blob: 9788a5ce566097a91ffa3a7db3ed95cfea670dc4 [file] [log] [blame] [edit]
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "gmock/gmock.h"
#include "src/reader/spirv/function.h"
#include "src/reader/spirv/parser_impl_test_helper.h"
#include "src/reader/spirv/spirv_tools_helpers_test.h"
namespace tint {
namespace reader {
namespace spirv {
namespace {
using ::testing::HasSubstr;
std::string Preamble() {
return R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint Fragment %100 "main"
OpExecutionMode %100 OriginUpperLeft
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%uint = OpTypeInt 32 0
%int = OpTypeInt 32 1
%float = OpTypeFloat 32
%uint_10 = OpConstant %uint 10
%uint_20 = OpConstant %uint 20
%int_30 = OpConstant %int 30
%int_40 = OpConstant %int 40
%float_50 = OpConstant %float 50
%float_60 = OpConstant %float 60
%float_70 = OpConstant %float 70
%ptr_uint = OpTypePointer Function %uint
%ptr_int = OpTypePointer Function %int
%ptr_float = OpTypePointer Function %float
%v2uint = OpTypeVector %uint 2
%v2int = OpTypeVector %int 2
%v2float = OpTypeVector %float 2
%v3float = OpTypeVector %float 3
%v2uint_10_20 = OpConstantComposite %v2uint %uint_10 %uint_20
%v2uint_20_10 = OpConstantComposite %v2uint %uint_20 %uint_10
%v2int_30_40 = OpConstantComposite %v2int %int_30 %int_40
%v2int_40_30 = OpConstantComposite %v2int %int_40 %int_30
%v2float_50_60 = OpConstantComposite %v2float %float_50 %float_60
%v2float_60_50 = OpConstantComposite %v2float %float_60 %float_50
%v3float_50_60_70 = OpConstantComposite %v3float %float_50 %float_60 %float_70
%v3float_60_70_50 = OpConstantComposite %v3float %float_60 %float_70 %float_50
%m2v2float = OpTypeMatrix %v2float 2
%m2v3float = OpTypeMatrix %v3float 2
%m3v2float = OpTypeMatrix %v2float 3
%m2v2float_a = OpConstantComposite %m2v2float %v2float_50_60 %v2float_60_50
%m2v2float_b = OpConstantComposite %m2v2float %v2float_60_50 %v2float_50_60
%m3v2float_a = OpConstantComposite %m3v2float %v2float_50_60 %v2float_60_50 %v2float_50_60
%m2v3float_a = OpConstantComposite %m2v3float %v3float_50_60_70 %v3float_60_70_50
)";
}
// Returns the AST dump for a given SPIR-V assembly constant.
std::string AstFor(std::string assembly) {
if (assembly == "v2uint_10_20") {
return R"(TypeConstructor[not set]{
__vec_2__u32
ScalarConstructor[not set]{10u}
ScalarConstructor[not set]{20u}
})";
}
if (assembly == "v2uint_20_10") {
return R"(TypeConstructor[not set]{
__vec_2__u32
ScalarConstructor[not set]{20u}
ScalarConstructor[not set]{10u}
})";
}
if (assembly == "v2int_30_40") {
return R"(TypeConstructor[not set]{
__vec_2__i32
ScalarConstructor[not set]{30}
ScalarConstructor[not set]{40}
})";
}
if (assembly == "v2int_40_30") {
return R"(TypeConstructor[not set]{
__vec_2__i32
ScalarConstructor[not set]{40}
ScalarConstructor[not set]{30}
})";
}
if (assembly == "cast_int_v2uint_10_20") {
return R"(Bitcast[not set]<__vec_2__i32>{
TypeConstructor[not set]{
__vec_2__u32
ScalarConstructor[not set]{10u}
ScalarConstructor[not set]{20u}
}
})";
}
if (assembly == "cast_uint_v2int_40_30") {
return R"(Bitcast[not set]<__vec_2__u32>{
TypeConstructor[not set]{
__vec_2__i32
ScalarConstructor[not set]{40}
ScalarConstructor[not set]{30}
}
})";
}
if (assembly == "v2float_50_60") {
return R"(TypeConstructor[not set]{
__vec_2__f32
ScalarConstructor[not set]{50.000000}
ScalarConstructor[not set]{60.000000}
})";
}
if (assembly == "v2float_60_50") {
return R"(TypeConstructor[not set]{
__vec_2__f32
ScalarConstructor[not set]{60.000000}
ScalarConstructor[not set]{50.000000}
})";
}
return "bad case";
}
using SpvUnaryArithTest = SpvParserTestBase<::testing::Test>;
TEST_F(SpvUnaryArithTest, SNegate_Int_Int) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpSNegate %int %int_30
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions())
<< p->error() << "\n"
<< assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_THAT(ToString(p->builder(), fe.ast_body()), HasSubstr(R"(
VariableConst{
x_1
none
undefined
__i32
{
UnaryOp[not set]{
negation
ScalarConstructor[not set]{30}
}
}
})"));
}
TEST_F(SpvUnaryArithTest, SNegate_Int_Uint) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpSNegate %int %uint_10
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions())
<< p->error() << "\n"
<< assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_THAT(ToString(p->builder(), fe.ast_body()), HasSubstr(R"(
VariableConst{
x_1
none
undefined
__i32
{
UnaryOp[not set]{
negation
Bitcast[not set]<__i32>{
ScalarConstructor[not set]{10u}
}
}
}
})"));
}
TEST_F(SpvUnaryArithTest, SNegate_Uint_Int) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpSNegate %uint %int_30
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions())
<< p->error() << "\n"
<< assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_THAT(ToString(p->builder(), fe.ast_body()), HasSubstr(R"(
VariableConst{
x_1
none
undefined
__u32
{
Bitcast[not set]<__u32>{
UnaryOp[not set]{
negation
ScalarConstructor[not set]{30}
}
}
}
})"));
}
TEST_F(SpvUnaryArithTest, SNegate_Uint_Uint) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpSNegate %uint %uint_10
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions())
<< p->error() << "\n"
<< assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_THAT(ToString(p->builder(), fe.ast_body()), HasSubstr(R"(
VariableConst{
x_1
none
undefined
__u32
{
Bitcast[not set]<__u32>{
UnaryOp[not set]{
negation
Bitcast[not set]<__i32>{
ScalarConstructor[not set]{10u}
}
}
}
}
})"));
}
TEST_F(SpvUnaryArithTest, SNegate_SignedVec_SignedVec) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpSNegate %v2int %v2int_30_40
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions())
<< p->error() << "\n"
<< assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_THAT(ToString(p->builder(), fe.ast_body()), HasSubstr(R"(
VariableConst{
x_1
none
undefined
__vec_2__i32
{
UnaryOp[not set]{
negation
TypeConstructor[not set]{
__vec_2__i32
ScalarConstructor[not set]{30}
ScalarConstructor[not set]{40}
}
}
}
})"));
}
TEST_F(SpvUnaryArithTest, SNegate_SignedVec_UnsignedVec) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpSNegate %v2int %v2uint_10_20
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions())
<< p->error() << "\n"
<< assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_THAT(ToString(p->builder(), fe.ast_body()), HasSubstr(R"(
VariableConst{
x_1
none
undefined
__vec_2__i32
{
UnaryOp[not set]{
negation
Bitcast[not set]<__vec_2__i32>{
TypeConstructor[not set]{
__vec_2__u32
ScalarConstructor[not set]{10u}
ScalarConstructor[not set]{20u}
}
}
}
}
})"));
}
TEST_F(SpvUnaryArithTest, SNegate_UnsignedVec_SignedVec) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpSNegate %v2uint %v2int_30_40
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions())
<< p->error() << "\n"
<< assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_THAT(ToString(p->builder(), fe.ast_body()), HasSubstr(R"(
VariableConst{
x_1
none
undefined
__vec_2__u32
{
Bitcast[not set]<__vec_2__u32>{
UnaryOp[not set]{
negation
TypeConstructor[not set]{
__vec_2__i32
ScalarConstructor[not set]{30}
ScalarConstructor[not set]{40}
}
}
}
}
})"));
}
TEST_F(SpvUnaryArithTest, SNegate_UnsignedVec_UnsignedVec) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpSNegate %v2uint %v2uint_10_20
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions())
<< p->error() << "\n"
<< assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_THAT(ToString(p->builder(), fe.ast_body()), HasSubstr(R"(
VariableConst{
x_1
none
undefined
__vec_2__u32
{
Bitcast[not set]<__vec_2__u32>{
UnaryOp[not set]{
negation
Bitcast[not set]<__vec_2__i32>{
TypeConstructor[not set]{
__vec_2__u32
ScalarConstructor[not set]{10u}
ScalarConstructor[not set]{20u}
}
}
}
}
}
})"));
}
TEST_F(SpvUnaryArithTest, FNegate_Scalar) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpFNegate %float %float_50
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions())
<< p->error() << "\n"
<< assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_THAT(ToString(p->builder(), fe.ast_body()), HasSubstr(R"(
VariableConst{
x_1
none
undefined
__f32
{
UnaryOp[not set]{
negation
ScalarConstructor[not set]{50.000000}
}
}
})"));
}
TEST_F(SpvUnaryArithTest, FNegate_Vector) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpFNegate %v2float %v2float_50_60
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions())
<< p->error() << "\n"
<< assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_THAT(ToString(p->builder(), fe.ast_body()), HasSubstr(R"(
VariableConst{
x_1
none
undefined
__vec_2__f32
{
UnaryOp[not set]{
negation
TypeConstructor[not set]{
__vec_2__f32
ScalarConstructor[not set]{50.000000}
ScalarConstructor[not set]{60.000000}
}
}
}
})"));
}
struct BinaryData {
const std::string res_type;
const std::string lhs;
const std::string op;
const std::string rhs;
const std::string ast_type;
const std::string ast_lhs;
const std::string ast_op;
const std::string ast_rhs;
};
inline std::ostream& operator<<(std::ostream& out, BinaryData data) {
out << "BinaryData{" << data.res_type << "," << data.lhs << "," << data.op
<< "," << data.rhs << "," << data.ast_type << "," << data.ast_lhs << ","
<< data.ast_op << "," << data.ast_rhs << "}";
return out;
}
using SpvBinaryArithTest =
SpvParserTestBase<::testing::TestWithParam<BinaryData>>;
using SpvBinaryArithTestBasic = SpvParserTestBase<::testing::Test>;
TEST_P(SpvBinaryArithTest, EmitExpression) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = )" + GetParam().op +
" %" + GetParam().res_type + " %" + GetParam().lhs +
" %" + GetParam().rhs + R"(
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions())
<< p->error() << "\n"
<< assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
std::ostringstream ss;
ss << R"(VariableConst{
x_1
none
undefined
)"
<< GetParam().ast_type << "\n {\n Binary[not set]{"
<< "\n " << GetParam().ast_lhs << "\n " << GetParam().ast_op
<< "\n " << GetParam().ast_rhs;
auto got = ToString(p->builder(), fe.ast_body());
EXPECT_THAT(got, HasSubstr(ss.str())) << "got:\n" << got << assembly;
}
// Use this when the result might have extra bitcasts on the outside.
struct BinaryDataGeneral {
const std::string res_type;
const std::string lhs;
const std::string op;
const std::string rhs;
const std::string expected;
};
inline std::ostream& operator<<(std::ostream& out, BinaryDataGeneral data) {
out << "BinaryDataGeneral{" << data.res_type << "," << data.lhs << ","
<< data.op << "," << data.rhs << "," << data.expected << "}";
return out;
}
using SpvBinaryArithGeneralTest =
SpvParserTestBase<::testing::TestWithParam<BinaryDataGeneral>>;
TEST_P(SpvBinaryArithGeneralTest, EmitExpression) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = )" + GetParam().op +
" %" + GetParam().res_type + " %" + GetParam().lhs +
" %" + GetParam().rhs + R"(
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions())
<< p->error() << "\n"
<< assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
std::ostringstream ss;
ss << R"(VariableConst{
x_1
none
undefined
)"
<< GetParam().expected;
auto got = ToString(p->builder(), fe.ast_body());
EXPECT_THAT(got, HasSubstr(ss.str())) << "got:\n" << got << assembly;
}
INSTANTIATE_TEST_SUITE_P(
SpvParserTest_IAdd,
SpvBinaryArithTest,
::testing::Values(
// Both uint
BinaryData{"uint", "uint_10", "OpIAdd", "uint_20", "__u32",
"ScalarConstructor[not set]{10u}", "add",
"ScalarConstructor[not set]{20u}"},
// Both int
BinaryData{"int", "int_30", "OpIAdd", "int_40", "__i32",
"ScalarConstructor[not set]{30}", "add",
"ScalarConstructor[not set]{40}"},
// Both v2uint
BinaryData{"v2uint", "v2uint_10_20", "OpIAdd", "v2uint_20_10",
"__vec_2__u32", AstFor("v2uint_10_20"), "add",
AstFor("v2uint_20_10")},
// Both v2int
BinaryData{"v2int", "v2int_30_40", "OpIAdd", "v2int_40_30",
"__vec_2__i32", AstFor("v2int_30_40"), "add",
AstFor("v2int_40_30")}));
INSTANTIATE_TEST_SUITE_P(
SpvParserTest_IAdd_MixedSignedness,
SpvBinaryArithGeneralTest,
::testing::Values(
// Mixed, uint <- int uint
BinaryDataGeneral{"uint", "int_30", "OpIAdd", "uint_10",
R"(__u32
{
Bitcast[not set]<__u32>{
Binary[not set]{
ScalarConstructor[not set]{30}
add
Bitcast[not set]<__i32>{
ScalarConstructor[not set]{10u}
}
}
}
})"},
// Mixed, int <- int uint
BinaryDataGeneral{"int", "int_30", "OpIAdd", "uint_10",
R"(__i32
{
Binary[not set]{
ScalarConstructor[not set]{30}
add
Bitcast[not set]<__i32>{
ScalarConstructor[not set]{10u}
}
}
})"},
// Mixed, uint <- uint int
BinaryDataGeneral{"uint", "uint_10", "OpIAdd", "int_30",
R"(__u32
{
Binary[not set]{
ScalarConstructor[not set]{10u}
add
Bitcast[not set]<__u32>{
ScalarConstructor[not set]{30}
}
}
})"},
// Mixed, int <- uint uint
BinaryDataGeneral{"int", "uint_20", "OpIAdd", "uint_10",
R"(__i32
{
Bitcast[not set]<__i32>{
Binary[not set]{
ScalarConstructor[not set]{20u}
add
ScalarConstructor[not set]{10u}
}
}
})"},
// Mixed, returning v2uint
BinaryDataGeneral{"v2uint", "v2int_30_40", "OpIAdd", "v2uint_10_20",
R"(__vec_2__u32
{
Bitcast[not set]<__vec_2__u32>{
Binary[not set]{
TypeConstructor[not set]{
__vec_2__i32
ScalarConstructor[not set]{30}
ScalarConstructor[not set]{40}
}
add
Bitcast[not set]<__vec_2__i32>{
TypeConstructor[not set]{
__vec_2__u32
ScalarConstructor[not set]{10u}
ScalarConstructor[not set]{20u}
}
}
}
}
})"},
// Mixed, returning v2int
BinaryDataGeneral{"v2int", "v2uint_10_20", "OpIAdd", "v2int_40_30",
R"(__vec_2__i32
{
Bitcast[not set]<__vec_2__i32>{
Binary[not set]{
TypeConstructor[not set]{
__vec_2__u32
ScalarConstructor[not set]{10u}
ScalarConstructor[not set]{20u}
}
add
Bitcast[not set]<__vec_2__u32>{
TypeConstructor[not set]{
__vec_2__i32
ScalarConstructor[not set]{40}
ScalarConstructor[not set]{30}
}
}
}
}
})"}));
INSTANTIATE_TEST_SUITE_P(
SpvParserTest_FAdd,
SpvBinaryArithTest,
::testing::Values(
// Scalar float
BinaryData{"float", "float_50", "OpFAdd", "float_60", "__f32",
"ScalarConstructor[not set]{50.000000}", "add",
"ScalarConstructor[not set]{60.000000}"},
// Vector float
BinaryData{"v2float", "v2float_50_60", "OpFAdd", "v2float_60_50",
"__vec_2__f32", AstFor("v2float_50_60"), "add",
AstFor("v2float_60_50")}));
INSTANTIATE_TEST_SUITE_P(
SpvParserTest_ISub,
SpvBinaryArithTest,
::testing::Values(
// Both uint
BinaryData{"uint", "uint_10", "OpISub", "uint_20", "__u32",
"ScalarConstructor[not set]{10u}", "subtract",
"ScalarConstructor[not set]{20u}"},
// Both int
BinaryData{"int", "int_30", "OpISub", "int_40", "__i32",
"ScalarConstructor[not set]{30}", "subtract",
"ScalarConstructor[not set]{40}"},
// Both v2uint
BinaryData{"v2uint", "v2uint_10_20", "OpISub", "v2uint_20_10",
"__vec_2__u32", AstFor("v2uint_10_20"), "subtract",
AstFor("v2uint_20_10")},
// Both v2int
BinaryData{"v2int", "v2int_30_40", "OpISub", "v2int_40_30",
"__vec_2__i32", AstFor("v2int_30_40"), "subtract",
AstFor("v2int_40_30")}));
INSTANTIATE_TEST_SUITE_P(
SpvParserTest_ISub_MixedSignedness,
SpvBinaryArithGeneralTest,
::testing::Values(
// Mixed, uint <- int uint
BinaryDataGeneral{"uint", "int_30", "OpISub", "uint_10",
R"(__u32
{
Bitcast[not set]<__u32>{
Binary[not set]{
ScalarConstructor[not set]{30}
subtract
Bitcast[not set]<__i32>{
ScalarConstructor[not set]{10u}
}
}
}
})"},
// Mixed, int <- int uint
BinaryDataGeneral{"int", "int_30", "OpISub", "uint_10",
R"(__i32
{
Binary[not set]{
ScalarConstructor[not set]{30}
subtract
Bitcast[not set]<__i32>{
ScalarConstructor[not set]{10u}
}
}
})"},
// Mixed, uint <- uint int
BinaryDataGeneral{"uint", "uint_10", "OpISub", "int_30",
R"(__u32
{
Binary[not set]{
ScalarConstructor[not set]{10u}
subtract
Bitcast[not set]<__u32>{
ScalarConstructor[not set]{30}
}
}
})"},
// Mixed, int <- uint uint
BinaryDataGeneral{"int", "uint_20", "OpISub", "uint_10",
R"(__i32
{
Bitcast[not set]<__i32>{
Binary[not set]{
ScalarConstructor[not set]{20u}
subtract
ScalarConstructor[not set]{10u}
}
}
})"},
// Mixed, returning v2uint
BinaryDataGeneral{"v2uint", "v2int_30_40", "OpISub", "v2uint_10_20",
R"(__vec_2__u32
{
Bitcast[not set]<__vec_2__u32>{
Binary[not set]{
TypeConstructor[not set]{
__vec_2__i32
ScalarConstructor[not set]{30}
ScalarConstructor[not set]{40}
}
subtract
Bitcast[not set]<__vec_2__i32>{
TypeConstructor[not set]{
__vec_2__u32
ScalarConstructor[not set]{10u}
ScalarConstructor[not set]{20u}
}
}
}
}
})"},
// Mixed, returning v2int
BinaryDataGeneral{"v2int", "v2uint_10_20", "OpISub", "v2int_40_30",
R"(__vec_2__i32
{
Bitcast[not set]<__vec_2__i32>{
Binary[not set]{
TypeConstructor[not set]{
__vec_2__u32
ScalarConstructor[not set]{10u}
ScalarConstructor[not set]{20u}
}
subtract
Bitcast[not set]<__vec_2__u32>{
TypeConstructor[not set]{
__vec_2__i32
ScalarConstructor[not set]{40}
ScalarConstructor[not set]{30}
}
}
}
}
})"}));
INSTANTIATE_TEST_SUITE_P(
SpvParserTest_FSub,
SpvBinaryArithTest,
::testing::Values(
// Scalar float
BinaryData{"float", "float_50", "OpFSub", "float_60", "__f32",
"ScalarConstructor[not set]{50.000000}", "subtract",
"ScalarConstructor[not set]{60.000000}"},
// Vector float
BinaryData{"v2float", "v2float_50_60", "OpFSub", "v2float_60_50",
"__vec_2__f32", AstFor("v2float_50_60"), "subtract",
AstFor("v2float_60_50")}));
INSTANTIATE_TEST_SUITE_P(
SpvParserTest_IMul,
SpvBinaryArithTest,
::testing::Values(
// Both uint
BinaryData{"uint", "uint_10", "OpIMul", "uint_20", "__u32",
"ScalarConstructor[not set]{10u}", "multiply",
"ScalarConstructor[not set]{20u}"},
// Both int
BinaryData{"int", "int_30", "OpIMul", "int_40", "__i32",
"ScalarConstructor[not set]{30}", "multiply",
"ScalarConstructor[not set]{40}"},
// Both v2uint
BinaryData{"v2uint", "v2uint_10_20", "OpIMul", "v2uint_20_10",
"__vec_2__u32", AstFor("v2uint_10_20"), "multiply",
AstFor("v2uint_20_10")},
// Both v2int
BinaryData{"v2int", "v2int_30_40", "OpIMul", "v2int_40_30",
"__vec_2__i32", AstFor("v2int_30_40"), "multiply",
AstFor("v2int_40_30")}));
INSTANTIATE_TEST_SUITE_P(
SpvParserTest_IMul_MixedSignedness,
SpvBinaryArithGeneralTest,
::testing::Values(
// Mixed, uint <- int uint
BinaryDataGeneral{"uint", "int_30", "OpIMul", "uint_10",
R"(__u32
{
Bitcast[not set]<__u32>{
Binary[not set]{
ScalarConstructor[not set]{30}
multiply
Bitcast[not set]<__i32>{
ScalarConstructor[not set]{10u}
}
}
}
})"},
// Mixed, int <- int uint
BinaryDataGeneral{"int", "int_30", "OpIMul", "uint_10",
R"(__i32
{
Binary[not set]{
ScalarConstructor[not set]{30}
multiply
Bitcast[not set]<__i32>{
ScalarConstructor[not set]{10u}
}
}
})"},
// Mixed, uint <- uint int
BinaryDataGeneral{"uint", "uint_10", "OpIMul", "int_30",
R"(__u32
{
Binary[not set]{
ScalarConstructor[not set]{10u}
multiply
Bitcast[not set]<__u32>{
ScalarConstructor[not set]{30}
}
}
})"},
// Mixed, int <- uint uint
BinaryDataGeneral{"int", "uint_20", "OpIMul", "uint_10",
R"(__i32
{
Bitcast[not set]<__i32>{
Binary[not set]{
ScalarConstructor[not set]{20u}
multiply
ScalarConstructor[not set]{10u}
}
}
})"},
// Mixed, returning v2uint
BinaryDataGeneral{"v2uint", "v2int_30_40", "OpIMul", "v2uint_10_20",
R"(__vec_2__u32
{
Bitcast[not set]<__vec_2__u32>{
Binary[not set]{
TypeConstructor[not set]{
__vec_2__i32
ScalarConstructor[not set]{30}
ScalarConstructor[not set]{40}
}
multiply
Bitcast[not set]<__vec_2__i32>{
TypeConstructor[not set]{
__vec_2__u32
ScalarConstructor[not set]{10u}
ScalarConstructor[not set]{20u}
}
}
}
}
})"},
// Mixed, returning v2int
BinaryDataGeneral{"v2int", "v2uint_10_20", "OpIMul", "v2int_40_30",
R"(__vec_2__i32
{
Bitcast[not set]<__vec_2__i32>{
Binary[not set]{
TypeConstructor[not set]{
__vec_2__u32
ScalarConstructor[not set]{10u}
ScalarConstructor[not set]{20u}
}
multiply
Bitcast[not set]<__vec_2__u32>{
TypeConstructor[not set]{
__vec_2__i32
ScalarConstructor[not set]{40}
ScalarConstructor[not set]{30}
}
}
}
}
})"}));
INSTANTIATE_TEST_SUITE_P(
SpvParserTest_FMul,
SpvBinaryArithTest,
::testing::Values(
// Scalar float
BinaryData{"float", "float_50", "OpFMul", "float_60", "__f32",
"ScalarConstructor[not set]{50.000000}", "multiply",
"ScalarConstructor[not set]{60.000000}"},
// Vector float
BinaryData{"v2float", "v2float_50_60", "OpFMul", "v2float_60_50",
"__vec_2__f32", AstFor("v2float_50_60"), "multiply",
AstFor("v2float_60_50")}));
INSTANTIATE_TEST_SUITE_P(
SpvParserTest_UDiv,
SpvBinaryArithTest,
::testing::Values(
// Both uint
BinaryData{"uint", "uint_10", "OpUDiv", "uint_20", "__u32",
"ScalarConstructor[not set]{10u}", "divide",
"ScalarConstructor[not set]{20u}"},
// Both v2uint
BinaryData{"v2uint", "v2uint_10_20", "OpUDiv", "v2uint_20_10",
"__vec_2__u32", AstFor("v2uint_10_20"), "divide",
AstFor("v2uint_20_10")}));
INSTANTIATE_TEST_SUITE_P(
SpvParserTest_SDiv,
SpvBinaryArithTest,
::testing::Values(
// Both int
BinaryData{"int", "int_30", "OpSDiv", "int_40", "__i32",
"ScalarConstructor[not set]{30}", "divide",
"ScalarConstructor[not set]{40}"},
// Both v2int
BinaryData{"v2int", "v2int_30_40", "OpSDiv", "v2int_40_30",
"__vec_2__i32", AstFor("v2int_30_40"), "divide",
AstFor("v2int_40_30")}));
INSTANTIATE_TEST_SUITE_P(
SpvParserTest_SDiv_MixedSignednessOperands,
SpvBinaryArithTest,
::testing::Values(
// Mixed, returning int, second arg uint
BinaryData{"int", "int_30", "OpSDiv", "uint_10", "__i32",
"ScalarConstructor[not set]{30}", "divide",
R"(Bitcast[not set]<__i32>{
ScalarConstructor[not set]{10u}
})"},
// Mixed, returning int, first arg uint
BinaryData{"int", "uint_10", "OpSDiv", "int_30", "__i32",
R"(Bitcast[not set]<__i32>{
ScalarConstructor[not set]{10u}
})",
"divide", "ScalarConstructor[not set]{30}"},
// Mixed, returning v2int, first arg v2uint
BinaryData{"v2int", "v2uint_10_20", "OpSDiv", "v2int_30_40",
"__vec_2__i32", AstFor("cast_int_v2uint_10_20"), "divide",
AstFor("v2int_30_40")},
// Mixed, returning v2int, second arg v2uint
BinaryData{"v2int", "v2int_30_40", "OpSDiv", "v2uint_10_20",
"__vec_2__i32", AstFor("v2int_30_40"), "divide",
AstFor("cast_int_v2uint_10_20")}));
TEST_F(SpvBinaryArithTestBasic, SDiv_Scalar_UnsignedResult) {
// The WGSL signed division operator expects both operands to be signed
// and the result is signed as well.
// In this test SPIR-V demands an unsigned result, so we have to
// wrap the result with an as-cast.
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpSDiv %uint %int_30 %int_40
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions())
<< p->error() << "\n"
<< assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_THAT(ToString(p->builder(), fe.ast_body()), HasSubstr(R"(
VariableConst{
x_1
none
undefined
__u32
{
Bitcast[not set]<__u32>{
Binary[not set]{
ScalarConstructor[not set]{30}
divide
ScalarConstructor[not set]{40}
}
}
}
})"));
}
TEST_F(SpvBinaryArithTestBasic, SDiv_Vector_UnsignedResult) {
// The WGSL signed division operator expects both operands to be signed
// and the result is signed as well.
// In this test SPIR-V demands an unsigned result, so we have to
// wrap the result with an as-cast.
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpSDiv %v2uint %v2int_30_40 %v2int_40_30
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions())
<< p->error() << "\n"
<< assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_THAT(ToString(p->builder(), fe.ast_body()), HasSubstr(R"(
VariableConst{
x_1
none
undefined
__vec_2__u32
{
Bitcast[not set]<__vec_2__u32>{
Binary[not set]{
TypeConstructor[not set]{
__vec_2__i32
ScalarConstructor[not set]{30}
ScalarConstructor[not set]{40}
}
divide
TypeConstructor[not set]{
__vec_2__i32
ScalarConstructor[not set]{40}
ScalarConstructor[not set]{30}
}
}
}
}
})"));
}
INSTANTIATE_TEST_SUITE_P(
SpvParserTest_FDiv,
SpvBinaryArithTest,
::testing::Values(
// Scalar float
BinaryData{"float", "float_50", "OpFDiv", "float_60", "__f32",
"ScalarConstructor[not set]{50.000000}", "divide",
"ScalarConstructor[not set]{60.000000}"},
// Vector float
BinaryData{"v2float", "v2float_50_60", "OpFDiv", "v2float_60_50",
"__vec_2__f32", AstFor("v2float_50_60"), "divide",
AstFor("v2float_60_50")}));
INSTANTIATE_TEST_SUITE_P(
SpvParserTest_UMod,
SpvBinaryArithTest,
::testing::Values(
// Both uint
BinaryData{"uint", "uint_10", "OpUMod", "uint_20", "__u32",
"ScalarConstructor[not set]{10u}", "modulo",
"ScalarConstructor[not set]{20u}"},
// Both v2uint
BinaryData{"v2uint", "v2uint_10_20", "OpUMod", "v2uint_20_10",
"__vec_2__u32", AstFor("v2uint_10_20"), "modulo",
AstFor("v2uint_20_10")}));
// Currently WGSL is missing a mapping for OpSRem
// https://github.com/gpuweb/gpuweb/issues/702
INSTANTIATE_TEST_SUITE_P(
SpvParserTest_SMod,
SpvBinaryArithTest,
::testing::Values(
// Both int
BinaryData{"int", "int_30", "OpSMod", "int_40", "__i32",
"ScalarConstructor[not set]{30}", "modulo",
"ScalarConstructor[not set]{40}"},
// Both v2int
BinaryData{"v2int", "v2int_30_40", "OpSMod", "v2int_40_30",
"__vec_2__i32", AstFor("v2int_30_40"), "modulo",
AstFor("v2int_40_30")}));
INSTANTIATE_TEST_SUITE_P(
SpvParserTest_SMod_MixedSignednessOperands,
SpvBinaryArithTest,
::testing::Values(
// Mixed, returning int, second arg uint
BinaryData{"int", "int_30", "OpSMod", "uint_10", "__i32",
"ScalarConstructor[not set]{30}", "modulo",
R"(Bitcast[not set]<__i32>{
ScalarConstructor[not set]{10u}
})"},
// Mixed, returning int, first arg uint
BinaryData{"int", "uint_10", "OpSMod", "int_30", "__i32",
R"(Bitcast[not set]<__i32>{
ScalarConstructor[not set]{10u}
})",
"modulo", "ScalarConstructor[not set]{30}"},
// Mixed, returning v2int, first arg v2uint
BinaryData{"v2int", "v2uint_10_20", "OpSMod", "v2int_30_40",
"__vec_2__i32", AstFor("cast_int_v2uint_10_20"), "modulo",
AstFor("v2int_30_40")},
// Mixed, returning v2int, second arg v2uint
BinaryData{"v2int", "v2int_30_40", "OpSMod", "v2uint_10_20",
"__vec_2__i32", AstFor("v2int_30_40"), "modulo",
AstFor("cast_int_v2uint_10_20")}));
TEST_F(SpvBinaryArithTestBasic, SMod_Scalar_UnsignedResult) {
// The WGSL signed modulus operator expects both operands to be signed
// and the result is signed as well.
// In this test SPIR-V demands an unsigned result, so we have to
// wrap the result with an as-cast.
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpSMod %uint %int_30 %int_40
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions())
<< p->error() << "\n"
<< assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_THAT(ToString(p->builder(), fe.ast_body()), HasSubstr(R"(
VariableConst{
x_1
none
undefined
__u32
{
Bitcast[not set]<__u32>{
Binary[not set]{
ScalarConstructor[not set]{30}
modulo
ScalarConstructor[not set]{40}
}
}
}
})"));
}
TEST_F(SpvBinaryArithTestBasic, SMod_Vector_UnsignedResult) {
// The WGSL signed modulus operator expects both operands to be signed
// and the result is signed as well.
// In this test SPIR-V demands an unsigned result, so we have to
// wrap the result with an as-cast.
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpSMod %v2uint %v2int_30_40 %v2int_40_30
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions())
<< p->error() << "\n"
<< assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_THAT(ToString(p->builder(), fe.ast_body()), HasSubstr(R"(
VariableConst{
x_1
none
undefined
__vec_2__u32
{
Bitcast[not set]<__vec_2__u32>{
Binary[not set]{
TypeConstructor[not set]{
__vec_2__i32
ScalarConstructor[not set]{30}
ScalarConstructor[not set]{40}
}
modulo
TypeConstructor[not set]{
__vec_2__i32
ScalarConstructor[not set]{40}
ScalarConstructor[not set]{30}
}
}
}
}
})"));
}
INSTANTIATE_TEST_SUITE_P(
SpvParserTest_FRem,
SpvBinaryArithTest,
::testing::Values(
// Scalar float
BinaryData{"float", "float_50", "OpFRem", "float_60", "__f32",
"ScalarConstructor[not set]{50.000000}", "modulo",
"ScalarConstructor[not set]{60.000000}"},
// Vector float
BinaryData{"v2float", "v2float_50_60", "OpFRem", "v2float_60_50",
"__vec_2__f32", AstFor("v2float_50_60"), "modulo",
AstFor("v2float_60_50")}));
TEST_F(SpvBinaryArithTestBasic, FMod_Scalar) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpFMod %float %float_50 %float_60
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions())
<< p->error() << "\n"
<< assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_THAT(ToString(p->builder(), fe.ast_body()), HasSubstr(R"(
VariableConst{
x_1
none
undefined
__f32
{
Binary[not set]{
ScalarConstructor[not set]{50.000000}
subtract
Binary[not set]{
ScalarConstructor[not set]{60.000000}
multiply
Call[not set]{
Identifier[not set]{floor}
(
Binary[not set]{
ScalarConstructor[not set]{50.000000}
divide
ScalarConstructor[not set]{60.000000}
}
)
}
}
}
}
})"));
}
TEST_F(SpvBinaryArithTestBasic, FMod_Vector) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpFMod %v2float %v2float_50_60 %v2float_60_50
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions())
<< p->error() << "\n"
<< assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_THAT(ToString(p->builder(), fe.ast_body()), HasSubstr(R"(
VariableConst{
x_1
none
undefined
__vec_2__f32
{
Binary[not set]{
TypeConstructor[not set]{
__vec_2__f32
ScalarConstructor[not set]{50.000000}
ScalarConstructor[not set]{60.000000}
}
subtract
Binary[not set]{
TypeConstructor[not set]{
__vec_2__f32
ScalarConstructor[not set]{60.000000}
ScalarConstructor[not set]{50.000000}
}
multiply
Call[not set]{
Identifier[not set]{floor}
(
Binary[not set]{
TypeConstructor[not set]{
__vec_2__f32
ScalarConstructor[not set]{50.000000}
ScalarConstructor[not set]{60.000000}
}
divide
TypeConstructor[not set]{
__vec_2__f32
ScalarConstructor[not set]{60.000000}
ScalarConstructor[not set]{50.000000}
}
}
)
}
}
}
}
})"));
}
TEST_F(SpvBinaryArithTestBasic, VectorTimesScalar) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpCopyObject %v2float %v2float_50_60
%2 = OpCopyObject %float %float_50
%10 = OpVectorTimesScalar %v2float %1 %2
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions())
<< assembly << p->error();
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_THAT(ToString(p->builder(), fe.ast_body()), HasSubstr(R"(VariableConst{
x_10
none
undefined
__vec_2__f32
{
Binary[not set]{
Identifier[not set]{x_1}
multiply
Identifier[not set]{x_2}
}
}
})"));
}
TEST_F(SpvBinaryArithTestBasic, MatrixTimesScalar) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpCopyObject %m2v2float %m2v2float_a
%2 = OpCopyObject %float %float_50
%10 = OpMatrixTimesScalar %m2v2float %1 %2
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions())
<< assembly << p->error();
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_THAT(ToString(p->builder(), fe.ast_body()), HasSubstr(R"(VariableConst{
x_10
none
undefined
__mat_2_2__f32
{
Binary[not set]{
Identifier[not set]{x_1}
multiply
Identifier[not set]{x_2}
}
}
})"));
}
TEST_F(SpvBinaryArithTestBasic, VectorTimesMatrix) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpCopyObject %m2v2float %m2v2float_a
%2 = OpCopyObject %v2float %v2float_50_60
%10 = OpMatrixTimesVector %v2float %1 %2
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions())
<< assembly << p->error();
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_THAT(ToString(p->builder(), fe.ast_body()), HasSubstr(R"(VariableConst{
x_10
none
undefined
__vec_2__f32
{
Binary[not set]{
Identifier[not set]{x_1}
multiply
Identifier[not set]{x_2}
}
}
})"));
}
TEST_F(SpvBinaryArithTestBasic, MatrixTimesVector) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpCopyObject %m2v2float %m2v2float_a
%2 = OpCopyObject %v2float %v2float_50_60
%10 = OpMatrixTimesVector %v2float %1 %2
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions())
<< assembly << p->error();
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_THAT(ToString(p->builder(), fe.ast_body()), HasSubstr(R"(VariableConst{
x_10
none
undefined
__vec_2__f32
{
Binary[not set]{
Identifier[not set]{x_1}
multiply
Identifier[not set]{x_2}
}
}
})"));
}
TEST_F(SpvBinaryArithTestBasic, MatrixTimesMatrix) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpCopyObject %m2v2float %m2v2float_a
%2 = OpCopyObject %m2v2float %m2v2float_b
%10 = OpMatrixTimesMatrix %m2v2float %1 %2
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions())
<< assembly << p->error();
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_THAT(ToString(p->builder(), fe.ast_body()), HasSubstr(R"(VariableConst{
x_10
none
undefined
__mat_2_2__f32
{
Binary[not set]{
Identifier[not set]{x_1}
multiply
Identifier[not set]{x_2}
}
}
})"));
}
TEST_F(SpvBinaryArithTestBasic, Dot) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpCopyObject %v2float %v2float_50_60
%2 = OpCopyObject %v2float %v2float_60_50
%3 = OpDot %float %1 %2
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions())
<< assembly << p->error();
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_THAT(ToString(p->builder(), fe.ast_body()), HasSubstr(R"(VariableConst{
x_3
none
undefined
__f32
{
Call[not set]{
Identifier[not set]{dot}
(
Identifier[not set]{x_1}
Identifier[not set]{x_2}
)
}
}
})"));
}
TEST_F(SpvBinaryArithTestBasic, OuterProduct) {
// OpOuterProduct is expanded to basic operations.
// The operands, even if used once, are given their own const definitions.
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpFAdd %v3float %v3float_50_60_70 %v3float_50_60_70 ; column vector
%2 = OpFAdd %v2float %v2float_60_50 %v2float_50_60 ; row vector
%3 = OpOuterProduct %m2v3float %1 %2
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions())
<< assembly << p->error();
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto got = ToString(p->builder(), fe.ast_body());
EXPECT_THAT(got, HasSubstr(R"(VariableConst{
x_3
none
undefined
__mat_3_2__f32
{
TypeConstructor[not set]{
__mat_3_2__f32
TypeConstructor[not set]{
__vec_3__f32
Binary[not set]{
MemberAccessor[not set]{
Identifier[not set]{x_2}
Identifier[not set]{x}
}
multiply
MemberAccessor[not set]{
Identifier[not set]{x_1}
Identifier[not set]{x}
}
}
Binary[not set]{
MemberAccessor[not set]{
Identifier[not set]{x_2}
Identifier[not set]{x}
}
multiply
MemberAccessor[not set]{
Identifier[not set]{x_1}
Identifier[not set]{y}
}
}
Binary[not set]{
MemberAccessor[not set]{
Identifier[not set]{x_2}
Identifier[not set]{x}
}
multiply
MemberAccessor[not set]{
Identifier[not set]{x_1}
Identifier[not set]{z}
}
}
}
TypeConstructor[not set]{
__vec_3__f32
Binary[not set]{
MemberAccessor[not set]{
Identifier[not set]{x_2}
Identifier[not set]{y}
}
multiply
MemberAccessor[not set]{
Identifier[not set]{x_1}
Identifier[not set]{x}
}
}
Binary[not set]{
MemberAccessor[not set]{
Identifier[not set]{x_2}
Identifier[not set]{y}
}
multiply
MemberAccessor[not set]{
Identifier[not set]{x_1}
Identifier[not set]{y}
}
}
Binary[not set]{
MemberAccessor[not set]{
Identifier[not set]{x_2}
Identifier[not set]{y}
}
multiply
MemberAccessor[not set]{
Identifier[not set]{x_1}
Identifier[not set]{z}
}
}
}
}
}
})"))
<< got;
}
struct IntrinsicData {
const std::string spirv;
const std::string wgsl;
};
inline std::ostream& operator<<(std::ostream& out, IntrinsicData data) {
out << "OpData{" << data.spirv << "," << data.wgsl << "}";
return out;
}
struct ArgAndTypeData {
const std::string spirv_type;
const std::string spirv_arg;
const std::string ast_type;
};
inline std::ostream& operator<<(std::ostream& out, ArgAndTypeData data) {
out << "ArgAndTypeData{" << data.spirv_type << "," << data.spirv_arg << ","
<< data.ast_type << "}";
return out;
}
using SpvBinaryDerivativeTest = SpvParserTestBase<
::testing::TestWithParam<std::tuple<IntrinsicData, ArgAndTypeData>>>;
TEST_P(SpvBinaryDerivativeTest, Derivatives) {
auto& intrinsic = std::get<0>(GetParam());
auto& arg = std::get<1>(GetParam());
const auto assembly = R"(
OpCapability DerivativeControl
)" + Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpCopyObject %)" +
arg.spirv_type + " %" + arg.spirv_arg + R"(
%2 = )" + intrinsic.spirv +
" %" + arg.spirv_type + R"( %1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions())
<< assembly << p->error();
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_THAT(ToString(p->builder(), fe.ast_body()), HasSubstr(R"(VariableConst{
x_2
none
undefined
)" + arg.ast_type + R"(
{
Call[not set]{
Identifier[not set]{)" + intrinsic.wgsl + R"(}
(
Identifier[not set]{x_1}
)
}
}
})"));
}
INSTANTIATE_TEST_SUITE_P(
SpvBinaryDerivativeTest,
SpvBinaryDerivativeTest,
testing::Combine(
::testing::Values(IntrinsicData{"OpDPdx", "dpdx"},
IntrinsicData{"OpDPdy", "dpdy"},
IntrinsicData{"OpFwidth", "fwidth"},
IntrinsicData{"OpDPdxFine", "dpdxFine"},
IntrinsicData{"OpDPdyFine", "dpdyFine"},
IntrinsicData{"OpFwidthFine", "fwidthFine"},
IntrinsicData{"OpDPdxCoarse", "dpdxCoarse"},
IntrinsicData{"OpDPdyCoarse", "dpdyCoarse"},
IntrinsicData{"OpFwidthCoarse", "fwidthCoarse"}),
::testing::Values(
ArgAndTypeData{"float", "float_50", "__f32"},
ArgAndTypeData{"v2float", "v2float_50_60", "__vec_2__f32"},
ArgAndTypeData{"v3float", "v3float_50_60_70", "__vec_3__f32"})));
TEST_F(SpvUnaryArithTest, Transpose_2x2) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpCopyObject %m2v2float %m2v2float_a
%2 = OpTranspose %m2v2float %1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions())
<< p->error() << "\n"
<< assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
const auto* expected = R"(
VariableDeclStatement{
VariableConst{
x_2
none
undefined
__mat_2_2__f32
{
Call[not set]{
Identifier[not set]{transpose}
(
Identifier[not set]{x_1}
)
}
}
}
})";
const auto got = ToString(p->builder(), fe.ast_body());
EXPECT_THAT(got, HasSubstr(expected)) << got;
}
TEST_F(SpvUnaryArithTest, Transpose_2x3) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpCopyObject %m2v3float %m2v3float_a
%2 = OpTranspose %m3v2float %1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions())
<< p->error() << "\n"
<< assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
// Note, in the AST dump mat_2_3 means 2 rows and 3 columns.
// So the column vectors have 2 elements.
// That is, %m3v2float is __mat_2_3__f32.
const auto* expected = R"(
VariableDeclStatement{
VariableConst{
x_2
none
undefined
__mat_2_3__f32
{
Call[not set]{
Identifier[not set]{transpose}
(
Identifier[not set]{x_1}
)
}
}
}
})";
const auto got = ToString(p->builder(), fe.ast_body());
EXPECT_THAT(got, HasSubstr(expected)) << got;
}
TEST_F(SpvUnaryArithTest, Transpose_3x2) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpCopyObject %m3v2float %m3v2float_a
%2 = OpTranspose %m2v3float %1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions())
<< p->error() << "\n"
<< assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
const auto* expected = R"(
VariableDeclStatement{
VariableConst{
x_2
none
undefined
__mat_3_2__f32
{
Call[not set]{
Identifier[not set]{transpose}
(
Identifier[not set]{x_1}
)
}
}
}
})";
const auto got = ToString(p->builder(), fe.ast_body());
EXPECT_THAT(got, HasSubstr(expected)) << got;
}
// TODO(dneto): OpSRem. Missing from WGSL
// https://github.com/gpuweb/gpuweb/issues/702
// TODO(dneto): OpFRem. Missing from WGSL
// https://github.com/gpuweb/gpuweb/issues/702
// TODO(dneto): OpIAddCarry
// TODO(dneto): OpISubBorrow
// TODO(dneto): OpUMulExtended
// TODO(dneto): OpSMulExtended
} // namespace
} // namespace spirv
} // namespace reader
} // namespace tint