h"
#include "src/tint/lang/core/type/pointer.h"
#include "src/tint/lang/core/type/struct.h"
#include "src/tint/utils/text/string.h"
namespace tint::core::ir {
namespace {
using namespace tint::core::fluent_types; // NOLINT
using namespace tint::core::number_suffixes; // NOLINT
using IR_ValidatorTest = IRTestHelper;
TEST_F(IR_ValidatorTest, RootBlock_Var) {
mod.root_block = b.RootBlock();
mod.root_block->Append(b.Var(ty.ptr<private_, i32>()));
auto res = ir::Validate(mod);
EXPECT_TRUE(res) << res.Failure().str();
}
TEST_F(IR_ValidatorTest, RootBlock_NonVar) {
auto* l = b.Loop();
l->Body()->Append(b.Continue(l));
mod.root_block = b.RootBlock();
mod.root_block->Append(l);
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(),
R"(:2:3 error: root block: invalid instruction: tint::core::ir::Loop
loop [b: %b2] { # loop_1
^^^^^^^^^^^^^
:1:1 note: In block
%b1 = block { # root
^^^^^^^^^^^
note: # Disassembly
%b1 = block { # root
loop [b: %b2] { # loop_1
%b2 = block { # body
continue %b3
}
}
}
)");
}
TEST_F(IR_ValidatorTest, Function) {
auto* f = b.Function("my_func", ty.void_());
f->SetParams({b.FunctionParam(ty.i32()), b.FunctionParam(ty.f32())});
f->Block()->Append(b.Return(f));
auto res = ir::Validate(mod);
EXPECT_TRUE(res) << res.Failure().str();
}
TEST_F(IR_ValidatorTest, Function_Duplicate) {
auto* f = b.Function("my_func", ty.void_());
// Function would auto-push by the builder, so this adds a duplicate
mod.functions.Push(f);
f->SetParams({b.FunctionParam(ty.i32()), b.FunctionParam(ty.f32())});
f->Block()->Append(b.Return(f));
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(error: function 'my_func' added to module multiple times
note: # Disassembly
%my_func = func(%2:i32, %3:f32):void -> %b1 {
%b1 = block {
ret
}
}
%my_func = func(%2:i32, %3:f32):void -> %b1 {
%b1 = block {
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, Block_NoTerminator) {
b.Function("my_func", ty.void_());
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:2:3 error: block: does not end in a terminator instruction
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
}
}
)");
}
TEST_F(IR_ValidatorTest, Access_NegativeIndex) {
auto* f = b.Function("my_func", ty.void_());
auto* obj = b.FunctionParam(ty.vec3<f32>());
f->SetParams({obj});
b.Append(f->Block(), [&] {
b.Access(ty.f32(), obj, -1_i);
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:3:25 error: access: constant index must be positive, got -1
%3:f32 = access %2, -1i
^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func(%2:vec3<f32>):void -> %b1 {
%b1 = block {
%3:f32 = access %2, -1i
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, Access_OOB_Index_Value) {
auto* f = b.Function("my_func", ty.void_());
auto* obj = b.FunctionParam(ty.mat3x2<f32>());
f->SetParams({obj});
b.Append(f->Block(), [&] {
b.Access(ty.f32(), obj, 1_u, 3_u);
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:3:29 error: access: index out of bounds for type vec2<f32>
%3:f32 = access %2, 1u, 3u
^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
:3:29 note: acceptable range: [0..1]
%3:f32 = access %2, 1u, 3u
^^
note: # Disassembly
%my_func = func(%2:mat3x2<f32>):void -> %b1 {
%b1 = block {
%3:f32 = access %2, 1u, 3u
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, Access_OOB_Index_Ptr) {
auto* f = b.Function("my_func", ty.void_());
auto* obj = b.FunctionParam(ty.ptr<private_, array<array<f32, 2>, 3>>());
f->SetParams({obj});
b.Append(f->Block(), [&] {
b.Access(ty.ptr<private_, f32>(), obj, 1_u, 3_u);
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(),
R"(:3:55 error: access: index out of bounds for type ptr<array<f32, 2>>
%3:ptr<private, f32, read_write> = access %2, 1u, 3u
^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
:3:55 note: acceptable range: [0..1]
%3:ptr<private, f32, read_write> = access %2, 1u, 3u
^^
note: # Disassembly
%my_func = func(%2:ptr<private, array<array<f32, 2>, 3>, read_write>):void -> %b1 {
%b1 = block {
%3:ptr<private, f32, read_write> = access %2, 1u, 3u
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, Access_StaticallyUnindexableType_Value) {
auto* f = b.Function("my_func", ty.void_());
auto* obj = b.FunctionParam(ty.f32());
f->SetParams({obj});
b.Append(f->Block(), [&] {
b.Access(ty.f32(), obj, 1_u);
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:3:25 error: access: type f32 cannot be indexed
%3:f32 = access %2, 1u
^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func(%2:f32):void -> %b1 {
%b1 = block {
%3:f32 = access %2, 1u
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, Access_StaticallyUnindexableType_Ptr) {
auto* f = b.Function("my_func", ty.void_());
auto* obj = b.FunctionParam(ty.ptr<private_, f32>());
f->SetParams({obj});
b.Append(f->Block(), [&] {
b.Access(ty.ptr<private_, f32>(), obj, 1_u);
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:3:51 error: access: type ptr<f32> cannot be indexed
%3:ptr<private, f32, read_write> = access %2, 1u
^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func(%2:ptr<private, f32, read_write>):void -> %b1 {
%b1 = block {
%3:ptr<private, f32, read_write> = access %2, 1u
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, Access_DynamicallyUnindexableType_Value) {
auto* str_ty = ty.Struct(mod.symbols.New("MyStruct"), {
{mod.symbols.New("a"), ty.i32()},
{mod.symbols.New("b"), ty.i32()},
});
auto* f = b.Function("my_func", ty.void_());
auto* obj = b.FunctionParam(str_ty);
auto* idx = b.FunctionParam(ty.i32());
f->SetParams({obj, idx});
b.Append(f->Block(), [&] {
b.Access(ty.i32(), obj, idx);
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(),
R"(:8:25 error: access: type MyStruct cannot be dynamically indexed
%4:i32 = access %2, %3
^^
:7:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
MyStruct = struct @align(4) {
a:i32 @offset(0)
b:i32 @offset(4)
}
%my_func = func(%2:MyStruct, %3:i32):void -> %b1 {
%b1 = block {
%4:i32 = access %2, %3
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, Access_DynamicallyUnindexableType_Ptr) {
auto* str_ty = ty.Struct(mod.symbols.New("MyStruct"), {
{mod.symbols.New("a"), ty.i32()},
{mod.symbols.New("b"), ty.i32()},
});
auto* f = b.Function("my_func", ty.void_());
auto* obj = b.FunctionParam(ty.ptr<private_, read_write>(str_ty));
auto* idx = b.FunctionParam(ty.i32());
f->SetParams({obj, idx});
b.Append(f->Block(), [&] {
b.Access(ty.i32(), obj, idx);
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(),
R"(:8:25 error: access: type ptr<MyStruct> cannot be dynamically indexed
%4:i32 = access %2, %3
^^
:7:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
MyStruct = struct @align(4) {
a:i32 @offset(0)
b:i32 @offset(4)
}
%my_func = func(%2:ptr<private, MyStruct, read_write>, %3:i32):void -> %b1 {
%b1 = block {
%4:i32 = access %2, %3
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, Access_Incorrect_Type_Value_Value) {
auto* f = b.Function("my_func", ty.void_());
auto* obj = b.FunctionParam(ty.mat3x2<f32>());
f->SetParams({obj});
b.Append(f->Block(), [&] {
b.Access(ty.i32(), obj, 1_u, 1_u);
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(),
R"(:3:14 error: access: result of access chain is type f32 but instruction type is i32
%3:i32 = access %2, 1u, 1u
^^^^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func(%2:mat3x2<f32>):void -> %b1 {
%b1 = block {
%3:i32 = access %2, 1u, 1u
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, Access_Incorrect_Type_Ptr_Ptr) {
auto* f = b.Function("my_func", ty.void_());
auto* obj = b.FunctionParam(ty.ptr<private_, array<array<f32, 2>, 3>>());
f->SetParams({obj});
b.Append(f->Block(), [&] {
b.Access(ty.ptr<private_, i32>(), obj, 1_u, 1_u);
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(
res.Failure().str(),
R"(:3:40 error: access: result of access chain is type ptr<f32> but instruction type is ptr<i32>
%3:ptr<private, i32, read_write> = access %2, 1u, 1u
^^^^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func(%2:ptr<private, array<array<f32, 2>, 3>, read_write>):void -> %b1 {
%b1 = block {
%3:ptr<private, i32, read_write> = access %2, 1u, 1u
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, Access_Incorrect_Type_Ptr_Value) {
auto* f = b.Function("my_func", ty.void_());
auto* obj = b.FunctionParam(ty.ptr<private_, array<array<f32, 2>, 3>>());
f->SetParams({obj});
b.Append(f->Block(), [&] {
b.Access(ty.f32(), obj, 1_u, 1_u);
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(
res.Failure().str(),
R"(:3:14 error: access: result of access chain is type ptr<f32> but instruction type is f32
%3:f32 = access %2, 1u, 1u
^^^^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func(%2:ptr<private, array<array<f32, 2>, 3>, read_write>):void -> %b1 {
%b1 = block {
%3:f32 = access %2, 1u, 1u
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, Access_IndexVectorPtr) {
auto* f = b.Function("my_func", ty.void_());
auto* obj = b.FunctionParam(ty.ptr<private_, vec3<f32>>());
f->SetParams({obj});
b.Append(f->Block(), [&] {
b.Access(ty.f32(), obj, 1_u);
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(),
R"(:3:25 error: access: cannot obtain address of vector element
%3:f32 = access %2, 1u
^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func(%2:ptr<private, vec3<f32>, read_write>):void -> %b1 {
%b1 = block {
%3:f32 = access %2, 1u
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, Access_IndexVectorPtr_ViaMatrixPtr) {
auto* f = b.Function("my_func", ty.void_());
auto* obj = b.FunctionParam(ty.ptr<private_, mat3x2<f32>>());
f->SetParams({obj});
b.Append(f->Block(), [&] {
b.Access(ty.f32(), obj, 1_u, 1_u);
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(),
R"(:3:29 error: access: cannot obtain address of vector element
%3:f32 = access %2, 1u, 1u
^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func(%2:ptr<private, mat3x2<f32>, read_write>):void -> %b1 {
%b1 = block {
%3:f32 = access %2, 1u, 1u
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, Access_IndexVector) {
auto* f = b.Function("my_func", ty.void_());
auto* obj = b.FunctionParam(ty.vec3<f32>());
f->SetParams({obj});
b.Append(f->Block(), [&] {
b.Access(ty.f32(), obj, 1_u);
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_TRUE(res) << res.Failure().str();
}
TEST_F(IR_ValidatorTest, Access_IndexVector_ViaMatrix) {
auto* f = b.Function("my_func", ty.void_());
auto* obj = b.FunctionParam(ty.mat3x2<f32>());
f->SetParams({obj});
b.Append(f->Block(), [&] {
b.Access(ty.f32(), obj, 1_u, 1_u);
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_TRUE(res) << res.Failure().str();
}
TEST_F(IR_ValidatorTest, Block_TerminatorInMiddle) {
auto* f = b.Function("my_func", ty.void_());
b.Append(f->Block(), [&] {
b.Return(f);
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(),
R"(:3:5 error: block: terminator which isn't the final instruction
ret
^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
ret
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, If_EmptyFalse) {
auto* f = b.Function("my_func", ty.void_());
auto* if_ = b.If(true);
if_->True()->Append(b.Return(f));
f->Block()->Append(if_);
f->Block()->Append(b.Return(f));
auto res = ir::Validate(mod);
EXPECT_TRUE(res) << res.Failure().str();
}
TEST_F(IR_ValidatorTest, If_EmptyTrue) {
auto* f = b.Function("my_func", ty.void_());
auto* if_ = b.If(true);
if_->False()->Append(b.Return(f));
f->Block()->Append(if_);
f->Block()->Append(b.Return(f));
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:4:7 error: block: does not end in a terminator instruction
%b2 = block { # true
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
if true [t: %b2, f: %b3] { # if_1
%b2 = block { # true
}
%b3 = block { # false
ret
}
}
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, If_ConditionIsBool) {
auto* f = b.Function("my_func", ty.void_());
auto* if_ = b.If(1_i);
if_->True()->Append(b.Return(f));
if_->False()->Append(b.Return(f));
f->Block()->Append(if_);
f->Block()->Append(b.Return(f));
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:3:8 error: if: condition must be a `bool` type
if 1i [t: %b2, f: %b3] { # if_1
^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
if 1i [t: %b2, f: %b3] { # if_1
%b2 = block { # true
ret
}
%b3 = block { # false
ret
}
}
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, If_ConditionIsNullptr) {
auto* f = b.Function("my_func", ty.void_());
auto* if_ = b.If(nullptr);
if_->True()->Append(b.Return(f));
if_->False()->Append(b.Return(f));
f->Block()->Append(if_);
f->Block()->Append(b.Return(f));
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:3:8 error: if: operand is undefined
if undef [t: %b2, f: %b3] { # if_1
^^^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
if undef [t: %b2, f: %b3] { # if_1
%b2 = block { # true
ret
}
%b3 = block { # false
ret
}
}
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, If_NullResult) {
auto* f = b.Function("my_func", ty.void_());
auto* if_ = b.If(true);
if_->True()->Append(b.Return(f));
if_->False()->Append(b.Return(f));
if_->SetResults(Vector<InstructionResult*, 1>{nullptr});
f->Block()->Append(if_);
f->Block()->Append(b.Return(f));
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:3:5 error: if: instruction result is undefined
undef = if true [t: %b2, f: %b3] { # if_1
^^^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
undef = if true [t: %b2, f: %b3] { # if_1
%b2 = block { # true
ret
}
%b3 = block { # false
ret
}
}
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, Loop_OnlyBody) {
auto* f = b.Function("my_func", ty.void_());
auto* l = b.Loop();
l->Body()->Append(b.ExitLoop(l));
auto sb = b.Append(f->Block());
sb.Append(l);
sb.Return(f);
auto res = ir::Validate(mod);
EXPECT_TRUE(res) << res.Failure().str();
}
TEST_F(IR_ValidatorTest, Loop_EmptyBody) {
auto* f = b.Function("my_func", ty.void_());
auto sb = b.Append(f->Block());
sb.Append(b.Loop());
sb.Return(f);
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:4:7 error: block: does not end in a terminator instruction
%b2 = block { # body
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
loop [b: %b2] { # loop_1
%b2 = block { # body
}
}
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, Var_RootBlock_NullResult) {
auto* v = mod.instructions.Create<ir::Var>(nullptr);
b.RootBlock()->Append(v);
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:2:3 error: var: instruction result is undefined
undef = var
^^^^^
:1:1 note: In block
%b1 = block { # root
^^^^^^^^^^^
note: # Disassembly
%b1 = block { # root
undef = var
}
)");
}
TEST_F(IR_ValidatorTest, Var_Function_NullResult) {
auto* v = mod.instructions.Create<ir::Var>(nullptr);
auto* f = b.Function("my_func", ty.void_());
auto sb = b.Append(f->Block());
sb.Append(v);
sb.Return(f);
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:3:5 error: var: instruction result is undefined
undef = var
^^^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
undef = var
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, Var_Init_WrongType) {
auto* f = b.Function("my_func", ty.void_());
auto sb = b.Append(f->Block());
auto* v = sb.Var(ty.ptr<function, f32>());
sb.Return(f);
auto* result = sb.InstructionResult(ty.i32());
v->SetInitializer(result);
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:3:41 error: var: initializer has incorrect type
%2:ptr<function, f32, read_write> = var, %3
^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
%2:ptr<function, f32, read_write> = var, %3
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, Let_NullResult) {
auto* v = mod.instructions.Create<ir::Let>(nullptr, b.Constant(1_i));
auto* f = b.Function("my_func", ty.void_());
auto sb = b.Append(f->Block());
sb.Append(v);
sb.Return(f);
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:3:5 error: let: instruction result is undefined
undef = let 1i
^^^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
undef = let 1i
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, Let_NullValue) {
auto* v = mod.instructions.Create<ir::Let>(b.InstructionResult(ty.f32()), nullptr);
auto* f = b.Function("my_func", ty.void_());
auto sb = b.Append(f->Block());
sb.Append(v);
sb.Return(f);
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:3:18 error: let: operand is undefined
%2:f32 = let undef
^^^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
%2:f32 = let undef
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, Let_WrongType) {
auto* v = mod.instructions.Create<ir::Let>(b.InstructionResult(ty.f32()), b.Constant(1_i));
auto* f = b.Function("my_func", ty.void_());
auto sb = b.Append(f->Block());
sb.Append(v);
sb.Return(f);
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:3:14 error: let: result type does not match value type
%2:f32 = let 1i
^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
%2:f32 = let 1i
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, Instruction_AppendedDead) {
auto* f = b.Function("my_func", ty.void_());
auto sb = b.Append(f->Block());
auto* v = sb.Var(ty.ptr<function, f32>());
auto* ret = sb.Return(f);
v->Destroy();
v->InsertBefore(ret);
auto addr = tint::ToString(v);
auto arrows = std::string(addr.length(), '^');
std::string expected = R"(:3:5 error: var: destroyed instruction found in instruction list
<destroyed tint::core::ir::Var $ADDRESS>
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^$ARROWS^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
<destroyed tint::core::ir::Var $ADDRESS>
ret
}
}
)";
expected = tint::ReplaceAll(expected, "$ADDRESS", addr);
expected = tint::ReplaceAll(expected, "$ARROWS", arrows);
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), expected);
}
TEST_F(IR_ValidatorTest, Instruction_NullSource) {
auto* f = b.Function("my_func", ty.void_());
auto sb = b.Append(f->Block());
auto* v = sb.Var(ty.ptr<function, f32>());
sb.Return(f);
v->Result()->SetSource(nullptr);
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:3:5 error: var: instruction result source is undefined
%2:ptr<function, f32, read_write> = var
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
%2:ptr<function, f32, read_write> = var
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, Instruction_DeadOperand) {
auto* f = b.Function("my_func", ty.void_());
auto sb = b.Append(f->Block());
auto* v = sb.Var(ty.ptr<function, f32>());
sb.Return(f);
auto* result = sb.InstructionResult(ty.f32());
result->Destroy();
v->SetInitializer(result);
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:3:46 error: var: instruction has operand which is not alive
%2:ptr<function, f32, read_write> = var, %3
^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
%2:ptr<function, f32, read_write> = var, %3
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, Instruction_OperandUsageRemoved) {
auto* f = b.Function("my_func", ty.void_());
auto sb = b.Append(f->Block());
auto* v = sb.Var(ty.ptr<function, f32>());
sb.Return(f);
auto* result = sb.InstructionResult(ty.f32());
v->SetInitializer(result);
result->RemoveUsage({v, 0u});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:3:46 error: var: instruction operand missing usage
%2:ptr<function, f32, read_write> = var, %3
^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
%2:ptr<function, f32, read_write> = var, %3
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, Binary_LHS_Nullptr) {
auto* f = b.Function("my_func", ty.void_());
auto sb = b.Append(f->Block());
sb.Add(ty.i32(), nullptr, sb.Constant(2_i));
sb.Return(f);
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:3:18 error: binary: operand is undefined
%2:i32 = add undef, 2i
^^^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
%2:i32 = add undef, 2i
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, Binary_RHS_Nullptr) {
auto* f = b.Function("my_func", ty.void_());
auto sb = b.Append(f->Block());
sb.Add(ty.i32(), sb.Constant(2_i), nullptr);
sb.Return(f);
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:3:22 error: binary: operand is undefined
%2:i32 = add 2i, undef
^^^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
%2:i32 = add 2i, undef
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, Binary_Result_Nullptr) {
auto* bin = mod.instructions.Create<ir::Binary>(nullptr, ir::Binary::Kind::kAdd,
b.Constant(3_i), b.Constant(2_i));
auto* f = b.Function("my_func", ty.void_());
auto sb = b.Append(f->Block());
sb.Append(bin);
sb.Return(f);
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:3:5 error: binary: instruction result is undefined
undef = add 3i, 2i
^^^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
undef = add 3i, 2i
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, Unary_Value_Nullptr) {
auto* f = b.Function("my_func", ty.void_());
auto sb = b.Append(f->Block());
sb.Negation(ty.i32(), nullptr);
sb.Return(f);
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:3:23 error: unary: operand is undefined
%2:i32 = negation undef
^^^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
%2:i32 = negation undef
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, Unary_Result_Nullptr) {
auto* bin =
mod.instructions.Create<ir::Unary>(nullptr, ir::Unary::Kind::kNegation, b.Constant(2_i));
auto* f = b.Function("my_func", ty.void_());
auto sb = b.Append(f->Block());
sb.Append(bin);
sb.Return(f);
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:3:5 error: unary: instruction result is undefined
undef = negation 2i
^^^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
undef = negation 2i
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, Unary_ResultTypeNotMatchValueType) {
auto* bin = b.Complement(ty.f32(), 2_i);
auto* f = b.Function("my_func", ty.void_());
auto sb = b.Append(f->Block());
sb.Append(bin);
sb.Return(f);
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:3:5 error: unary: result type must match value type
%2:f32 = complement 2i
^^^^^^^^^^^^^^^^^^^^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
%2:f32 = complement 2i
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, ExitIf) {
auto* if_ = b.If(true);
if_->True()->Append(b.ExitIf(if_));
auto* f = b.Function("my_func", ty.void_());
auto sb = b.Append(f->Block());
sb.Append(if_);
sb.Return(f);
auto res = ir::Validate(mod);
EXPECT_TRUE(res) << res.Failure().str();
}
TEST_F(IR_ValidatorTest, ExitIf_NullIf) {
auto* if_ = b.If(true);
if_->True()->Append(mod.instructions.Create<ExitIf>(nullptr));
auto* f = b.Function("my_func", ty.void_());
auto sb = b.Append(f->Block());
sb.Append(if_);
sb.Return(f);
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:5:9 error: exit_if: has no parent control instruction
exit_if # undef
^^^^^^^
:4:7 note: In block
%b2 = block { # true
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
if true [t: %b2] { # if_1
%b2 = block { # true
exit_if # undef
}
}
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, ExitIf_LessOperandsThenIfParams) {
auto* if_ = b.If(true);
if_->True()->Append(b.ExitIf(if_, 1_i));
auto* r1 = b.InstructionResult(ty.i32());
auto* r2 = b.InstructionResult(ty.f32());
if_->SetResults(Vector{r1, r2});
auto* f = b.Function("my_func", ty.void_());
auto sb = b.Append(f->Block());
sb.Append(if_);
sb.Return(f);
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(
res.Failure().str(),
R"(:5:9 error: exit_if: args count (1) does not match control instruction result count (2)
exit_if 1i # if_1
^^^^^^^^^^
:4:7 note: In block
%b2 = block { # true
^^^^^^^^^^^
:3:5 note: control instruction
%2:i32, %3:f32 = if true [t: %b2] { # if_1
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
%2:i32, %3:f32 = if true [t: %b2] { # if_1
%b2 = block { # true
exit_if 1i # if_1
}
# implicit false block: exit_if undef, undef
}
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, ExitIf_MoreOperandsThenIfParams) {
auto* if_ = b.If(true);
if_->True()->Append(b.ExitIf(if_, 1_i, 2_f, 3_i));
auto* r1 = b.InstructionResult(ty.i32());
auto* r2 = b.InstructionResult(ty.f32());
if_->SetResults(Vector{r1, r2});
auto* f = b.Function("my_func", ty.void_());
auto sb = b.Append(f->Block());
sb.Append(if_);
sb.Return(f);
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(
res.Failure().str(),
R"(:5:9 error: exit_if: args count (3) does not match control instruction result count (2)
exit_if 1i, 2.0f, 3i # if_1
^^^^^^^^^^^^^^^^^^^^
:4:7 note: In block
%b2 = block { # true
^^^^^^^^^^^
:3:5 note: control instruction
%2:i32, %3:f32 = if true [t: %b2] { # if_1
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
%2:i32, %3:f32 = if true [t: %b2] { # if_1
%b2 = block { # true
exit_if 1i, 2.0f, 3i # if_1
}
# implicit false block: exit_if undef, undef
}
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, ExitIf_WithResult) {
auto* if_ = b.If(true);
if_->True()->Append(b.ExitIf(if_, 1_i, 2_f));
auto* r1 = b.InstructionResult(ty.i32());
auto* r2 = b.InstructionResult(ty.f32());
if_->SetResults(Vector{r1, r2});
auto* f = b.Function("my_func", ty.void_());
auto sb = b.Append(f->Block());
sb.Append(if_);
sb.Return(f);
auto res = ir::Validate(mod);
ASSERT_TRUE(res) << res.Failure().str();
}
TEST_F(IR_ValidatorTest, ExitIf_IncorrectResultType) {
auto* if_ = b.If(true);
if_->True()->Append(b.ExitIf(if_, 1_i, 2_i));
auto* r1 = b.InstructionResult(ty.i32());
auto* r2 = b.InstructionResult(ty.f32());
if_->SetResults(Vector{r1, r2});
auto* f = b.Function("my_func", ty.void_());
auto sb = b.Append(f->Block());
sb.Append(if_);
sb.Return(f);
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(
res.Failure().str(),
R"(:5:21 error: exit_if: argument type (f32) does not match control instruction type (i32)
exit_if 1i, 2i # if_1
^^
:4:7 note: In block
%b2 = block { # true
^^^^^^^^^^^
:3:5 note: control instruction
%2:i32, %3:f32 = if true [t: %b2] { # if_1
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
%2:i32, %3:f32 = if true [t: %b2] { # if_1
%b2 = block { # true
exit_if 1i, 2i # if_1
}
# implicit false block: exit_if undef, undef
}
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, ExitIf_NotInParentIf) {
auto* f = b.Function("my_func", ty.void_());
auto* if_ = b.If(true);
if_->True()->Append(b.Return(f));
auto sb = b.Append(f->Block());
sb.Append(if_);
sb.ExitIf(if_);
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(),
R"(:8:5 error: exit_if: found outside all control instructions
exit_if # if_1
^^^^^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
if true [t: %b2] { # if_1
%b2 = block { # true
ret
}
}
exit_if # if_1
}
}
)");
}
TEST_F(IR_ValidatorTest, ExitIf_InvalidJumpsOverIf) {
auto* f = b.Function("my_func", ty.void_());
auto* if_inner = b.If(true);
auto* if_outer = b.If(true);
b.Append(if_outer->True(), [&] {
b.Append(if_inner);
b.ExitIf(if_outer);
});
b.Append(if_inner->True(), [&] { b.ExitIf(if_outer); });
b.Append(f->Block(), [&] {
b.Append(if_outer);
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(),
R"(:7:13 error: exit_if: if target jumps over other control instructions
exit_if # if_1
^^^^^^^
:6:11 note: In block
%b3 = block { # true
^^^^^^^^^^^
:5:9 note: first control instruction jumped
if true [t: %b3] { # if_2
^^^^^^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
if true [t: %b2] { # if_1
%b2 = block { # true
if true [t: %b3] { # if_2
%b3 = block { # true
exit_if # if_1
}
}
exit_if # if_1
}
}
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, ExitIf_InvalidJumpOverSwitch) {
auto* f = b.Function("my_func", ty.void_());
auto* switch_inner = b.Switch(1_i);
auto* if_outer = b.If(true);
b.Append(if_outer->True(), [&] {
b.Append(switch_inner);
b.ExitIf(if_outer);
});
auto* c = b.Case(switch_inner, {Switch::CaseSelector{b.Constant(1_i)}});
b.Append(c, [&] { b.ExitIf(if_outer); });
b.Append(f->Block(), [&] {
b.Append(if_outer);
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(),
R"(:7:13 error: exit_if: if target jumps over other control instructions
exit_if # if_1
^^^^^^^
:6:11 note: In block
%b3 = block { # case
^^^^^^^^^^^
:5:9 note: first control instruction jumped
switch 1i [c: (1i, %b3)] { # switch_1
^^^^^^^^^^^^^^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
if true [t: %b2] { # if_1
%b2 = block { # true
switch 1i [c: (1i, %b3)] { # switch_1
%b3 = block { # case
exit_if # if_1
}
}
exit_if # if_1
}
}
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, ExitIf_InvalidJumpOverLoop) {
auto* f = b.Function("my_func", ty.void_());
auto* loop = b.Loop();
auto* if_outer = b.If(true);
b.Append(if_outer->True(), [&] {
b.Append(loop);
b.ExitIf(if_outer);
});
b.Append(loop->Body(), [&] { b.ExitIf(if_outer); });
b.Append(f->Block(), [&] {
b.Append(if_outer);
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(),
R"(:7:13 error: exit_if: if target jumps over other control instructions
exit_if # if_1
^^^^^^^
:6:11 note: In block
%b3 = block { # body
^^^^^^^^^^^
:5:9 note: first control instruction jumped
loop [b: %b3] { # loop_1
^^^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
if true [t: %b2] { # if_1
%b2 = block { # true
loop [b: %b3] { # loop_1
%b3 = block { # body
exit_if # if_1
}
}
exit_if # if_1
}
}
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, ExitSwitch) {
auto* switch_ = b.Switch(true);
auto* def = b.Case(switch_, {Switch::CaseSelector{}});
def->Append(b.ExitSwitch(switch_));
auto* f = b.Function("my_func", ty.void_());
auto sb = b.Append(f->Block());
sb.Append(switch_);
sb.Return(f);
auto res = ir::Validate(mod);
EXPECT_TRUE(res) << res.Failure().str();
}
TEST_F(IR_ValidatorTest, ExitSwitch_NullSwitch) {
auto* switch_ = b.Switch(true);
auto* def = b.Case(switch_, {Switch::CaseSelector{}});
def->Append(mod.instructions.Create<ExitSwitch>(nullptr));
auto* f = b.Function("my_func", ty.void_());
auto sb = b.Append(f->Block());
sb.Append(switch_);
sb.Return(f);
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:5:9 error: exit_switch: has no parent control instruction
exit_switch # undef
^^^^^^^^^^^
:4:7 note: In block
%b2 = block { # case
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
switch true [c: (default, %b2)] { # switch_1
%b2 = block { # case
exit_switch # undef
}
}
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, ExitSwitch_LessOperandsThenSwitchParams) {
auto* switch_ = b.Switch(true);
auto* r1 = b.InstructionResult(ty.i32());
auto* r2 = b.InstructionResult(ty.f32());
switch_->SetResults(Vector{r1, r2});
auto* def = b.Case(switch_, {Switch::CaseSelector{}});
def->Append(b.ExitSwitch(switch_, 1_i));
auto* f = b.Function("my_func", ty.void_());
auto sb = b.Append(f->Block());
sb.Append(switch_);
sb.Return(f);
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(
res.Failure().str(),
R"(:5:9 error: exit_switch: args count (1) does not match control instruction result count (2)
exit_switch 1i # switch_1
^^^^^^^^^^^^^^
:4:7 note: In block
%b2 = block { # case
^^^^^^^^^^^
:3:5 note: control instruction
%2:i32, %3:f32 = switch true [c: (default, %b2)] { # switch_1
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
%2:i32, %3:f32 = switch true [c: (default, %b2)] { # switch_1
%b2 = block { # case
exit_switch 1i # switch_1
}
}
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, ExitSwitch_MoreOperandsThenSwitchParams) {
auto* switch_ = b.Switch(true);
auto* r1 = b.InstructionResult(ty.i32());
auto* r2 = b.InstructionResult(ty.f32());
switch_->SetResults(Vector{r1, r2});
auto* def = b.Case(switch_, {Switch::CaseSelector{}});
def->Append(b.ExitSwitch(switch_, 1_i, 2_f, 3_i));
auto* f = b.Function("my_func", ty.void_());
auto sb = b.Append(f->Block());
sb.Append(switch_);
sb.Return(f);
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(
res.Failure().str(),
R"(:5:9 error: exit_switch: args count (3) does not match control instruction result count (2)
exit_switch 1i, 2.0f, 3i # switch_1
^^^^^^^^^^^^^^^^^^^^^^^^
:4:7 note: In block
%b2 = block { # case
^^^^^^^^^^^
:3:5 note: control instruction
%2:i32, %3:f32 = switch true [c: (default, %b2)] { # switch_1
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
%2:i32, %3:f32 = switch true [c: (default, %b2)] { # switch_1
%b2 = block { # case
exit_switch 1i, 2.0f, 3i # switch_1
}
}
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, ExitSwitch_WithResult) {
auto* switch_ = b.Switch(true);
auto* r1 = b.InstructionResult(ty.i32());
auto* r2 = b.InstructionResult(ty.f32());
switch_->SetResults(Vector{r1, r2});
auto* def = b.Case(switch_, {Switch::CaseSelector{}});
def->Append(b.ExitSwitch(switch_, 1_i, 2_f));
auto* f = b.Function("my_func", ty.void_());
auto sb = b.Append(f->Block());
sb.Append(switch_);
sb.Return(f);
auto res = ir::Validate(mod);
ASSERT_TRUE(res) << res.Failure().str();
}
TEST_F(IR_ValidatorTest, ExitSwitch_IncorrectResultType) {
auto* switch_ = b.Switch(true);
auto* r1 = b.InstructionResult(ty.i32());
auto* r2 = b.InstructionResult(ty.f32());
switch_->SetResults(Vector{r1, r2});
auto* def = b.Case(switch_, {Switch::CaseSelector{}});
def->Append(b.ExitSwitch(switch_, 1_i, 2_i));
auto* f = b.Function("my_func", ty.void_());
auto sb = b.Append(f->Block());
sb.Append(switch_);
sb.Return(f);
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(
res.Failure().str(),
R"(:5:25 error: exit_switch: argument type (f32) does not match control instruction type (i32)
exit_switch 1i, 2i # switch_1
^^
:4:7 note: In block
%b2 = block { # case
^^^^^^^^^^^
:3:5 note: control instruction
%2:i32, %3:f32 = switch true [c: (default, %b2)] { # switch_1
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
%2:i32, %3:f32 = switch true [c: (default, %b2)] { # switch_1
%b2 = block { # case
exit_switch 1i, 2i # switch_1
}
}
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, ExitSwitch_NotInParentSwitch) {
auto* switch_ = b.Switch(true);
auto* f = b.Function("my_func", ty.void_());
auto* def = b.Case(switch_, {Switch::CaseSelector{}});
def->Append(b.Return(f));
auto sb = b.Append(f->Block());
sb.Append(switch_);
auto* if_ = sb.Append(b.If(true));
b.Append(if_->True(), [&] { b.ExitSwitch(switch_); });
sb.Append(b.Return(f));
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(),
R"(:10:9 error: exit_switch: switch not found in parent control instructions
exit_switch # switch_1
^^^^^^^^^^^
:9:7 note: In block
%b3 = block { # true
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
switch true [c: (default, %b2)] { # switch_1
%b2 = block { # case
ret
}
}
if true [t: %b3] { # if_1
%b3 = block { # true
exit_switch # switch_1
}
}
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, ExitSwitch_JumpsOverIfs) {
// switch(true) {
// default: {
// if (true) {
// if (false) {
// break;
// }
// }
// break;
// }
auto* switch_ = b.Switch(true);
auto* f = b.Function("my_func", ty.void_());
auto* def = b.Case(switch_, {Switch::CaseSelector{}});
b.Append(def, [&] {
auto* if_ = b.If(true);
b.Append(if_->True(), [&] {
auto* inner_if_ = b.If(false);
b.Append(inner_if_->True(), [&] { b.ExitSwitch(switch_); });
b.Return(f);
});
b.ExitSwitch(switch_);
});
auto sb = b.Append(f->Block());
sb.Append(switch_);
sb.Return(f);
auto res = ir::Validate(mod);
EXPECT_TRUE(res) << res.Failure().str();
}
TEST_F(IR_ValidatorTest, ExitSwitch_InvalidJumpOverSwitch) {
auto* switch_ = b.Switch(true);
auto* def = b.Case(switch_, {Switch::CaseSelector{}});
b.Append(def, [&] {
auto* inner = b.Switch(false);
b.ExitSwitch(switch_);
auto* inner_def = b.Case(inner, {Switch::CaseSelector{}});
b.Append(inner_def, [&] { b.ExitSwitch(switch_); });
});
auto* f = b.Function("my_func", ty.void_());
b.Append(f->Block(), [&] {
b.Append(switch_);
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(),
R"(:7:13 error: exit_switch: switch target jumps over other control instructions
exit_switch # switch_1
^^^^^^^^^^^
:6:11 note: In block
%b3 = block { # case
^^^^^^^^^^^
:5:9 note: first control instruction jumped
switch false [c: (default, %b3)] { # switch_2
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
switch true [c: (default, %b2)] { # switch_1
%b2 = block { # case
switch false [c: (default, %b3)] { # switch_2
%b3 = block { # case
exit_switch # switch_1
}
}
exit_switch # switch_1
}
}
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, ExitSwitch_InvalidJumpOverLoop) {
auto* switch_ = b.Switch(true);
auto* def = b.Case(switch_, {Switch::CaseSelector{}});
b.Append(def, [&] {
auto* loop = b.Loop();
b.Append(loop->Body(), [&] { b.ExitSwitch(switch_); });
b.ExitSwitch(switch_);
});
auto* f = b.Function("my_func", ty.void_());
b.Append(f->Block(), [&] {
b.Append(switch_);
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(),
R"(:7:13 error: exit_switch: switch target jumps over other control instructions
exit_switch # switch_1
^^^^^^^^^^^
:6:11 note: In block
%b3 = block { # body
^^^^^^^^^^^
:5:9 note: first control instruction jumped
loop [b: %b3] { # loop_1
^^^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
switch true [c: (default, %b2)] { # switch_1
%b2 = block { # case
loop [b: %b3] { # loop_1
%b3 = block { # body
exit_switch # switch_1
}
}
exit_switch # switch_1
}
}
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, ExitLoop) {
auto* loop = b.Loop();
loop->Continuing()->Append(b.NextIteration(loop));
loop->Body()->Append(b.ExitLoop(loop));
auto* f = b.Function("my_func", ty.void_());
auto sb = b.Append(f->Block());
sb.Append(loop);
sb.Return(f);
auto res = ir::Validate(mod);
EXPECT_TRUE(res) << res.Failure().str();
}
TEST_F(IR_ValidatorTest, ExitLoop_NullLoop) {
auto* loop = b.Loop();
loop->Continuing()->Append(b.NextIteration(loop));
loop->Body()->Append(mod.instructions.Create<ExitLoop>(nullptr));
auto* f = b.Function("my_func", ty.void_());
auto sb = b.Append(f->Block());
sb.Append(loop);
sb.Return(f);
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:5:9 error: exit_loop: has no parent control instruction
exit_loop # undef
^^^^^^^^^
:4:7 note: In block
%b2 = block { # body
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
loop [b: %b2, c: %b3] { # loop_1
%b2 = block { # body
exit_loop # undef
}
%b3 = block { # continuing
next_iteration %b2
}
}
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, ExitLoop_LessOperandsThenLoopParams) {
auto* loop = b.Loop();
auto* r1 = b.InstructionResult(ty.i32());
auto* r2 = b.InstructionResult(ty.f32());
loop->SetResults(Vector{r1, r2});
loop->Continuing()->Append(b.NextIteration(loop));
loop->Body()->Append(b.ExitLoop(loop, 1_i));
auto* f = b.Function("my_func", ty.void_());
auto sb = b.Append(f->Block());
sb.Append(loop);
sb.Return(f);
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(
res.Failure().str(),
R"(:5:9 error: exit_loop: args count (1) does not match control instruction result count (2)
exit_loop 1i # loop_1
^^^^^^^^^^^^
:4:7 note: In block
%b2 = block { # body
^^^^^^^^^^^
:3:5 note: control instruction
%2:i32, %3:f32 = loop [b: %b2, c: %b3] { # loop_1
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
%2:i32, %3:f32 = loop [b: %b2, c: %b3] { # loop_1
%b2 = block { # body
exit_loop 1i # loop_1
}
%b3 = block { # continuing
next_iteration %b2
}
}
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, ExitLoop_MoreOperandsThenLoopParams) {
auto* loop = b.Loop();
auto* r1 = b.InstructionResult(ty.i32());
auto* r2 = b.InstructionResult(ty.f32());
loop->SetResults(Vector{r1, r2});
loop->Continuing()->Append(b.NextIteration(loop));
loop->Body()->Append(b.ExitLoop(loop, 1_i, 2_f, 3_i));
auto* f = b.Function("my_func", ty.void_());
auto sb = b.Append(f->Block());
sb.Append(loop);
sb.Return(f);
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(
res.Failure().str(),
R"(:5:9 error: exit_loop: args count (3) does not match control instruction result count (2)
exit_loop 1i, 2.0f, 3i # loop_1
^^^^^^^^^^^^^^^^^^^^^^
:4:7 note: In block
%b2 = block { # body
^^^^^^^^^^^
:3:5 note: control instruction
%2:i32, %3:f32 = loop [b: %b2, c: %b3] { # loop_1
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
%2:i32, %3:f32 = loop [b: %b2, c: %b3] { # loop_1
%b2 = block { # body
exit_loop 1i, 2.0f, 3i # loop_1
}
%b3 = block { # continuing
next_iteration %b2
}
}
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, ExitLoop_WithResult) {
auto* loop = b.Loop();
auto* r1 = b.InstructionResult(ty.i32());
auto* r2 = b.InstructionResult(ty.f32());
loop->SetResults(Vector{r1, r2});
loop->Continuing()->Append(b.NextIteration(loop));
loop->Body()->Append(b.ExitLoop(loop, 1_i, 2_f));
auto* f = b.Function("my_func", ty.void_());
auto sb = b.Append(f->Block());
sb.Append(loop);
sb.Return(f);
auto res = ir::Validate(mod);
ASSERT_TRUE(res) << res.Failure().str();
}
TEST_F(IR_ValidatorTest, ExitLoop_IncorrectResultType) {
auto* loop = b.Loop();
auto* r1 = b.InstructionResult(ty.i32());
auto* r2 = b.InstructionResult(ty.f32());
loop->SetResults(Vector{r1, r2});
loop->Continuing()->Append(b.NextIteration(loop));
loop->Body()->Append(b.ExitLoop(loop, 1_i, 2_i));
auto* f = b.Function("my_func", ty.void_());
auto sb = b.Append(f->Block());
sb.Append(loop);
sb.Return(f);
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(
res.Failure().str(),
R"(:5:23 error: exit_loop: argument type (f32) does not match control instruction type (i32)
exit_loop 1i, 2i # loop_1
^^
:4:7 note: In block
%b2 = block { # body
^^^^^^^^^^^
:3:5 note: control instruction
%2:i32, %3:f32 = loop [b: %b2, c: %b3] { # loop_1
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
%2:i32, %3:f32 = loop [b: %b2, c: %b3] { # loop_1
%b2 = block { # body
exit_loop 1i, 2i # loop_1
}
%b3 = block { # continuing
next_iteration %b2
}
}
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, ExitLoop_NotInParentLoop) {
auto* f = b.Function("my_func", ty.void_());
auto* loop = b.Loop();
loop->Continuing()->Append(b.NextIteration(loop));
loop->Body()->Append(b.Return(f));
auto sb = b.Append(f->Block());
sb.Append(loop);
auto* if_ = sb.Append(b.If(true));
b.Append(if_->True(), [&] { b.ExitLoop(loop); });
sb.Append(b.Return(f));
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(),
R"(:13:9 error: exit_loop: loop not found in parent control instructions
exit_loop # loop_1
^^^^^^^^^
:12:7 note: In block
%b4 = block { # true
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
loop [b: %b2, c: %b3] { # loop_1
%b2 = block { # body
ret
}
%b3 = block { # continuing
next_iteration %b2
}
}
if true [t: %b4] { # if_1
%b4 = block { # true
exit_loop # loop_1
}
}
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, ExitLoop_JumpsOverIfs) {
// loop {
// if (true) {
// if (false) {
// break;
// }
// }
// break;
// }
auto* loop = b.Loop();
loop->Continuing()->Append(b.NextIteration(loop));
auto* f = b.Function("my_func", ty.void_());
b.Append(loop->Body(), [&] {
auto* if_ = b.If(true);
b.Append(if_->True(), [&] {
auto* inner_if_ = b.If(false);
b.Append(inner_if_->True(), [&] { b.ExitLoop(loop); });
b.Return(f);
});
b.ExitLoop(loop);
});
auto sb = b.Append(f->Block());
sb.Append(loop);
sb.Return(f);
auto res = ir::Validate(mod);
EXPECT_TRUE(res) << res.Failure().str();
}
TEST_F(IR_ValidatorTest, ExitLoop_InvalidJumpOverSwitch) {
auto* loop = b.Loop();
loop->Continuing()->Append(b.NextIteration(loop));
b.Append(loop->Body(), [&] {
auto* inner = b.Switch(false);
b.ExitLoop(loop);
auto* inner_def = b.Case(inner, {Switch::CaseSelector{}});
b.Append(inner_def, [&] { b.ExitLoop(loop); });
});
auto* f = b.Function("my_func", ty.void_());
b.Append(f->Block(), [&] {
b.Append(loop);
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(),
R"(:7:13 error: exit_loop: loop target jumps over other control instructions
exit_loop # loop_1
^^^^^^^^^
:6:11 note: In block
%b4 = block { # case
^^^^^^^^^^^
:5:9 note: first control instruction jumped
switch false [c: (default, %b4)] { # switch_1
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
loop [b: %b2, c: %b3] { # loop_1
%b2 = block { # body
switch false [c: (default, %b4)] { # switch_1
%b4 = block { # case
exit_loop # loop_1
}
}
exit_loop # loop_1
}
%b3 = block { # continuing
next_iteration %b2
}
}
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, ExitLoop_InvalidJumpOverLoop) {
auto* outer_loop = b.Loop();
outer_loop->Continuing()->Append(b.NextIteration(outer_loop));
b.Append(outer_loop->Body(), [&] {
auto* loop = b.Loop();
b.Append(loop->Body(), [&] { b.ExitLoop(outer_loop); });
b.ExitLoop(outer_loop);
});
auto* f = b.Function("my_func", ty.void_());
b.Append(f->Block(), [&] {
b.Append(outer_loop);
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(),
R"(:7:13 error: exit_loop: loop target jumps over other control instructions
exit_loop # loop_1
^^^^^^^^^
:6:11 note: In block
%b4 = block { # body
^^^^^^^^^^^
:5:9 note: first control instruction jumped
loop [b: %b4] { # loop_2
^^^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
loop [b: %b2, c: %b3] { # loop_1
%b2 = block { # body
loop [b: %b4] { # loop_2
%b4 = block { # body
exit_loop # loop_1
}
}
exit_loop # loop_1
}
%b3 = block { # continuing
next_iteration %b2
}
}
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, ExitLoop_InvalidInsideContinuing) {
auto* loop = b.Loop();
loop->Continuing()->Append(b.ExitLoop(loop));
loop->Body()->Append(b.Continue(loop));
auto* f = b.Function("my_func", ty.void_());
b.Append(f->Block(), [&] {
b.Append(loop);
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(),
R"(:8:9 error: exit_loop: loop exit jumps out of continuing block
exit_loop # loop_1
^^^^^^^^^
:7:7 note: In block
%b3 = block { # continuing
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
loop [b: %b2, c: %b3] { # loop_1
%b2 = block { # body
continue %b3
}
%b3 = block { # continuing
exit_loop # loop_1
}
}
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, ExitLoop_InvalidInsideContinuingNested) {
auto* loop = b.Loop();
b.Append(loop->Continuing(), [&]() {
auto* if_ = b.If(true);
b.Append(if_->True(), [&]() { b.ExitLoop(loop); });
b.NextIteration(loop);
});
b.Append(loop->Body(), [&] { b.Continue(loop); });
auto* f = b.Function("my_func", ty.void_());
b.Append(f->Block(), [&] {
b.Append(loop);
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(),
R"(:10:13 error: exit_loop: loop exit jumps out of continuing block
exit_loop # loop_1
^^^^^^^^^
:9:11 note: In block
%b4 = block { # true
^^^^^^^^^^^
:7:7 note: in continuing block
%b3 = block { # continuing
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
loop [b: %b2, c: %b3] { # loop_1
%b2 = block { # body
continue %b3
}
%b3 = block { # continuing
if true [t: %b4] { # if_1
%b4 = block { # true
exit_loop # loop_1
}
}
next_iteration %b2
}
}
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, ExitLoop_InvalidInsideInitializer) {
auto* loop = b.Loop();
loop->Initializer()->Append(b.ExitLoop(loop));
loop->Continuing()->Append(b.NextIteration(loop));
b.Append(loop->Body(), [&] { b.Continue(loop); });
auto* f = b.Function("my_func", ty.void_());
b.Append(f->Block(), [&] {
b.Append(loop);
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(),
R"(:5:9 error: exit_loop: loop exit not permitted in loop initializer
exit_loop # loop_1
^^^^^^^^^
:4:7 note: In block
%b2 = block { # initializer
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
loop [i: %b2, b: %b3, c: %b4] { # loop_1
%b2 = block { # initializer
exit_loop # loop_1
}
%b3 = block { # body
continue %b4
}
%b4 = block { # continuing
next_iteration %b3
}
}
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, ExitLoop_InvalidInsideInitializerNested) {
auto* loop = b.Loop();
b.Append(loop->Initializer(), [&]() {
auto* if_ = b.If(true);
b.Append(if_->True(), [&]() { b.ExitLoop(loop); });
b.NextIteration(loop);
});
loop->Continuing()->Append(b.NextIteration(loop));
b.Append(loop->Body(), [&] { b.Continue(loop); });
auto* f = b.Function("my_func", ty.void_());
b.Append(f->Block(), [&] {
b.Append(loop);
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(),
R"(:7:13 error: exit_loop: loop exit not permitted in loop initializer
exit_loop # loop_1
^^^^^^^^^
:6:11 note: In block
%b5 = block { # true
^^^^^^^^^^^
:4:7 note: in initializer block
%b2 = block { # initializer
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
loop [i: %b2, b: %b3, c: %b4] { # loop_1
%b2 = block { # initializer
if true [t: %b5] { # if_1
%b5 = block { # true
exit_loop # loop_1
}
}
next_iteration %b3
}
%b3 = block { # body
continue %b4
}
%b4 = block { # continuing
next_iteration %b3
}
}
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, Return) {
auto* f = b.Function("my_func", ty.void_());
b.Append(f->Block(), [&] { //
b.Return(f);
});
auto res = ir::Validate(mod);
EXPECT_TRUE(res) << res.Failure().str();
}
TEST_F(IR_ValidatorTest, Return_WithValue) {
auto* f = b.Function("my_func", ty.i32());
b.Append(f->Block(), [&] { //
b.Return(f, 42_i);
});
auto res = ir::Validate(mod);
EXPECT_TRUE(res) << res.Failure().str();
}
TEST_F(IR_ValidatorTest, Return_NullFunction) {
auto* f = b.Function("my_func", ty.void_());
b.Append(f->Block(), [&] { //
b.Return(nullptr);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:3:5 error: return: undefined function
ret
^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, Return_UnexpectedValue) {
auto* f = b.Function("my_func", ty.void_());
b.Append(f->Block(), [&] { //
b.Return(f, 42_i);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:3:5 error: return: unexpected return value
ret 42i
^^^^^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
ret 42i
}
}
)");
}
TEST_F(IR_ValidatorTest, Return_MissingValue) {
auto* f = b.Function("my_func", ty.i32());
b.Append(f->Block(), [&] { //
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:3:5 error: return: expected return value
ret
^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():i32 -> %b1 {
%b1 = block {
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, Return_WrongValueType) {
auto* f = b.Function("my_func", ty.i32());
b.Append(f->Block(), [&] { //
b.Return(f, 42_f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(),
R"(:3:5 error: return: return value type does not match function return type
ret 42.0f
^^^^^^^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():i32 -> %b1 {
%b1 = block {
ret 42.0f
}
}
)");
}
TEST_F(IR_ValidatorTest, Store_NullTo) {
auto* f = b.Function("my_func", ty.void_());
b.Append(f->Block(), [&] {
b.Append(mod.instructions.Create<ir::Store>(nullptr, b.Constant(42_i)));
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:3:11 error: store: operand is undefined
store undef, 42i
^^^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
store undef, 42i
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, Store_NullFrom) {
auto* f = b.Function("my_func", ty.void_());
b.Append(f->Block(), [&] {
auto* var = b.Var(ty.ptr<function, i32>());
b.Append(mod.instructions.Create<ir::Store>(var->Result(), nullptr));
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:4:15 error: store: operand is undefined
store %2, undef
^^^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
%2:ptr<function, i32, read_write> = var
store %2, undef
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, Store_TypeMismatch) {
auto* f = b.Function("my_func", ty.void_());
b.Append(f->Block(), [&] {
auto* var = b.Var(ty.ptr<function, i32>());
b.Append(mod.instructions.Create<ir::Store>(var->Result(), b.Constant(42_u)));
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:4:15 error: value type does not match pointer element type
store %2, 42u
^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
%2:ptr<function, i32, read_write> = var
store %2, 42u
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, LoadVectorElement_NullResult) {
auto* f = b.Function("my_func", ty.void_());
b.Append(f->Block(), [&] {
auto* var = b.Var(ty.ptr<function, vec3<f32>>());
b.Append(mod.instructions.Create<ir::LoadVectorElement>(nullptr, var->Result(),
b.Constant(1_i)));
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(),
R"(:4:5 error: load_vector_element: instruction result is undefined
undef = load_vector_element %2, 1i
^^^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
%2:ptr<function, vec3<f32>, read_write> = var
undef = load_vector_element %2, 1i
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, LoadVectorElement_NullFrom) {
auto* f = b.Function("my_func", ty.void_());
b.Append(f->Block(), [&] {
b.Append(mod.instructions.Create<ir::LoadVectorElement>(b.InstructionResult(ty.f32()),
nullptr, b.Constant(1_i)));
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:3:34 error: load_vector_element: operand is undefined
%2:f32 = load_vector_element undef, 1i
^^^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
%2:f32 = load_vector_element undef, 1i
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, LoadVectorElement_NullIndex) {
auto* f = b.Function("my_func", ty.void_());
b.Append(f->Block(), [&] {
auto* var = b.Var(ty.ptr<function, vec3<f32>>());
b.Append(mod.instructions.Create<ir::LoadVectorElement>(b.InstructionResult(ty.f32()),
var->Result(), nullptr));
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:4:38 error: load_vector_element: operand is undefined
%3:f32 = load_vector_element %2, undef
^^^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
%2:ptr<function, vec3<f32>, read_write> = var
%3:f32 = load_vector_element %2, undef
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, StoreVectorElement_NullTo) {
auto* f = b.Function("my_func", ty.void_());
b.Append(f->Block(), [&] {
b.Append(mod.instructions.Create<ir::StoreVectorElement>(nullptr, b.Constant(1_i),
b.Constant(2_i)));
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:3:26 error: store_vector_element: operand is undefined
store_vector_element undef, 1i, 2i
^^^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
store_vector_element undef, 1i, 2i
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, StoreVectorElement_NullIndex) {
auto* f = b.Function("my_func", ty.void_());
b.Append(f->Block(), [&] {
auto* var = b.Var(ty.ptr<function, vec3<f32>>());
b.Append(mod.instructions.Create<ir::StoreVectorElement>(var->Result(), nullptr,
b.Constant(2_i)));
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:4:30 error: store_vector_element: operand is undefined
store_vector_element %2, undef, 2i
^^^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
:4:37 error: value type does not match vector pointer element type
store_vector_element %2, undef, 2i
^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
%2:ptr<function, vec3<f32>, read_write> = var
store_vector_element %2, undef, 2i
ret
}
}
)");
}
TEST_F(IR_ValidatorTest, StoreVectorElement_NullValue) {
auto* f = b.Function("my_func", ty.void_());
b.Append(f->Block(), [&] {
auto* var = b.Var(ty.ptr<function, vec3<f32>>());
b.Append(mod.instructions.Create<ir::StoreVectorElement>(var->Result(), b.Constant(1_i),
nullptr));
b.Return(f);
});
auto res = ir::Validate(mod);
ASSERT_FALSE(res);
EXPECT_EQ(res.Failure().str(), R"(:4:34 error: store_vector_element: operand is undefined
store_vector_element %2, 1i, undef
^^^^^
:2:3 note: In block
%b1 = block {
^^^^^^^^^^^
note: # Disassembly
%my_func = func():void -> %b1 {
%b1 = block {
%2:ptr<function, vec3<f32>, read_write> = var
store_vector_element %2, 1i, undef
ret
}
}
)");
}
} // namespace
} // namespace tint::core::ir