blob: 06da9dea98fc69efe37c1166c35651160e19a2b9 [file] [log] [blame]
// Copyright 2022 The Dawn & Tint Authors
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "src/tint/lang/wgsl/ast/transform/expand_compound_assignment.h"
#include <utility>
#include "src/tint/lang/wgsl/ast/compound_assignment_statement.h"
#include "src/tint/lang/wgsl/ast/increment_decrement_statement.h"
#include "src/tint/lang/wgsl/ast/transform/hoist_to_decl_before.h"
#include "src/tint/lang/wgsl/program/clone_context.h"
#include "src/tint/lang/wgsl/program/program_builder.h"
#include "src/tint/lang/wgsl/resolver/resolve.h"
#include "src/tint/lang/wgsl/sem/block_statement.h"
#include "src/tint/lang/wgsl/sem/for_loop_statement.h"
#include "src/tint/lang/wgsl/sem/statement.h"
#include "src/tint/lang/wgsl/sem/value_expression.h"
TINT_INSTANTIATE_TYPEINFO(tint::ast::transform::ExpandCompoundAssignment);
using namespace tint::core::number_suffixes; // NOLINT
namespace tint::ast::transform {
namespace {
bool ShouldRun(const Program& program) {
for (auto* node : program.ASTNodes().Objects()) {
if (node->IsAnyOf<CompoundAssignmentStatement, IncrementDecrementStatement>()) {
return true;
}
}
return false;
}
} // namespace
/// PIMPL state for the transform
struct ExpandCompoundAssignment::State {
/// Constructor
/// @param context the clone context
explicit State(program::CloneContext& context)
: ctx(context), b(*ctx.dst), hoist_to_decl_before(ctx) {}
/// Replace `stmt` with a regular assignment statement of the form:
/// lhs = lhs op rhs
/// The LHS expression will only be evaluated once, and any side effects will
/// be hoisted to `let` declarations above the assignment statement.
/// @param stmt the statement to replace
/// @param lhs the lhs expression from the source statement
/// @param rhs the rhs expression in the destination module
/// @param op the binary operator
void Expand(const Statement* stmt,
const Expression* lhs,
const Expression* rhs,
core::BinaryOp op) {
// Helper function to create the new LHS expression. This will be called
// twice when building the non-compound assignment statement, so must
// not produce expressions that cause side effects.
std::function<const Expression*()> new_lhs;
// Helper function to create a variable that is a pointer to `expr`.
auto hoist_pointer_to = [&](const Expression* expr) {
auto name = b.Sym();
auto* ptr = b.AddressOf(ctx.Clone(expr));
auto* decl = b.Decl(b.Let(name, ptr));
hoist_to_decl_before.InsertBefore(ctx.src->Sem().Get(stmt), decl);
return name;
};
// Helper function to hoist `expr` to a let declaration.
auto hoist_expr_to_let = [&](const Expression* expr) {
auto name = b.Sym();
auto* decl = b.Decl(b.Let(name, ctx.Clone(expr)));
hoist_to_decl_before.InsertBefore(ctx.src->Sem().Get(stmt), decl);
return name;
};
// Helper function that returns `true` if the type of `expr` is a vector.
auto is_vec = [&](const Expression* expr) {
if (auto* val_expr = ctx.src->Sem().GetVal(expr)) {
return val_expr->Type()->UnwrapRef()->Is<core::type::Vector>();
}
return false;
};
// Hoist the LHS expression subtree into local constants to produce a new
// LHS that we can evaluate twice.
// We need to special case compound assignments to vector components since
// we cannot take the address of a vector component.
auto* index_accessor = lhs->As<IndexAccessorExpression>();
auto* member_accessor = lhs->As<MemberAccessorExpression>();
if (lhs->Is<IdentifierExpression>() ||
(member_accessor && member_accessor->object->Is<IdentifierExpression>())) {
// This is the simple case with no side effects, so we can just use the
// original LHS expression directly.
// Before:
// foo.bar += rhs;
// After:
// foo.bar = foo.bar + rhs;
new_lhs = [&] { return ctx.Clone(lhs); };
} else if (index_accessor && is_vec(index_accessor->object)) {
// This is the case for vector component via an array accessor. We need
// to capture a pointer to the vector and also the index value.
// Before:
// v[idx()] += rhs;
// After:
// let vec_ptr = &v;
// let index = idx();
// (*vec_ptr)[index] = (*vec_ptr)[index] + rhs;
auto lhs_ptr = hoist_pointer_to(index_accessor->object);
auto index = hoist_expr_to_let(index_accessor->index);
new_lhs = [&, lhs_ptr, index] { return b.IndexAccessor(b.Deref(lhs_ptr), index); };
} else if (member_accessor && is_vec(member_accessor->object)) {
// This is the case for vector component via a member accessor. We just
// need to capture a pointer to the vector.
// Before:
// a[idx()].y += rhs;
// After:
// let vec_ptr = &a[idx()];
// (*vec_ptr).y = (*vec_ptr).y + rhs;
auto lhs_ptr = hoist_pointer_to(member_accessor->object);
new_lhs = [&, lhs_ptr] {
return b.MemberAccessor(b.Deref(lhs_ptr), ctx.Clone(member_accessor->member));
};
} else {
// For all other statements that may have side-effecting expressions, we
// just need to capture a pointer to the whole LHS.
// Before:
// a[idx()] += rhs;
// After:
// let lhs_ptr = &a[idx()];
// (*lhs_ptr) = (*lhs_ptr) + rhs;
auto lhs_ptr = hoist_pointer_to(lhs);
new_lhs = [&, lhs_ptr] { return b.Deref(lhs_ptr); };
}
// Replace the statement with a regular assignment statement.
auto* value = b.create<BinaryExpression>(op, new_lhs(), rhs);
ctx.Replace(stmt, b.Assign(new_lhs(), value));
}
private:
/// The clone context.
program::CloneContext& ctx;
/// The AST builder.
ast::Builder& b;
/// The HoistToDeclBefore helper instance.
HoistToDeclBefore hoist_to_decl_before;
};
ExpandCompoundAssignment::ExpandCompoundAssignment() = default;
ExpandCompoundAssignment::~ExpandCompoundAssignment() = default;
Transform::ApplyResult ExpandCompoundAssignment::Apply(const Program& src,
const DataMap&,
DataMap&) const {
if (!ShouldRun(src)) {
return SkipTransform;
}
ProgramBuilder b;
program::CloneContext ctx{&b, &src, /* auto_clone_symbols */ true};
State state(ctx);
for (auto* node : src.ASTNodes().Objects()) {
if (auto* assign = node->As<CompoundAssignmentStatement>()) {
state.Expand(assign, assign->lhs, ctx.Clone(assign->rhs), assign->op);
} else if (auto* inc_dec = node->As<IncrementDecrementStatement>()) {
// For increment/decrement statements, `i++` becomes `i = i + 1`.
auto op = inc_dec->increment ? core::BinaryOp::kAdd : core::BinaryOp::kSubtract;
state.Expand(inc_dec, inc_dec->lhs, ctx.dst->Expr(1_a), op);
}
}
ctx.Clone();
return resolver::Resolve(b);
}
} // namespace tint::ast::transform