blob: d84dba8505b3c3fe6a002d8b9c0488f373323eb4 [file] [log] [blame] [edit]
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/resolver/resolver.h"
#include <tuple>
#include "gmock/gmock.h"
#include "gtest/gtest-spi.h"
#include "src/ast/assignment_statement.h"
#include "src/ast/bitcast_expression.h"
#include "src/ast/break_statement.h"
#include "src/ast/call_statement.h"
#include "src/ast/continue_statement.h"
#include "src/ast/float_literal.h"
#include "src/ast/if_statement.h"
#include "src/ast/intrinsic_texture_helper_test.h"
#include "src/ast/loop_statement.h"
#include "src/ast/override_decoration.h"
#include "src/ast/return_statement.h"
#include "src/ast/stage_decoration.h"
#include "src/ast/struct_block_decoration.h"
#include "src/ast/switch_statement.h"
#include "src/ast/unary_op_expression.h"
#include "src/ast/variable_decl_statement.h"
#include "src/ast/workgroup_decoration.h"
#include "src/resolver/resolver_test_helper.h"
#include "src/sem/call.h"
#include "src/sem/function.h"
#include "src/sem/member_accessor_expression.h"
#include "src/sem/reference_type.h"
#include "src/sem/sampled_texture_type.h"
#include "src/sem/statement.h"
#include "src/sem/variable.h"
using ::testing::ElementsAre;
using ::testing::HasSubstr;
namespace tint {
namespace resolver {
namespace {
// Helpers and typedefs
template <typename T>
using DataType = builder::DataType<T>;
template <int N, typename T>
using vec = builder::vec<N, T>;
template <typename T>
using vec2 = builder::vec2<T>;
template <typename T>
using vec3 = builder::vec3<T>;
template <typename T>
using vec4 = builder::vec4<T>;
template <int N, int M, typename T>
using mat = builder::mat<N, M, T>;
template <typename T>
using mat2x2 = builder::mat2x2<T>;
template <typename T>
using mat2x3 = builder::mat2x3<T>;
template <typename T>
using mat3x2 = builder::mat3x2<T>;
template <typename T>
using mat3x3 = builder::mat3x3<T>;
template <typename T>
using mat4x4 = builder::mat4x4<T>;
template <typename T, int ID = 0>
using alias = builder::alias<T, ID>;
template <typename T>
using alias1 = builder::alias1<T>;
template <typename T>
using alias2 = builder::alias2<T>;
template <typename T>
using alias3 = builder::alias3<T>;
using f32 = builder::f32;
using i32 = builder::i32;
using u32 = builder::u32;
using Op = ast::BinaryOp;
TEST_F(ResolverTest, Stmt_Assign) {
auto* v = Var("v", ty.f32());
auto* lhs = Expr("v");
auto* rhs = Expr(2.3f);
auto* assign = Assign(lhs, rhs);
WrapInFunction(v, assign);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(lhs), nullptr);
ASSERT_NE(TypeOf(rhs), nullptr);
EXPECT_TRUE(TypeOf(lhs)->UnwrapRef()->Is<sem::F32>());
EXPECT_TRUE(TypeOf(rhs)->Is<sem::F32>());
EXPECT_EQ(StmtOf(lhs), assign);
EXPECT_EQ(StmtOf(rhs), assign);
}
TEST_F(ResolverTest, Stmt_Case) {
auto* v = Var("v", ty.f32());
auto* lhs = Expr("v");
auto* rhs = Expr(2.3f);
auto* assign = Assign(lhs, rhs);
auto* block = Block(assign);
ast::CaseSelectorList lit;
lit.push_back(create<ast::SintLiteral>(3));
auto* cse = create<ast::CaseStatement>(lit, block);
auto* cond_var = Var("c", ty.i32());
auto* sw = Switch(cond_var, cse, DefaultCase());
WrapInFunction(v, cond_var, sw);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(lhs), nullptr);
ASSERT_NE(TypeOf(rhs), nullptr);
EXPECT_TRUE(TypeOf(lhs)->UnwrapRef()->Is<sem::F32>());
EXPECT_TRUE(TypeOf(rhs)->Is<sem::F32>());
EXPECT_EQ(StmtOf(lhs), assign);
EXPECT_EQ(StmtOf(rhs), assign);
EXPECT_EQ(BlockOf(assign), block);
}
TEST_F(ResolverTest, Stmt_Block) {
auto* v = Var("v", ty.f32());
auto* lhs = Expr("v");
auto* rhs = Expr(2.3f);
auto* assign = Assign(lhs, rhs);
auto* block = Block(assign);
WrapInFunction(v, block);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(lhs), nullptr);
ASSERT_NE(TypeOf(rhs), nullptr);
EXPECT_TRUE(TypeOf(lhs)->UnwrapRef()->Is<sem::F32>());
EXPECT_TRUE(TypeOf(rhs)->Is<sem::F32>());
EXPECT_EQ(StmtOf(lhs), assign);
EXPECT_EQ(StmtOf(rhs), assign);
EXPECT_EQ(BlockOf(lhs), block);
EXPECT_EQ(BlockOf(rhs), block);
EXPECT_EQ(BlockOf(assign), block);
}
TEST_F(ResolverTest, Stmt_If) {
auto* v = Var("v", ty.f32());
auto* else_lhs = Expr("v");
auto* else_rhs = Expr(2.3f);
auto* else_body = Block(Assign(else_lhs, else_rhs));
auto* else_cond = Expr(true);
auto* else_stmt = create<ast::ElseStatement>(else_cond, else_body);
auto* lhs = Expr("v");
auto* rhs = Expr(2.3f);
auto* assign = Assign(lhs, rhs);
auto* body = Block(assign);
auto* cond = Expr(true);
auto* stmt =
create<ast::IfStatement>(cond, body, ast::ElseStatementList{else_stmt});
WrapInFunction(v, stmt);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(stmt->condition()), nullptr);
ASSERT_NE(TypeOf(else_lhs), nullptr);
ASSERT_NE(TypeOf(else_rhs), nullptr);
ASSERT_NE(TypeOf(lhs), nullptr);
ASSERT_NE(TypeOf(rhs), nullptr);
EXPECT_TRUE(TypeOf(stmt->condition())->Is<sem::Bool>());
EXPECT_TRUE(TypeOf(else_lhs)->UnwrapRef()->Is<sem::F32>());
EXPECT_TRUE(TypeOf(else_rhs)->Is<sem::F32>());
EXPECT_TRUE(TypeOf(lhs)->UnwrapRef()->Is<sem::F32>());
EXPECT_TRUE(TypeOf(rhs)->Is<sem::F32>());
EXPECT_EQ(StmtOf(lhs), assign);
EXPECT_EQ(StmtOf(rhs), assign);
EXPECT_EQ(StmtOf(cond), stmt);
EXPECT_EQ(StmtOf(else_cond), else_stmt);
EXPECT_EQ(BlockOf(lhs), body);
EXPECT_EQ(BlockOf(rhs), body);
EXPECT_EQ(BlockOf(else_lhs), else_body);
EXPECT_EQ(BlockOf(else_rhs), else_body);
}
TEST_F(ResolverTest, Stmt_Loop) {
auto* v = Var("v", ty.f32());
auto* body_lhs = Expr("v");
auto* body_rhs = Expr(2.3f);
auto* body = Block(Assign(body_lhs, body_rhs));
auto* continuing_lhs = Expr("v");
auto* continuing_rhs = Expr(2.3f);
auto* continuing = Block(Assign(continuing_lhs, continuing_rhs));
auto* stmt = Loop(body, continuing);
WrapInFunction(v, stmt);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(body_lhs), nullptr);
ASSERT_NE(TypeOf(body_rhs), nullptr);
ASSERT_NE(TypeOf(continuing_lhs), nullptr);
ASSERT_NE(TypeOf(continuing_rhs), nullptr);
EXPECT_TRUE(TypeOf(body_lhs)->UnwrapRef()->Is<sem::F32>());
EXPECT_TRUE(TypeOf(body_rhs)->Is<sem::F32>());
EXPECT_TRUE(TypeOf(continuing_lhs)->UnwrapRef()->Is<sem::F32>());
EXPECT_TRUE(TypeOf(continuing_rhs)->Is<sem::F32>());
EXPECT_EQ(BlockOf(body_lhs), body);
EXPECT_EQ(BlockOf(body_rhs), body);
EXPECT_EQ(BlockOf(continuing_lhs), continuing);
EXPECT_EQ(BlockOf(continuing_rhs), continuing);
}
TEST_F(ResolverTest, Stmt_Return) {
auto* cond = Expr(2);
auto* ret = Return(cond);
Func("test", {}, ty.i32(), {ret}, {});
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(cond), nullptr);
EXPECT_TRUE(TypeOf(cond)->Is<sem::I32>());
}
TEST_F(ResolverTest, Stmt_Return_WithoutValue) {
auto* ret = Return();
WrapInFunction(ret);
EXPECT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverTest, Stmt_Switch) {
auto* v = Var("v", ty.f32());
auto* lhs = Expr("v");
auto* rhs = Expr(2.3f);
auto* case_block = Block(Assign(lhs, rhs));
auto* stmt = Switch(Expr(2), Case(Literal(3), case_block), DefaultCase());
WrapInFunction(v, stmt);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(stmt->condition()), nullptr);
ASSERT_NE(TypeOf(lhs), nullptr);
ASSERT_NE(TypeOf(rhs), nullptr);
EXPECT_TRUE(TypeOf(stmt->condition())->Is<sem::I32>());
EXPECT_TRUE(TypeOf(lhs)->UnwrapRef()->Is<sem::F32>());
EXPECT_TRUE(TypeOf(rhs)->Is<sem::F32>());
EXPECT_EQ(BlockOf(lhs), case_block);
EXPECT_EQ(BlockOf(rhs), case_block);
}
TEST_F(ResolverTest, Stmt_Call) {
ast::VariableList params;
Func("my_func", params, ty.void_(), {Return()}, ast::DecorationList{});
auto* expr = Call("my_func");
auto* call = create<ast::CallStatement>(expr);
WrapInFunction(call);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(expr), nullptr);
EXPECT_TRUE(TypeOf(expr)->Is<sem::Void>());
EXPECT_EQ(StmtOf(expr), call);
}
TEST_F(ResolverTest, Stmt_VariableDecl) {
auto* var = Var("my_var", ty.i32(), ast::StorageClass::kNone, Expr(2));
auto* init = var->constructor();
auto* decl = Decl(var);
WrapInFunction(decl);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(init), nullptr);
EXPECT_TRUE(TypeOf(init)->Is<sem::I32>());
}
TEST_F(ResolverTest, Stmt_VariableDecl_Alias) {
auto* my_int = Alias("MyInt", ty.i32());
auto* var = Var("my_var", ty.Of(my_int), ast::StorageClass::kNone, Expr(2));
auto* init = var->constructor();
auto* decl = Decl(var);
WrapInFunction(decl);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(init), nullptr);
EXPECT_TRUE(TypeOf(init)->Is<sem::I32>());
}
TEST_F(ResolverTest, Stmt_VariableDecl_AliasRedeclared) {
Alias(Source{{12, 34}}, "MyInt", ty.i32());
Alias(Source{{56, 78}}, "MyInt", ty.i32());
WrapInFunction();
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"56:78 error: type with the name 'MyInt' was already declared\n"
"12:34 note: first declared here");
}
TEST_F(ResolverTest, Stmt_VariableDecl_ModuleScope) {
auto* init = Expr(2);
Global("my_var", ty.i32(), ast::StorageClass::kPrivate, init);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(init), nullptr);
EXPECT_TRUE(TypeOf(init)->Is<sem::I32>());
EXPECT_EQ(StmtOf(init), nullptr);
}
TEST_F(ResolverTest, Stmt_VariableDecl_OuterScopeAfterInnerScope) {
// fn func_i32() {
// {
// var foo : i32 = 2;
// var bar : i32 = foo;
// }
// var foo : f32 = 2.0;
// var bar : f32 = foo;
// }
ast::VariableList params;
// Declare i32 "foo" inside a block
auto* foo_i32 = Var("foo", ty.i32(), ast::StorageClass::kNone, Expr(2));
auto* foo_i32_init = foo_i32->constructor();
auto* foo_i32_decl = Decl(foo_i32);
// Reference "foo" inside the block
auto* bar_i32 = Var("bar", ty.i32(), ast::StorageClass::kNone, Expr("foo"));
auto* bar_i32_init = bar_i32->constructor();
auto* bar_i32_decl = Decl(bar_i32);
auto* inner = Block(foo_i32_decl, bar_i32_decl);
// Declare f32 "foo" at function scope
auto* foo_f32 = Var("foo", ty.f32(), ast::StorageClass::kNone, Expr(2.f));
auto* foo_f32_init = foo_f32->constructor();
auto* foo_f32_decl = Decl(foo_f32);
// Reference "foo" at function scope
auto* bar_f32 = Var("bar", ty.f32(), ast::StorageClass::kNone, Expr("foo"));
auto* bar_f32_init = bar_f32->constructor();
auto* bar_f32_decl = Decl(bar_f32);
Func("func", params, ty.void_(), {inner, foo_f32_decl, bar_f32_decl},
ast::DecorationList{});
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(foo_i32_init), nullptr);
EXPECT_TRUE(TypeOf(foo_i32_init)->Is<sem::I32>());
ASSERT_NE(TypeOf(foo_f32_init), nullptr);
EXPECT_TRUE(TypeOf(foo_f32_init)->Is<sem::F32>());
ASSERT_NE(TypeOf(bar_i32_init), nullptr);
EXPECT_TRUE(TypeOf(bar_i32_init)->UnwrapRef()->Is<sem::I32>());
ASSERT_NE(TypeOf(bar_f32_init), nullptr);
EXPECT_TRUE(TypeOf(bar_f32_init)->UnwrapRef()->Is<sem::F32>());
EXPECT_EQ(StmtOf(foo_i32_init), foo_i32_decl);
EXPECT_EQ(StmtOf(bar_i32_init), bar_i32_decl);
EXPECT_EQ(StmtOf(foo_f32_init), foo_f32_decl);
EXPECT_EQ(StmtOf(bar_f32_init), bar_f32_decl);
EXPECT_TRUE(CheckVarUsers(foo_i32, {bar_i32->constructor()}));
EXPECT_TRUE(CheckVarUsers(foo_f32, {bar_f32->constructor()}));
ASSERT_NE(VarOf(bar_i32->constructor()), nullptr);
EXPECT_EQ(VarOf(bar_i32->constructor())->Declaration(), foo_i32);
ASSERT_NE(VarOf(bar_f32->constructor()), nullptr);
EXPECT_EQ(VarOf(bar_f32->constructor())->Declaration(), foo_f32);
}
TEST_F(ResolverTest, Stmt_VariableDecl_ModuleScopeAfterFunctionScope) {
// fn func_i32() {
// var foo : i32 = 2;
// }
// var foo : f32 = 2.0;
// fn func_f32() {
// var bar : f32 = foo;
// }
ast::VariableList params;
// Declare i32 "foo" inside a function
auto* fn_i32 = Var("foo", ty.i32(), ast::StorageClass::kNone, Expr(2));
auto* fn_i32_init = fn_i32->constructor();
auto* fn_i32_decl = Decl(fn_i32);
Func("func_i32", params, ty.void_(), {fn_i32_decl}, ast::DecorationList{});
// Declare f32 "foo" at module scope
auto* mod_f32 = Var("foo", ty.f32(), ast::StorageClass::kPrivate, Expr(2.f));
auto* mod_init = mod_f32->constructor();
AST().AddGlobalVariable(mod_f32);
// Reference "foo" in another function
auto* fn_f32 = Var("bar", ty.f32(), ast::StorageClass::kNone, Expr("foo"));
auto* fn_f32_init = fn_f32->constructor();
auto* fn_f32_decl = Decl(fn_f32);
Func("func_f32", params, ty.void_(), {fn_f32_decl}, ast::DecorationList{});
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(mod_init), nullptr);
EXPECT_TRUE(TypeOf(mod_init)->Is<sem::F32>());
ASSERT_NE(TypeOf(fn_i32_init), nullptr);
EXPECT_TRUE(TypeOf(fn_i32_init)->Is<sem::I32>());
ASSERT_NE(TypeOf(fn_f32_init), nullptr);
EXPECT_TRUE(TypeOf(fn_f32_init)->UnwrapRef()->Is<sem::F32>());
EXPECT_EQ(StmtOf(fn_i32_init), fn_i32_decl);
EXPECT_EQ(StmtOf(mod_init), nullptr);
EXPECT_EQ(StmtOf(fn_f32_init), fn_f32_decl);
EXPECT_TRUE(CheckVarUsers(fn_i32, {}));
EXPECT_TRUE(CheckVarUsers(mod_f32, {fn_f32->constructor()}));
ASSERT_NE(VarOf(fn_f32->constructor()), nullptr);
EXPECT_EQ(VarOf(fn_f32->constructor())->Declaration(), mod_f32);
}
TEST_F(ResolverTest, Expr_ArrayAccessor_Array) {
auto* idx = Expr(2);
Global("my_var", ty.array<f32, 3>(), ast::StorageClass::kPrivate);
auto* acc = IndexAccessor("my_var", idx);
WrapInFunction(acc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(acc), nullptr);
ASSERT_TRUE(TypeOf(acc)->Is<sem::Reference>());
auto* ref = TypeOf(acc)->As<sem::Reference>();
EXPECT_TRUE(ref->StoreType()->Is<sem::F32>());
}
TEST_F(ResolverTest, Expr_ArrayAccessor_Alias_Array) {
auto* aary = Alias("myarrty", ty.array<f32, 3>());
Global("my_var", ty.Of(aary), ast::StorageClass::kPrivate);
auto* acc = IndexAccessor("my_var", 2);
WrapInFunction(acc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(acc), nullptr);
ASSERT_TRUE(TypeOf(acc)->Is<sem::Reference>());
auto* ref = TypeOf(acc)->As<sem::Reference>();
EXPECT_TRUE(ref->StoreType()->Is<sem::F32>());
}
TEST_F(ResolverTest, Expr_ArrayAccessor_Array_Constant) {
GlobalConst("my_var", ty.array<f32, 3>(), array<f32, 3>());
auto* acc = IndexAccessor("my_var", 2);
WrapInFunction(acc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(acc), nullptr);
EXPECT_TRUE(TypeOf(acc)->Is<sem::F32>()) << TypeOf(acc)->type_name();
}
TEST_F(ResolverTest, ArrayAccessor_Matrix_Dynamic_F32) {
Global("my_var", ty.mat2x3<f32>(), ast::StorageClass::kPrivate);
auto* acc = IndexAccessor("my_var", Expr(Source{{12, 34}}, 1.0f));
WrapInFunction(acc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: index must be of type 'i32' or 'u32', found: 'f32'");
}
TEST_F(ResolverTest, ArrayAccessor_Matrix_Dynamic_Ref) {
Global("my_var", ty.mat2x3<f32>(), ast::StorageClass::kPrivate);
auto* idx = Var("idx", ty.i32(), Construct(ty.i32()));
auto* acc = IndexAccessor("my_var", idx);
WrapInFunction(Decl(idx), acc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverTest, ArrayAccessor_Matrix_BothDimensions_Dynamic_Ref) {
Global("my_var", ty.mat4x4<f32>(), ast::StorageClass::kPrivate);
auto* idx = Var("idx", ty.u32(), Expr(3u));
auto* idy = Var("idy", ty.u32(), Expr(2u));
auto* acc = IndexAccessor(IndexAccessor("my_var", idx), idy);
WrapInFunction(Decl(idx), Decl(idy), acc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverTest, ArrayAccessor_Matrix_Dynamic) {
GlobalConst("my_const", ty.mat2x3<f32>(), Construct(ty.mat2x3<f32>()));
auto* idx = Var("idx", ty.i32(), Construct(ty.i32()));
auto* acc = IndexAccessor("my_const", Expr(Source{{12, 34}}, idx));
WrapInFunction(Decl(idx), acc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: index must be signed or unsigned integer literal");
}
TEST_F(ResolverTest, ArrayAccessor_Matrix_XDimension_Dynamic) {
GlobalConst("my_var", ty.mat4x4<f32>(), Construct(ty.mat4x4<f32>()));
auto* idx = Var("idx", ty.u32(), Expr(3u));
auto* acc = IndexAccessor("my_var", Expr(Source{{12, 34}}, idx));
WrapInFunction(Decl(idx), acc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: index must be signed or unsigned integer literal");
}
TEST_F(ResolverTest, ArrayAccessor_Matrix_BothDimension_Dynamic) {
GlobalConst("my_var", ty.mat4x4<f32>(), Construct(ty.mat4x4<f32>()));
auto* idx = Var("idy", ty.u32(), Expr(2u));
auto* acc =
IndexAccessor(IndexAccessor("my_var", Expr(Source{{12, 34}}, idx)), 1);
WrapInFunction(Decl(idx), acc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: index must be signed or unsigned integer literal");
}
TEST_F(ResolverTest, Expr_ArrayAccessor_Matrix) {
Global("my_var", ty.mat2x3<f32>(), ast::StorageClass::kPrivate);
auto* acc = IndexAccessor("my_var", 2);
WrapInFunction(acc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(acc), nullptr);
ASSERT_TRUE(TypeOf(acc)->Is<sem::Reference>());
auto* ref = TypeOf(acc)->As<sem::Reference>();
ASSERT_TRUE(ref->StoreType()->Is<sem::Vector>());
EXPECT_EQ(ref->StoreType()->As<sem::Vector>()->Width(), 3u);
}
TEST_F(ResolverTest, Expr_ArrayAccessor_Matrix_BothDimensions) {
Global("my_var", ty.mat2x3<f32>(), ast::StorageClass::kPrivate);
auto* acc = IndexAccessor(IndexAccessor("my_var", 2), 1);
WrapInFunction(acc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(acc), nullptr);
ASSERT_TRUE(TypeOf(acc)->Is<sem::Reference>());
auto* ref = TypeOf(acc)->As<sem::Reference>();
EXPECT_TRUE(ref->StoreType()->Is<sem::F32>());
}
TEST_F(ResolverTest, Expr_ArrayAccessor_Vector_F32) {
Global("my_var", ty.vec3<f32>(), ast::StorageClass::kPrivate);
auto* acc = IndexAccessor("my_var", Expr(Source{{12, 34}}, 2.0f));
WrapInFunction(acc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: index must be of type 'i32' or 'u32', found: 'f32'");
}
TEST_F(ResolverTest, Expr_ArrayAccessor_Vector_Dynamic_Ref) {
Global("my_var", ty.vec3<f32>(), ast::StorageClass::kPrivate);
auto* idx = Var("idx", ty.i32(), Expr(2));
auto* acc = IndexAccessor("my_var", idx);
WrapInFunction(Decl(idx), acc);
EXPECT_TRUE(r()->Resolve());
}
TEST_F(ResolverTest, Expr_ArrayAccessor_Vector_Dynamic) {
GlobalConst("my_var", ty.vec3<f32>(), Construct(ty.vec3<f32>()));
auto* idx = Var("idx", ty.i32(), Expr(2));
auto* acc = IndexAccessor("my_var", Expr(Source{{12, 34}}, idx));
WrapInFunction(Decl(idx), acc);
EXPECT_TRUE(r()->Resolve());
}
TEST_F(ResolverTest, Expr_ArrayAccessor_Vector) {
Global("my_var", ty.vec3<f32>(), ast::StorageClass::kPrivate);
auto* acc = IndexAccessor("my_var", 2);
WrapInFunction(acc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(acc), nullptr);
ASSERT_TRUE(TypeOf(acc)->Is<sem::Reference>());
auto* ref = TypeOf(acc)->As<sem::Reference>();
EXPECT_TRUE(ref->StoreType()->Is<sem::F32>());
}
TEST_F(ResolverTest, Expr_Bitcast) {
Global("name", ty.f32(), ast::StorageClass::kPrivate);
auto* bitcast = create<ast::BitcastExpression>(ty.f32(), Expr("name"));
WrapInFunction(bitcast);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(bitcast), nullptr);
EXPECT_TRUE(TypeOf(bitcast)->Is<sem::F32>());
}
TEST_F(ResolverTest, Expr_Call) {
ast::VariableList params;
Func("my_func", params, ty.f32(), {Return(0.0f)}, ast::DecorationList{});
auto* call = Call("my_func");
WrapInFunction(call);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(call), nullptr);
EXPECT_TRUE(TypeOf(call)->Is<sem::F32>());
}
TEST_F(ResolverTest, Expr_Call_InBinaryOp) {
ast::VariableList params;
Func("func", params, ty.f32(), {Return(0.0f)}, ast::DecorationList{});
auto* expr = Add(Call("func"), Call("func"));
WrapInFunction(expr);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(expr), nullptr);
EXPECT_TRUE(TypeOf(expr)->Is<sem::F32>());
}
TEST_F(ResolverTest, Expr_Call_WithParams) {
Func("my_func", {Param(Sym(), ty.f32())}, ty.f32(),
{
Return(1.2f),
});
auto* param = Expr(2.4f);
auto* call = Call("my_func", param);
WrapInFunction(call);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(param), nullptr);
EXPECT_TRUE(TypeOf(param)->Is<sem::F32>());
}
TEST_F(ResolverTest, Expr_Call_Intrinsic) {
auto* call = Call("round", 2.4f);
WrapInFunction(call);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(call), nullptr);
EXPECT_TRUE(TypeOf(call)->Is<sem::F32>());
}
TEST_F(ResolverTest, Expr_Cast) {
Global("name", ty.f32(), ast::StorageClass::kPrivate);
auto* cast = Construct(ty.f32(), "name");
WrapInFunction(cast);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(cast), nullptr);
EXPECT_TRUE(TypeOf(cast)->Is<sem::F32>());
}
TEST_F(ResolverTest, Expr_Constructor_Scalar) {
auto* s = Expr(1.0f);
WrapInFunction(s);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(s), nullptr);
EXPECT_TRUE(TypeOf(s)->Is<sem::F32>());
}
TEST_F(ResolverTest, Expr_Constructor_Type_Vec2) {
auto* tc = vec2<f32>(1.0f, 1.0f);
WrapInFunction(tc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 2u);
}
TEST_F(ResolverTest, Expr_Constructor_Type_Vec3) {
auto* tc = vec3<f32>(1.0f, 1.0f, 1.0f);
WrapInFunction(tc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 3u);
}
TEST_F(ResolverTest, Expr_Constructor_Type_Vec4) {
auto* tc = vec4<f32>(1.0f, 1.0f, 1.0f, 1.0f);
WrapInFunction(tc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_EQ(TypeOf(tc)->As<sem::Vector>()->Width(), 4u);
}
TEST_F(ResolverTest, Expr_Identifier_GlobalVariable) {
auto* my_var = Global("my_var", ty.f32(), ast::StorageClass::kPrivate);
auto* ident = Expr("my_var");
WrapInFunction(ident);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(ident), nullptr);
ASSERT_TRUE(TypeOf(ident)->Is<sem::Reference>());
EXPECT_TRUE(TypeOf(ident)->UnwrapRef()->Is<sem::F32>());
EXPECT_TRUE(CheckVarUsers(my_var, {ident}));
ASSERT_NE(VarOf(ident), nullptr);
EXPECT_EQ(VarOf(ident)->Declaration(), my_var);
}
TEST_F(ResolverTest, Expr_Identifier_GlobalConstant) {
auto* my_var = GlobalConst("my_var", ty.f32(), Construct(ty.f32()));
auto* ident = Expr("my_var");
WrapInFunction(ident);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(ident), nullptr);
EXPECT_TRUE(TypeOf(ident)->Is<sem::F32>());
EXPECT_TRUE(CheckVarUsers(my_var, {ident}));
ASSERT_NE(VarOf(ident), nullptr);
EXPECT_EQ(VarOf(ident)->Declaration(), my_var);
}
TEST_F(ResolverTest, Expr_Identifier_FunctionVariable_Const) {
auto* my_var_a = Expr("my_var");
auto* var = Const("my_var", ty.f32(), Construct(ty.f32()));
auto* decl = Decl(Var("b", ty.f32(), ast::StorageClass::kNone, my_var_a));
Func("my_func", ast::VariableList{}, ty.void_(),
{
Decl(var),
decl,
},
ast::DecorationList{});
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(my_var_a), nullptr);
EXPECT_TRUE(TypeOf(my_var_a)->Is<sem::F32>());
EXPECT_EQ(StmtOf(my_var_a), decl);
EXPECT_TRUE(CheckVarUsers(var, {my_var_a}));
ASSERT_NE(VarOf(my_var_a), nullptr);
EXPECT_EQ(VarOf(my_var_a)->Declaration(), var);
}
TEST_F(ResolverTest, ArrayAccessor_Dynamic_Ref_F32) {
// var a : array<bool, 10> = 0;
// var idx : f32 = f32();
// var f : f32 = a[idx];
auto* a = Var("a", ty.array<bool, 10>(), array<bool, 10>());
auto* idx = Var("idx", ty.f32(), Construct(ty.f32()));
auto* f = Var("f", ty.f32(), IndexAccessor("a", Expr(Source{{12, 34}}, idx)));
Func("my_func", ast::VariableList{}, ty.void_(),
{
Decl(a),
Decl(idx),
Decl(f),
},
ast::DecorationList{});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: index must be of type 'i32' or 'u32', found: 'f32'");
}
TEST_F(ResolverTest, ArrayAccessor_Dynamic_I32) {
// let a : array<f32, 3> = 0;
// var idx : i32 = 0;
// var f : f32 = a[idx];
auto* a = Const("a", ty.array<f32, 3>(), array<f32, 3>());
auto* idx = Var("idx", ty.i32(), Construct(ty.i32()));
auto* f = Var("f", ty.f32(), IndexAccessor("a", Expr(Source{{12, 34}}, idx)));
Func("my_func", ast::VariableList{}, ty.void_(),
{
Decl(a),
Decl(idx),
Decl(f),
},
ast::DecorationList{});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: index must be signed or unsigned integer literal");
}
TEST_F(ResolverTest, ArrayAccessor_Literal_F32) {
// let a : array<f32, 3>;
// var f : f32 = a[2.0f];
auto* a = Const("a", ty.array<f32, 3>(), array<f32, 3>());
auto* f =
Var("a_2", ty.f32(), IndexAccessor("a", Expr(Source{{12, 34}}, 2.0f)));
Func("my_func", ast::VariableList{}, ty.void_(),
{
Decl(a),
Decl(f),
},
ast::DecorationList{});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: index must be of type 'i32' or 'u32', found: 'f32'");
}
TEST_F(ResolverTest, ArrayAccessor_Literal_I32) {
// let a : array<f32, 3>;
// var f : f32 = a[2];
auto* a = Const("a", ty.array<f32, 3>(), array<f32, 3>());
auto* f = Var("a_2", ty.f32(), IndexAccessor("a", 2));
Func("my_func", ast::VariableList{}, ty.void_(),
{
Decl(a),
Decl(f),
},
ast::DecorationList{});
EXPECT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverTest, Expr_Identifier_FunctionVariable) {
auto* my_var_a = Expr("my_var");
auto* my_var_b = Expr("my_var");
auto* assign = Assign(my_var_a, my_var_b);
auto* var = Var("my_var", ty.f32());
Func("my_func", ast::VariableList{}, ty.void_(),
{
Decl(var),
assign,
},
ast::DecorationList{});
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(my_var_a), nullptr);
ASSERT_TRUE(TypeOf(my_var_a)->Is<sem::Reference>());
EXPECT_TRUE(TypeOf(my_var_a)->UnwrapRef()->Is<sem::F32>());
EXPECT_EQ(StmtOf(my_var_a), assign);
ASSERT_NE(TypeOf(my_var_b), nullptr);
ASSERT_TRUE(TypeOf(my_var_b)->Is<sem::Reference>());
EXPECT_TRUE(TypeOf(my_var_b)->UnwrapRef()->Is<sem::F32>());
EXPECT_EQ(StmtOf(my_var_b), assign);
EXPECT_TRUE(CheckVarUsers(var, {my_var_a, my_var_b}));
ASSERT_NE(VarOf(my_var_a), nullptr);
EXPECT_EQ(VarOf(my_var_a)->Declaration(), var);
ASSERT_NE(VarOf(my_var_b), nullptr);
EXPECT_EQ(VarOf(my_var_b)->Declaration(), var);
}
TEST_F(ResolverTest, Expr_Identifier_Function_Ptr) {
auto* v = Expr("v");
auto* p = Expr("p");
auto* v_decl = Decl(Var("v", ty.f32()));
auto* p_decl = Decl(
Const("p", ty.pointer<f32>(ast::StorageClass::kFunction), AddressOf(v)));
auto* assign = Assign(Deref(p), 1.23f);
Func("my_func", ast::VariableList{}, ty.void_(),
{
v_decl,
p_decl,
assign,
},
ast::DecorationList{});
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(v), nullptr);
ASSERT_TRUE(TypeOf(v)->Is<sem::Reference>());
EXPECT_TRUE(TypeOf(v)->UnwrapRef()->Is<sem::F32>());
EXPECT_EQ(StmtOf(v), p_decl);
ASSERT_NE(TypeOf(p), nullptr);
ASSERT_TRUE(TypeOf(p)->Is<sem::Pointer>());
EXPECT_TRUE(TypeOf(p)->UnwrapPtr()->Is<sem::F32>());
EXPECT_EQ(StmtOf(p), assign);
}
TEST_F(ResolverTest, Expr_Call_Function) {
Func("my_func", ast::VariableList{}, ty.f32(), {Return(0.0f)},
ast::DecorationList{});
auto* call = Call("my_func");
WrapInFunction(call);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(call), nullptr);
EXPECT_TRUE(TypeOf(call)->Is<sem::F32>());
}
TEST_F(ResolverTest, Expr_Identifier_Unknown) {
auto* a = Expr("a");
WrapInFunction(a);
EXPECT_FALSE(r()->Resolve());
}
TEST_F(ResolverTest, Function_Parameters) {
auto* param_a = Param("a", ty.f32());
auto* param_b = Param("b", ty.i32());
auto* param_c = Param("c", ty.u32());
auto* func = Func("my_func",
ast::VariableList{
param_a,
param_b,
param_c,
},
ty.void_(), {});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* func_sem = Sem().Get(func);
ASSERT_NE(func_sem, nullptr);
EXPECT_EQ(func_sem->Parameters().size(), 3u);
EXPECT_TRUE(func_sem->Parameters()[0]->Type()->Is<sem::F32>());
EXPECT_TRUE(func_sem->Parameters()[1]->Type()->Is<sem::I32>());
EXPECT_TRUE(func_sem->Parameters()[2]->Type()->Is<sem::U32>());
EXPECT_EQ(func_sem->Parameters()[0]->Declaration(), param_a);
EXPECT_EQ(func_sem->Parameters()[1]->Declaration(), param_b);
EXPECT_EQ(func_sem->Parameters()[2]->Declaration(), param_c);
EXPECT_TRUE(func_sem->ReturnType()->Is<sem::Void>());
}
TEST_F(ResolverTest, Function_RegisterInputOutputVariables) {
auto* s = Structure("S", {Member("m", ty.u32())},
{create<ast::StructBlockDecoration>()});
auto* sb_var = Global("sb_var", ty.Of(s), ast::StorageClass::kStorage,
ast::Access::kReadWrite,
ast::DecorationList{
create<ast::BindingDecoration>(0),
create<ast::GroupDecoration>(0),
});
auto* wg_var = Global("wg_var", ty.f32(), ast::StorageClass::kWorkgroup);
auto* priv_var = Global("priv_var", ty.f32(), ast::StorageClass::kPrivate);
auto* func = Func("my_func", ast::VariableList{}, ty.void_(),
{
Assign("wg_var", "wg_var"),
Assign("sb_var", "sb_var"),
Assign("priv_var", "priv_var"),
});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* func_sem = Sem().Get(func);
ASSERT_NE(func_sem, nullptr);
EXPECT_EQ(func_sem->Parameters().size(), 0u);
EXPECT_TRUE(func_sem->ReturnType()->Is<sem::Void>());
const auto& vars = func_sem->ReferencedModuleVariables();
ASSERT_EQ(vars.size(), 3u);
EXPECT_EQ(vars[0]->Declaration(), wg_var);
EXPECT_EQ(vars[1]->Declaration(), sb_var);
EXPECT_EQ(vars[2]->Declaration(), priv_var);
}
TEST_F(ResolverTest, Function_RegisterInputOutputVariables_SubFunction) {
auto* s = Structure("S", {Member("m", ty.u32())},
{create<ast::StructBlockDecoration>()});
auto* sb_var = Global("sb_var", ty.Of(s), ast::StorageClass::kStorage,
ast::Access::kReadWrite,
ast::DecorationList{
create<ast::BindingDecoration>(0),
create<ast::GroupDecoration>(0),
});
auto* wg_var = Global("wg_var", ty.f32(), ast::StorageClass::kWorkgroup);
auto* priv_var = Global("priv_var", ty.f32(), ast::StorageClass::kPrivate);
Func("my_func", ast::VariableList{}, ty.f32(),
{Assign("wg_var", "wg_var"), Assign("sb_var", "sb_var"),
Assign("priv_var", "priv_var"), Return(0.0f)},
ast::DecorationList{});
auto* func2 = Func("func", ast::VariableList{}, ty.void_(),
{
WrapInStatement(Call("my_func")),
},
ast::DecorationList{});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* func2_sem = Sem().Get(func2);
ASSERT_NE(func2_sem, nullptr);
EXPECT_EQ(func2_sem->Parameters().size(), 0u);
const auto& vars = func2_sem->ReferencedModuleVariables();
ASSERT_EQ(vars.size(), 3u);
EXPECT_EQ(vars[0]->Declaration(), wg_var);
EXPECT_EQ(vars[1]->Declaration(), sb_var);
EXPECT_EQ(vars[2]->Declaration(), priv_var);
}
TEST_F(ResolverTest, Function_NotRegisterFunctionVariable) {
auto* func = Func("my_func", ast::VariableList{}, ty.void_(),
{
Decl(Var("var", ty.f32())),
Assign("var", 1.f),
});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* func_sem = Sem().Get(func);
ASSERT_NE(func_sem, nullptr);
EXPECT_EQ(func_sem->ReferencedModuleVariables().size(), 0u);
EXPECT_TRUE(func_sem->ReturnType()->Is<sem::Void>());
}
TEST_F(ResolverTest, Function_NotRegisterFunctionConstant) {
auto* func = Func("my_func", ast::VariableList{}, ty.void_(),
{
Decl(Const("var", ty.f32(), Construct(ty.f32()))),
});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* func_sem = Sem().Get(func);
ASSERT_NE(func_sem, nullptr);
EXPECT_EQ(func_sem->ReferencedModuleVariables().size(), 0u);
EXPECT_TRUE(func_sem->ReturnType()->Is<sem::Void>());
}
TEST_F(ResolverTest, Function_NotRegisterFunctionParams) {
auto* func = Func("my_func", {Const("var", ty.f32(), Construct(ty.f32()))},
ty.void_(), {});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* func_sem = Sem().Get(func);
ASSERT_NE(func_sem, nullptr);
EXPECT_EQ(func_sem->ReferencedModuleVariables().size(), 0u);
EXPECT_TRUE(func_sem->ReturnType()->Is<sem::Void>());
}
TEST_F(ResolverTest, Function_ReturnStatements) {
auto* var = Var("foo", ty.f32());
auto* ret_1 = Return(1.f);
auto* ret_foo = Return("foo");
auto* func = Func("my_func", ast::VariableList{}, ty.f32(),
{
Decl(var),
If(true, Block(ret_1)),
ret_foo,
});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* func_sem = Sem().Get(func);
ASSERT_NE(func_sem, nullptr);
EXPECT_EQ(func_sem->Parameters().size(), 0u);
EXPECT_EQ(func_sem->ReturnStatements().size(), 2u);
EXPECT_EQ(func_sem->ReturnStatements()[0], ret_1);
EXPECT_EQ(func_sem->ReturnStatements()[1], ret_foo);
EXPECT_TRUE(func_sem->ReturnType()->Is<sem::F32>());
}
TEST_F(ResolverTest, Function_WorkgroupSize_NotSet) {
// [[stage(compute), workgroup_size(1)]]
// fn main() {}
auto* func = Func("main", ast::VariableList{}, ty.void_(), {}, {});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* func_sem = Sem().Get(func);
ASSERT_NE(func_sem, nullptr);
EXPECT_EQ(func_sem->workgroup_size()[0].value, 1u);
EXPECT_EQ(func_sem->workgroup_size()[1].value, 1u);
EXPECT_EQ(func_sem->workgroup_size()[2].value, 1u);
EXPECT_EQ(func_sem->workgroup_size()[0].overridable_const, nullptr);
EXPECT_EQ(func_sem->workgroup_size()[1].overridable_const, nullptr);
EXPECT_EQ(func_sem->workgroup_size()[2].overridable_const, nullptr);
}
TEST_F(ResolverTest, Function_WorkgroupSize_Literals) {
// [[stage(compute), workgroup_size(8, 2, 3)]]
// fn main() {}
auto* func =
Func("main", ast::VariableList{}, ty.void_(), {},
{Stage(ast::PipelineStage::kCompute), WorkgroupSize(8, 2, 3)});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* func_sem = Sem().Get(func);
ASSERT_NE(func_sem, nullptr);
EXPECT_EQ(func_sem->workgroup_size()[0].value, 8u);
EXPECT_EQ(func_sem->workgroup_size()[1].value, 2u);
EXPECT_EQ(func_sem->workgroup_size()[2].value, 3u);
EXPECT_EQ(func_sem->workgroup_size()[0].overridable_const, nullptr);
EXPECT_EQ(func_sem->workgroup_size()[1].overridable_const, nullptr);
EXPECT_EQ(func_sem->workgroup_size()[2].overridable_const, nullptr);
}
TEST_F(ResolverTest, Function_WorkgroupSize_Consts) {
// let width = 16;
// let height = 8;
// let depth = 2;
// [[stage(compute), workgroup_size(width, height, depth)]]
// fn main() {}
GlobalConst("width", ty.i32(), Expr(16));
GlobalConst("height", ty.i32(), Expr(8));
GlobalConst("depth", ty.i32(), Expr(2));
auto* func = Func("main", ast::VariableList{}, ty.void_(), {},
{Stage(ast::PipelineStage::kCompute),
WorkgroupSize("width", "height", "depth")});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* func_sem = Sem().Get(func);
ASSERT_NE(func_sem, nullptr);
EXPECT_EQ(func_sem->workgroup_size()[0].value, 16u);
EXPECT_EQ(func_sem->workgroup_size()[1].value, 8u);
EXPECT_EQ(func_sem->workgroup_size()[2].value, 2u);
EXPECT_EQ(func_sem->workgroup_size()[0].overridable_const, nullptr);
EXPECT_EQ(func_sem->workgroup_size()[1].overridable_const, nullptr);
EXPECT_EQ(func_sem->workgroup_size()[2].overridable_const, nullptr);
}
TEST_F(ResolverTest, Function_WorkgroupSize_Consts_NestedInitializer) {
// let width = i32(i32(i32(8)));
// let height = i32(i32(i32(4)));
// [[stage(compute), workgroup_size(width, height)]]
// fn main() {}
GlobalConst("width", ty.i32(),
Construct(ty.i32(), Construct(ty.i32(), Construct(ty.i32(), 8))));
GlobalConst("height", ty.i32(),
Construct(ty.i32(), Construct(ty.i32(), Construct(ty.i32(), 4))));
auto* func = Func(
"main", ast::VariableList{}, ty.void_(), {},
{Stage(ast::PipelineStage::kCompute), WorkgroupSize("width", "height")});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* func_sem = Sem().Get(func);
ASSERT_NE(func_sem, nullptr);
EXPECT_EQ(func_sem->workgroup_size()[0].value, 8u);
EXPECT_EQ(func_sem->workgroup_size()[1].value, 4u);
EXPECT_EQ(func_sem->workgroup_size()[2].value, 1u);
EXPECT_EQ(func_sem->workgroup_size()[0].overridable_const, nullptr);
EXPECT_EQ(func_sem->workgroup_size()[1].overridable_const, nullptr);
EXPECT_EQ(func_sem->workgroup_size()[2].overridable_const, nullptr);
}
TEST_F(ResolverTest, Function_WorkgroupSize_OverridableConsts) {
// [[override(0)]] let width = 16;
// [[override(1)]] let height = 8;
// [[override(2)]] let depth = 2;
// [[stage(compute), workgroup_size(width, height, depth)]]
// fn main() {}
auto* width = GlobalConst("width", ty.i32(), Expr(16), {Override(0)});
auto* height = GlobalConst("height", ty.i32(), Expr(8), {Override(1)});
auto* depth = GlobalConst("depth", ty.i32(), Expr(2), {Override(2)});
auto* func = Func("main", ast::VariableList{}, ty.void_(), {},
{Stage(ast::PipelineStage::kCompute),
WorkgroupSize("width", "height", "depth")});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* func_sem = Sem().Get(func);
ASSERT_NE(func_sem, nullptr);
EXPECT_EQ(func_sem->workgroup_size()[0].value, 16u);
EXPECT_EQ(func_sem->workgroup_size()[1].value, 8u);
EXPECT_EQ(func_sem->workgroup_size()[2].value, 2u);
EXPECT_EQ(func_sem->workgroup_size()[0].overridable_const, width);
EXPECT_EQ(func_sem->workgroup_size()[1].overridable_const, height);
EXPECT_EQ(func_sem->workgroup_size()[2].overridable_const, depth);
}
TEST_F(ResolverTest, Function_WorkgroupSize_OverridableConsts_NoInit) {
// [[override(0)]] let width : i32;
// [[override(1)]] let height : i32;
// [[override(2)]] let depth : i32;
// [[stage(compute), workgroup_size(width, height, depth)]]
// fn main() {}
auto* width = GlobalConst("width", ty.i32(), nullptr, {Override(0)});
auto* height = GlobalConst("height", ty.i32(), nullptr, {Override(1)});
auto* depth = GlobalConst("depth", ty.i32(), nullptr, {Override(2)});
auto* func = Func("main", ast::VariableList{}, ty.void_(), {},
{Stage(ast::PipelineStage::kCompute),
WorkgroupSize("width", "height", "depth")});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* func_sem = Sem().Get(func);
ASSERT_NE(func_sem, nullptr);
EXPECT_EQ(func_sem->workgroup_size()[0].value, 0u);
EXPECT_EQ(func_sem->workgroup_size()[1].value, 0u);
EXPECT_EQ(func_sem->workgroup_size()[2].value, 0u);
EXPECT_EQ(func_sem->workgroup_size()[0].overridable_const, width);
EXPECT_EQ(func_sem->workgroup_size()[1].overridable_const, height);
EXPECT_EQ(func_sem->workgroup_size()[2].overridable_const, depth);
}
TEST_F(ResolverTest, Function_WorkgroupSize_Mixed) {
// [[override(1)]] let height = 2;
// let depth = 3;
// [[stage(compute), workgroup_size(8, height, depth)]]
// fn main() {}
auto* height = GlobalConst("height", ty.i32(), Expr(2), {Override(0)});
GlobalConst("depth", ty.i32(), Expr(3));
auto* func = Func("main", ast::VariableList{}, ty.void_(), {},
{Stage(ast::PipelineStage::kCompute),
WorkgroupSize(8, "height", "depth")});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto* func_sem = Sem().Get(func);
ASSERT_NE(func_sem, nullptr);
EXPECT_EQ(func_sem->workgroup_size()[0].value, 8u);
EXPECT_EQ(func_sem->workgroup_size()[1].value, 2u);
EXPECT_EQ(func_sem->workgroup_size()[2].value, 3u);
EXPECT_EQ(func_sem->workgroup_size()[0].overridable_const, nullptr);
EXPECT_EQ(func_sem->workgroup_size()[1].overridable_const, height);
EXPECT_EQ(func_sem->workgroup_size()[2].overridable_const, nullptr);
}
TEST_F(ResolverTest, Expr_MemberAccessor_Struct) {
auto* st = Structure("S", {Member("first_member", ty.i32()),
Member("second_member", ty.f32())});
Global("my_struct", ty.Of(st), ast::StorageClass::kPrivate);
auto* mem = MemberAccessor("my_struct", "second_member");
WrapInFunction(mem);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(mem), nullptr);
ASSERT_TRUE(TypeOf(mem)->Is<sem::Reference>());
auto* ref = TypeOf(mem)->As<sem::Reference>();
EXPECT_TRUE(ref->StoreType()->Is<sem::F32>());
auto* sma = Sem().Get(mem)->As<sem::StructMemberAccess>();
ASSERT_NE(sma, nullptr);
EXPECT_TRUE(sma->Member()->Type()->Is<sem::F32>());
EXPECT_EQ(sma->Member()->Index(), 1u);
EXPECT_EQ(sma->Member()->Declaration()->symbol(),
Symbols().Get("second_member"));
}
TEST_F(ResolverTest, Expr_MemberAccessor_Struct_Alias) {
auto* st = Structure("S", {Member("first_member", ty.i32()),
Member("second_member", ty.f32())});
auto* alias = Alias("alias", ty.Of(st));
Global("my_struct", ty.Of(alias), ast::StorageClass::kPrivate);
auto* mem = MemberAccessor("my_struct", "second_member");
WrapInFunction(mem);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(mem), nullptr);
ASSERT_TRUE(TypeOf(mem)->Is<sem::Reference>());
auto* ref = TypeOf(mem)->As<sem::Reference>();
EXPECT_TRUE(ref->StoreType()->Is<sem::F32>());
auto* sma = Sem().Get(mem)->As<sem::StructMemberAccess>();
ASSERT_NE(sma, nullptr);
EXPECT_TRUE(sma->Member()->Type()->Is<sem::F32>());
EXPECT_EQ(sma->Member()->Index(), 1u);
}
TEST_F(ResolverTest, Expr_MemberAccessor_VectorSwizzle) {
Global("my_vec", ty.vec4<f32>(), ast::StorageClass::kPrivate);
auto* mem = MemberAccessor("my_vec", "xzyw");
WrapInFunction(mem);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(mem), nullptr);
ASSERT_TRUE(TypeOf(mem)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(mem)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_EQ(TypeOf(mem)->As<sem::Vector>()->Width(), 4u);
ASSERT_TRUE(Sem().Get(mem)->Is<sem::Swizzle>());
EXPECT_THAT(Sem().Get(mem)->As<sem::Swizzle>()->Indices(),
ElementsAre(0, 2, 1, 3));
}
TEST_F(ResolverTest, Expr_MemberAccessor_VectorSwizzle_SingleElement) {
Global("my_vec", ty.vec3<f32>(), ast::StorageClass::kPrivate);
auto* mem = MemberAccessor("my_vec", "b");
WrapInFunction(mem);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(mem), nullptr);
ASSERT_TRUE(TypeOf(mem)->Is<sem::Reference>());
auto* ref = TypeOf(mem)->As<sem::Reference>();
ASSERT_TRUE(ref->StoreType()->Is<sem::F32>());
ASSERT_TRUE(Sem().Get(mem)->Is<sem::Swizzle>());
EXPECT_THAT(Sem().Get(mem)->As<sem::Swizzle>()->Indices(), ElementsAre(2));
}
TEST_F(ResolverTest, Expr_Accessor_MultiLevel) {
// struct b {
// vec4<f32> foo
// }
// struct A {
// array<b, 3> mem
// }
// var c : A
// c.mem[0].foo.yx
// -> vec2<f32>
//
// fn f() {
// c.mem[0].foo
// }
//
auto* stB = Structure("B", {Member("foo", ty.vec4<f32>())});
auto* stA = Structure("A", {Member("mem", ty.array(ty.Of(stB), 3))});
Global("c", ty.Of(stA), ast::StorageClass::kPrivate);
auto* mem = MemberAccessor(
MemberAccessor(IndexAccessor(MemberAccessor("c", "mem"), 0), "foo"),
"yx");
WrapInFunction(mem);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(mem), nullptr);
ASSERT_TRUE(TypeOf(mem)->Is<sem::Vector>());
EXPECT_TRUE(TypeOf(mem)->As<sem::Vector>()->type()->Is<sem::F32>());
EXPECT_EQ(TypeOf(mem)->As<sem::Vector>()->Width(), 2u);
ASSERT_TRUE(Sem().Get(mem)->Is<sem::Swizzle>());
}
TEST_F(ResolverTest, Expr_MemberAccessor_InBinaryOp) {
auto* st = Structure("S", {Member("first_member", ty.f32()),
Member("second_member", ty.f32())});
Global("my_struct", ty.Of(st), ast::StorageClass::kPrivate);
auto* expr = Add(MemberAccessor("my_struct", "first_member"),
MemberAccessor("my_struct", "second_member"));
WrapInFunction(expr);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(expr), nullptr);
EXPECT_TRUE(TypeOf(expr)->Is<sem::F32>());
}
namespace ExprBinaryTest {
template <typename T, int ID>
struct Aliased {
using type = alias<T, ID>;
};
template <int N, typename T, int ID>
struct Aliased<vec<N, T>, ID> {
using type = vec<N, alias<T, ID>>;
};
template <int N, int M, typename T, int ID>
struct Aliased<mat<N, M, T>, ID> {
using type = mat<N, M, alias<T, ID>>;
};
struct Params {
ast::BinaryOp op;
builder::ast_type_func_ptr create_lhs_type;
builder::ast_type_func_ptr create_rhs_type;
builder::ast_type_func_ptr create_lhs_alias_type;
builder::ast_type_func_ptr create_rhs_alias_type;
builder::sem_type_func_ptr create_result_type;
};
template <typename LHS, typename RHS, typename RES>
constexpr Params ParamsFor(ast::BinaryOp op) {
return Params{op,
DataType<LHS>::AST,
DataType<RHS>::AST,
DataType<typename Aliased<LHS, 0>::type>::AST,
DataType<typename Aliased<RHS, 1>::type>::AST,
DataType<RES>::Sem};
}
static constexpr ast::BinaryOp all_ops[] = {
ast::BinaryOp::kAnd,
ast::BinaryOp::kOr,
ast::BinaryOp::kXor,
ast::BinaryOp::kLogicalAnd,
ast::BinaryOp::kLogicalOr,
ast::BinaryOp::kEqual,
ast::BinaryOp::kNotEqual,
ast::BinaryOp::kLessThan,
ast::BinaryOp::kGreaterThan,
ast::BinaryOp::kLessThanEqual,
ast::BinaryOp::kGreaterThanEqual,
ast::BinaryOp::kShiftLeft,
ast::BinaryOp::kShiftRight,
ast::BinaryOp::kAdd,
ast::BinaryOp::kSubtract,
ast::BinaryOp::kMultiply,
ast::BinaryOp::kDivide,
ast::BinaryOp::kModulo,
};
static constexpr builder::ast_type_func_ptr all_create_type_funcs[] = {
DataType<bool>::AST, //
DataType<u32>::AST, //
DataType<i32>::AST, //
DataType<f32>::AST, //
DataType<vec3<bool>>::AST, //
DataType<vec3<i32>>::AST, //
DataType<vec3<u32>>::AST, //
DataType<vec3<f32>>::AST, //
DataType<mat3x3<f32>>::AST, //
DataType<mat2x3<f32>>::AST, //
DataType<mat3x2<f32>>::AST //
};
// A list of all valid test cases for 'lhs op rhs', except that for vecN and
// matNxN, we only test N=3.
static constexpr Params all_valid_cases[] = {
// Logical expressions
// https://gpuweb.github.io/gpuweb/wgsl.html#logical-expr
// Binary logical expressions
ParamsFor<bool, bool, bool>(Op::kLogicalAnd),
ParamsFor<bool, bool, bool>(Op::kLogicalOr),
ParamsFor<bool, bool, bool>(Op::kAnd),
ParamsFor<bool, bool, bool>(Op::kOr),
ParamsFor<vec3<bool>, vec3<bool>, vec3<bool>>(Op::kAnd),
ParamsFor<vec3<bool>, vec3<bool>, vec3<bool>>(Op::kOr),
// Arithmetic expressions
// https://gpuweb.github.io/gpuweb/wgsl.html#arithmetic-expr
// Binary arithmetic expressions over scalars
ParamsFor<i32, i32, i32>(Op::kAdd),
ParamsFor<i32, i32, i32>(Op::kSubtract),
ParamsFor<i32, i32, i32>(Op::kMultiply),
ParamsFor<i32, i32, i32>(Op::kDivide),
ParamsFor<i32, i32, i32>(Op::kModulo),
ParamsFor<u32, u32, u32>(Op::kAdd),
ParamsFor<u32, u32, u32>(Op::kSubtract),
ParamsFor<u32, u32, u32>(Op::kMultiply),
ParamsFor<u32, u32, u32>(Op::kDivide),
ParamsFor<u32, u32, u32>(Op::kModulo),
ParamsFor<f32, f32, f32>(Op::kAdd),
ParamsFor<f32, f32, f32>(Op::kSubtract),
ParamsFor<f32, f32, f32>(Op::kMultiply),
ParamsFor<f32, f32, f32>(Op::kDivide),
ParamsFor<f32, f32, f32>(Op::kModulo),
// Binary arithmetic expressions over vectors
ParamsFor<vec3<i32>, vec3<i32>, vec3<i32>>(Op::kAdd),
ParamsFor<vec3<i32>, vec3<i32>, vec3<i32>>(Op::kSubtract),
ParamsFor<vec3<i32>, vec3<i32>, vec3<i32>>(Op::kMultiply),
ParamsFor<vec3<i32>, vec3<i32>, vec3<i32>>(Op::kDivide),
ParamsFor<vec3<i32>, vec3<i32>, vec3<i32>>(Op::kModulo),
ParamsFor<vec3<u32>, vec3<u32>, vec3<u32>>(Op::kAdd),
ParamsFor<vec3<u32>, vec3<u32>, vec3<u32>>(Op::kSubtract),
ParamsFor<vec3<u32>, vec3<u32>, vec3<u32>>(Op::kMultiply),
ParamsFor<vec3<u32>, vec3<u32>, vec3<u32>>(Op::kDivide),
ParamsFor<vec3<u32>, vec3<u32>, vec3<u32>>(Op::kModulo),
ParamsFor<vec3<f32>, vec3<f32>, vec3<f32>>(Op::kAdd),
ParamsFor<vec3<f32>, vec3<f32>, vec3<f32>>(Op::kSubtract),
ParamsFor<vec3<f32>, vec3<f32>, vec3<f32>>(Op::kMultiply),
ParamsFor<vec3<f32>, vec3<f32>, vec3<f32>>(Op::kDivide),
ParamsFor<vec3<f32>, vec3<f32>, vec3<f32>>(Op::kModulo),
// Binary arithmetic expressions with mixed scalar and vector operands
ParamsFor<vec3<i32>, i32, vec3<i32>>(Op::kAdd),
ParamsFor<vec3<i32>, i32, vec3<i32>>(Op::kSubtract),
ParamsFor<vec3<i32>, i32, vec3<i32>>(Op::kMultiply),
ParamsFor<vec3<i32>, i32, vec3<i32>>(Op::kDivide),
ParamsFor<vec3<i32>, i32, vec3<i32>>(Op::kModulo),
ParamsFor<i32, vec3<i32>, vec3<i32>>(Op::kAdd),
ParamsFor<i32, vec3<i32>, vec3<i32>>(Op::kSubtract),
ParamsFor<i32, vec3<i32>, vec3<i32>>(Op::kMultiply),
ParamsFor<i32, vec3<i32>, vec3<i32>>(Op::kDivide),
ParamsFor<i32, vec3<i32>, vec3<i32>>(Op::kModulo),
ParamsFor<vec3<u32>, u32, vec3<u32>>(Op::kAdd),
ParamsFor<vec3<u32>, u32, vec3<u32>>(Op::kSubtract),
ParamsFor<vec3<u32>, u32, vec3<u32>>(Op::kMultiply),
ParamsFor<vec3<u32>, u32, vec3<u32>>(Op::kDivide),
ParamsFor<vec3<u32>, u32, vec3<u32>>(Op::kModulo),
ParamsFor<u32, vec3<u32>, vec3<u32>>(Op::kAdd),
ParamsFor<u32, vec3<u32>, vec3<u32>>(Op::kSubtract),
ParamsFor<u32, vec3<u32>, vec3<u32>>(Op::kMultiply),
ParamsFor<u32, vec3<u32>, vec3<u32>>(Op::kDivide),
ParamsFor<u32, vec3<u32>, vec3<u32>>(Op::kModulo),
ParamsFor<vec3<f32>, f32, vec3<f32>>(Op::kAdd),
ParamsFor<vec3<f32>, f32, vec3<f32>>(Op::kSubtract),
ParamsFor<vec3<f32>, f32, vec3<f32>>(Op::kMultiply),
ParamsFor<vec3<f32>, f32, vec3<f32>>(Op::kDivide),
// NOTE: no kModulo for vec3<f32>, f32
// ParamsFor<vec3<f32>, f32, vec3<f32>>(Op::kModulo),
ParamsFor<f32, vec3<f32>, vec3<f32>>(Op::kAdd),
ParamsFor<f32, vec3<f32>, vec3<f32>>(Op::kSubtract),
ParamsFor<f32, vec3<f32>, vec3<f32>>(Op::kMultiply),
ParamsFor<f32, vec3<f32>, vec3<f32>>(Op::kDivide),
// NOTE: no kModulo for f32, vec3<f32>
// ParamsFor<f32, vec3<f32>, vec3<f32>>(Op::kModulo),
// Matrix arithmetic
ParamsFor<mat2x3<f32>, f32, mat2x3<f32>>(Op::kMultiply),
ParamsFor<mat3x2<f32>, f32, mat3x2<f32>>(Op::kMultiply),
ParamsFor<mat3x3<f32>, f32, mat3x3<f32>>(Op::kMultiply),
ParamsFor<f32, mat2x3<f32>, mat2x3<f32>>(Op::kMultiply),
ParamsFor<f32, mat3x2<f32>, mat3x2<f32>>(Op::kMultiply),
ParamsFor<f32, mat3x3<f32>, mat3x3<f32>>(Op::kMultiply),
ParamsFor<vec3<f32>, mat2x3<f32>, vec2<f32>>(Op::kMultiply),
ParamsFor<vec2<f32>, mat3x2<f32>, vec3<f32>>(Op::kMultiply),
ParamsFor<vec3<f32>, mat3x3<f32>, vec3<f32>>(Op::kMultiply),
ParamsFor<mat3x2<f32>, vec3<f32>, vec2<f32>>(Op::kMultiply),
ParamsFor<mat2x3<f32>, vec2<f32>, vec3<f32>>(Op::kMultiply),
ParamsFor<mat3x3<f32>, vec3<f32>, vec3<f32>>(Op::kMultiply),
ParamsFor<mat2x3<f32>, mat3x2<f32>, mat3x3<f32>>(Op::kMultiply),
ParamsFor<mat3x2<f32>, mat2x3<f32>, mat2x2<f32>>(Op::kMultiply),
ParamsFor<mat3x2<f32>, mat3x3<f32>, mat3x2<f32>>(Op::kMultiply),
ParamsFor<mat3x3<f32>, mat3x3<f32>, mat3x3<f32>>(Op::kMultiply),
ParamsFor<mat3x3<f32>, mat2x3<f32>, mat2x3<f32>>(Op::kMultiply),
ParamsFor<mat2x3<f32>, mat2x3<f32>, mat2x3<f32>>(Op::kAdd),
ParamsFor<mat3x2<f32>, mat3x2<f32>, mat3x2<f32>>(Op::kAdd),
ParamsFor<mat3x3<f32>, mat3x3<f32>, mat3x3<f32>>(Op::kAdd),
ParamsFor<mat2x3<f32>, mat2x3<f32>, mat2x3<f32>>(Op::kSubtract),
ParamsFor<mat3x2<f32>, mat3x2<f32>, mat3x2<f32>>(Op::kSubtract),
ParamsFor<mat3x3<f32>, mat3x3<f32>, mat3x3<f32>>(Op::kSubtract),
// Comparison expressions
// https://gpuweb.github.io/gpuweb/wgsl.html#comparison-expr
// Comparisons over scalars
ParamsFor<bool, bool, bool>(Op::kEqual),
ParamsFor<bool, bool, bool>(Op::kNotEqual),
ParamsFor<i32, i32, bool>(Op::kEqual),
ParamsFor<i32, i32, bool>(Op::kNotEqual),
ParamsFor<i32, i32, bool>(Op::kLessThan),
ParamsFor<i32, i32, bool>(Op::kLessThanEqual),
ParamsFor<i32, i32, bool>(Op::kGreaterThan),
ParamsFor<i32, i32, bool>(Op::kGreaterThanEqual),
ParamsFor<u32, u32, bool>(Op::kEqual),
ParamsFor<u32, u32, bool>(Op::kNotEqual),
ParamsFor<u32, u32, bool>(Op::kLessThan),
ParamsFor<u32, u32, bool>(Op::kLessThanEqual),
ParamsFor<u32, u32, bool>(Op::kGreaterThan),
ParamsFor<u32, u32, bool>(Op::kGreaterThanEqual),
ParamsFor<f32, f32, bool>(Op::kEqual),
ParamsFor<f32, f32, bool>(Op::kNotEqual),
ParamsFor<f32, f32, bool>(Op::kLessThan),
ParamsFor<f32, f32, bool>(Op::kLessThanEqual),
ParamsFor<f32, f32, bool>(Op::kGreaterThan),
ParamsFor<f32, f32, bool>(Op::kGreaterThanEqual),
// Comparisons over vectors
ParamsFor<vec3<bool>, vec3<bool>, vec3<bool>>(Op::kEqual),
ParamsFor<vec3<bool>, vec3<bool>, vec3<bool>>(Op::kNotEqual),
ParamsFor<vec3<i32>, vec3<i32>, vec3<bool>>(Op::kEqual),
ParamsFor<vec3<i32>, vec3<i32>, vec3<bool>>(Op::kNotEqual),
ParamsFor<vec3<i32>, vec3<i32>, vec3<bool>>(Op::kLessThan),
ParamsFor<vec3<i32>, vec3<i32>, vec3<bool>>(Op::kLessThanEqual),
ParamsFor<vec3<i32>, vec3<i32>, vec3<bool>>(Op::kGreaterThan),
ParamsFor<vec3<i32>, vec3<i32>, vec3<bool>>(Op::kGreaterThanEqual),
ParamsFor<vec3<u32>, vec3<u32>, vec3<bool>>(Op::kEqual),
ParamsFor<vec3<u32>, vec3<u32>, vec3<bool>>(Op::kNotEqual),
ParamsFor<vec3<u32>, vec3<u32>, vec3<bool>>(Op::kLessThan),
ParamsFor<vec3<u32>, vec3<u32>, vec3<bool>>(Op::kLessThanEqual),
ParamsFor<vec3<u32>, vec3<u32>, vec3<bool>>(Op::kGreaterThan),
ParamsFor<vec3<u32>, vec3<u32>, vec3<bool>>(Op::kGreaterThanEqual),
ParamsFor<vec3<f32>, vec3<f32>, vec3<bool>>(Op::kEqual),
ParamsFor<vec3<f32>, vec3<f32>, vec3<bool>>(Op::kNotEqual),
ParamsFor<vec3<f32>, vec3<f32>, vec3<bool>>(Op::kLessThan),
ParamsFor<vec3<f32>, vec3<f32>, vec3<bool>>(Op::kLessThanEqual),
ParamsFor<vec3<f32>, vec3<f32>, vec3<bool>>(Op::kGreaterThan),
ParamsFor<vec3<f32>, vec3<f32>, vec3<bool>>(Op::kGreaterThanEqual),
// Binary bitwise operations
ParamsFor<i32, i32, i32>(Op::kOr),
ParamsFor<i32, i32, i32>(Op::kAnd),
ParamsFor<i32, i32, i32>(Op::kXor),
ParamsFor<u32, u32, u32>(Op::kOr),
ParamsFor<u32, u32, u32>(Op::kAnd),
ParamsFor<u32, u32, u32>(Op::kXor),
ParamsFor<vec3<i32>, vec3<i32>, vec3<i32>>(Op::kOr),
ParamsFor<vec3<i32>, vec3<i32>, vec3<i32>>(Op::kAnd),
ParamsFor<vec3<i32>, vec3<i32>, vec3<i32>>(Op::kXor),
ParamsFor<vec3<u32>, vec3<u32>, vec3<u32>>(Op::kOr),
ParamsFor<vec3<u32>, vec3<u32>, vec3<u32>>(Op::kAnd),
ParamsFor<vec3<u32>, vec3<u32>, vec3<u32>>(Op::kXor),
// Bit shift expressions
ParamsFor<i32, u32, i32>(Op::kShiftLeft),
ParamsFor<vec3<i32>, vec3<u32>, vec3<i32>>(Op::kShiftLeft),
ParamsFor<u32, u32, u32>(Op::kShiftLeft),
ParamsFor<vec3<u32>, vec3<u32>, vec3<u32>>(Op::kShiftLeft),
ParamsFor<i32, u32, i32>(Op::kShiftRight),
ParamsFor<vec3<i32>, vec3<u32>, vec3<i32>>(Op::kShiftRight),
ParamsFor<u32, u32, u32>(Op::kShiftRight),
ParamsFor<vec3<u32>, vec3<u32>, vec3<u32>>(Op::kShiftRight),
};
using Expr_Binary_Test_Valid = ResolverTestWithParam<Params>;
TEST_P(Expr_Binary_Test_Valid, All) {
auto& params = GetParam();
auto* lhs_type = params.create_lhs_type(*this);
auto* rhs_type = params.create_rhs_type(*this);
auto* result_type = params.create_result_type(*this);
std::stringstream ss;
ss << FriendlyName(lhs_type) << " " << params.op << " "
<< FriendlyName(rhs_type);
SCOPED_TRACE(ss.str());
Global("lhs", lhs_type, ast::StorageClass::kPrivate);
Global("rhs", rhs_type, ast::StorageClass::kPrivate);
auto* expr =
create<ast::BinaryExpression>(params.op, Expr("lhs"), Expr("rhs"));
WrapInFunction(expr);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(expr), nullptr);
ASSERT_TRUE(TypeOf(expr) == result_type);
}
INSTANTIATE_TEST_SUITE_P(ResolverTest,
Expr_Binary_Test_Valid,
testing::ValuesIn(all_valid_cases));
enum class BinaryExprSide { Left, Right, Both };
using Expr_Binary_Test_WithAlias_Valid =
ResolverTestWithParam<std::tuple<Params, BinaryExprSide>>;
TEST_P(Expr_Binary_Test_WithAlias_Valid, All) {
const Params& params = std::get<0>(GetParam());
BinaryExprSide side = std::get<1>(GetParam());
auto* create_lhs_type =
(side == BinaryExprSide::Left || side == BinaryExprSide::Both)
? params.create_lhs_alias_type
: params.create_lhs_type;
auto* create_rhs_type =
(side == BinaryExprSide::Right || side == BinaryExprSide::Both)
? params.create_rhs_alias_type
: params.create_rhs_type;
auto* lhs_type = create_lhs_type(*this);
auto* rhs_type = create_rhs_type(*this);
std::stringstream ss;
ss << FriendlyName(lhs_type) << " " << params.op << " "
<< FriendlyName(rhs_type);
ss << ", After aliasing: " << FriendlyName(lhs_type) << " " << params.op
<< " " << FriendlyName(rhs_type);
SCOPED_TRACE(ss.str());
Global("lhs", lhs_type, ast::StorageClass::kPrivate);
Global("rhs", rhs_type, ast::StorageClass::kPrivate);
auto* expr =
create<ast::BinaryExpression>(params.op, Expr("lhs"), Expr("rhs"));
WrapInFunction(expr);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(expr), nullptr);
// TODO(amaiorano): Bring this back once we have a way to get the canonical
// type
// auto* *result_type = params.create_result_type(*this);
// ASSERT_TRUE(TypeOf(expr) == result_type);
}
INSTANTIATE_TEST_SUITE_P(
ResolverTest,
Expr_Binary_Test_WithAlias_Valid,
testing::Combine(testing::ValuesIn(all_valid_cases),
testing::Values(BinaryExprSide::Left,
BinaryExprSide::Right,
BinaryExprSide::Both)));
// This test works by taking the cartesian product of all possible
// (type * type * op), and processing only the triplets that are not found in
// the `all_valid_cases` table.
using Expr_Binary_Test_Invalid =
ResolverTestWithParam<std::tuple<builder::ast_type_func_ptr,
builder::ast_type_func_ptr,
ast::BinaryOp>>;
TEST_P(Expr_Binary_Test_Invalid, All) {
const builder::ast_type_func_ptr& lhs_create_type_func =
std::get<0>(GetParam());
const builder::ast_type_func_ptr& rhs_create_type_func =
std::get<1>(GetParam());
const ast::BinaryOp op = std::get<2>(GetParam());
// Skip if valid case
// TODO(amaiorano): replace linear lookup with O(1) if too slow
for (auto& c : all_valid_cases) {
if (c.create_lhs_type == lhs_create_type_func &&
c.create_rhs_type == rhs_create_type_func && c.op == op) {
return;
}
}
auto* lhs_type = lhs_create_type_func(*this);
auto* rhs_type = rhs_create_type_func(*this);
std::stringstream ss;
ss << FriendlyName(lhs_type) << " " << op << " " << FriendlyName(rhs_type);
SCOPED_TRACE(ss.str());
Global("lhs", lhs_type, ast::StorageClass::kPrivate);
Global("rhs", rhs_type, ast::StorageClass::kPrivate);
auto* expr = create<ast::BinaryExpression>(Source{{12, 34}}, op, Expr("lhs"),
Expr("rhs"));
WrapInFunction(expr);
ASSERT_FALSE(r()->Resolve());
ASSERT_EQ(r()->error(),
"12:34 error: Binary expression operand types are invalid for "
"this operation: " +
FriendlyName(lhs_type) + " " + ast::FriendlyName(expr->op()) +
" " + FriendlyName(rhs_type));
}
INSTANTIATE_TEST_SUITE_P(
ResolverTest,
Expr_Binary_Test_Invalid,
testing::Combine(testing::ValuesIn(all_create_type_funcs),
testing::ValuesIn(all_create_type_funcs),
testing::ValuesIn(all_ops)));
using Expr_Binary_Test_Invalid_VectorMatrixMultiply =
ResolverTestWithParam<std::tuple<bool, uint32_t, uint32_t, uint32_t>>;
TEST_P(Expr_Binary_Test_Invalid_VectorMatrixMultiply, All) {
bool vec_by_mat = std::get<0>(GetParam());
uint32_t vec_size = std::get<1>(GetParam());
uint32_t mat_rows = std::get<2>(GetParam());
uint32_t mat_cols = std::get<3>(GetParam());
ast::Type* lhs_type;
ast::Type* rhs_type;
sem::Type* result_type;
bool is_valid_expr;
if (vec_by_mat) {
lhs_type = ty.vec<f32>(vec_size);
rhs_type = ty.mat<f32>(mat_cols, mat_rows);
result_type = create<sem::Vector>(create<sem::F32>(), mat_cols);
is_valid_expr = vec_size == mat_rows;
} else {
lhs_type = ty.mat<f32>(mat_cols, mat_rows);
rhs_type = ty.vec<f32>(vec_size);
result_type = create<sem::Vector>(create<sem::F32>(), mat_rows);
is_valid_expr = vec_size == mat_cols;
}
Global("lhs", lhs_type, ast::StorageClass::kPrivate);
Global("rhs", rhs_type, ast::StorageClass::kPrivate);
auto* expr = Mul(Source{{12, 34}}, Expr("lhs"), Expr("rhs"));
WrapInFunction(expr);
if (is_valid_expr) {
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_TRUE(TypeOf(expr) == result_type);
} else {
ASSERT_FALSE(r()->Resolve());
ASSERT_EQ(r()->error(),
"12:34 error: Binary expression operand types are invalid for "
"this operation: " +
FriendlyName(lhs_type) + " " + ast::FriendlyName(expr->op()) +
" " + FriendlyName(rhs_type));
}
}
auto all_dimension_values = testing::Values(2u, 3u, 4u);
INSTANTIATE_TEST_SUITE_P(ResolverTest,
Expr_Binary_Test_Invalid_VectorMatrixMultiply,
testing::Combine(testing::Values(true, false),
all_dimension_values,
all_dimension_values,
all_dimension_values));
using Expr_Binary_Test_Invalid_MatrixMatrixMultiply =
ResolverTestWithParam<std::tuple<uint32_t, uint32_t, uint32_t, uint32_t>>;
TEST_P(Expr_Binary_Test_Invalid_MatrixMatrixMultiply, All) {
uint32_t lhs_mat_rows = std::get<0>(GetParam());
uint32_t lhs_mat_cols = std::get<1>(GetParam());
uint32_t rhs_mat_rows = std::get<2>(GetParam());
uint32_t rhs_mat_cols = std::get<3>(GetParam());
auto* lhs_type = ty.mat<f32>(lhs_mat_cols, lhs_mat_rows);
auto* rhs_type = ty.mat<f32>(rhs_mat_cols, rhs_mat_rows);
auto* f32 = create<sem::F32>();
auto* col = create<sem::Vector>(f32, lhs_mat_rows);
auto* result_type = create<sem::Matrix>(col, rhs_mat_cols);
Global("lhs", lhs_type, ast::StorageClass::kPrivate);
Global("rhs", rhs_type, ast::StorageClass::kPrivate);
auto* expr = Mul(Source{{12, 34}}, Expr("lhs"), Expr("rhs"));
WrapInFunction(expr);
bool is_valid_expr = lhs_mat_cols == rhs_mat_rows;
if (is_valid_expr) {
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_TRUE(TypeOf(expr) == result_type);
} else {
ASSERT_FALSE(r()->Resolve());
ASSERT_EQ(r()->error(),
"12:34 error: Binary expression operand types are invalid for "
"this operation: " +
FriendlyName(lhs_type) + " " + ast::FriendlyName(expr->op()) +
" " + FriendlyName(rhs_type));
}
}
INSTANTIATE_TEST_SUITE_P(ResolverTest,
Expr_Binary_Test_Invalid_MatrixMatrixMultiply,
testing::Combine(all_dimension_values,
all_dimension_values,
all_dimension_values,
all_dimension_values));
} // namespace ExprBinaryTest
using UnaryOpExpressionTest = ResolverTestWithParam<ast::UnaryOp>;
TEST_P(UnaryOpExpressionTest, Expr_UnaryOp) {
auto op = GetParam();
if (op == ast::UnaryOp::kNot) {
Global("ident", ty.vec4<bool>(), ast::StorageClass::kPrivate);
} else if (op == ast::UnaryOp::kNegation || op == ast::UnaryOp::kComplement) {
Global("ident", ty.vec4<i32>(), ast::StorageClass::kPrivate);
} else {
Global("ident", ty.vec4<f32>(), ast::StorageClass::kPrivate);
}
auto* der = create<ast::UnaryOpExpression>(op, Expr("ident"));
WrapInFunction(der);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(der), nullptr);
ASSERT_TRUE(TypeOf(der)->Is<sem::Vector>());
if (op == ast::UnaryOp::kNot) {
EXPECT_TRUE(TypeOf(der)->As<sem::Vector>()->type()->Is<sem::Bool>());
} else if (op == ast::UnaryOp::kNegation || op == ast::UnaryOp::kComplement) {
EXPECT_TRUE(TypeOf(der)->As<sem::Vector>()->type()->Is<sem::I32>());
} else {
EXPECT_TRUE(TypeOf(der)->As<sem::Vector>()->type()->Is<sem::F32>());
}
EXPECT_EQ(TypeOf(der)->As<sem::Vector>()->Width(), 4u);
}
INSTANTIATE_TEST_SUITE_P(ResolverTest,
UnaryOpExpressionTest,
testing::Values(ast::UnaryOp::kComplement,
ast::UnaryOp::kNegation,
ast::UnaryOp::kNot));
TEST_F(ResolverTest, StorageClass_SetsIfMissing) {
auto* var = Var("var", ty.i32());
auto* stmt = Decl(var);
Func("func", ast::VariableList{}, ty.void_(), {stmt}, ast::DecorationList{});
EXPECT_TRUE(r()->Resolve()) << r()->error();
EXPECT_EQ(Sem().Get(var)->StorageClass(), ast::StorageClass::kFunction);
}
TEST_F(ResolverTest, StorageClass_SetForSampler) {
auto* t = ty.sampler(ast::SamplerKind::kSampler);
auto* var = Global("var", t,
ast::DecorationList{
create<ast::BindingDecoration>(0),
create<ast::GroupDecoration>(0),
});
EXPECT_TRUE(r()->Resolve()) << r()->error();
EXPECT_EQ(Sem().Get(var)->StorageClass(),
ast::StorageClass::kUniformConstant);
}
TEST_F(ResolverTest, StorageClass_SetForTexture) {
auto* t = ty.sampled_texture(ast::TextureDimension::k1d, ty.f32());
auto* var = Global("var", t,
ast::DecorationList{
create<ast::BindingDecoration>(0),
create<ast::GroupDecoration>(0),
});
EXPECT_TRUE(r()->Resolve()) << r()->error();
EXPECT_EQ(Sem().Get(var)->StorageClass(),
ast::StorageClass::kUniformConstant);
}
TEST_F(ResolverTest, StorageClass_DoesNotSetOnConst) {
auto* var = Const("var", ty.i32(), Construct(ty.i32()));
auto* stmt = Decl(var);
Func("func", ast::VariableList{}, ty.void_(), {stmt}, ast::DecorationList{});
EXPECT_TRUE(r()->Resolve()) << r()->error();
EXPECT_EQ(Sem().Get(var)->StorageClass(), ast::StorageClass::kNone);
}
TEST_F(ResolverTest, Access_SetForStorageBuffer) {
// [[block]] struct S { x : i32 };
// var<storage> g : S;
auto* s = Structure("S", {Member(Source{{12, 34}}, "x", ty.i32())},
{create<ast::StructBlockDecoration>()});
auto* var =
Global(Source{{56, 78}}, "g", ty.Of(s), ast::StorageClass::kStorage,
ast::DecorationList{
create<ast::BindingDecoration>(0),
create<ast::GroupDecoration>(0),
});
EXPECT_TRUE(r()->Resolve()) << r()->error();
EXPECT_EQ(Sem().Get(var)->Access(), ast::Access::kRead);
}
TEST_F(ResolverTest, BindingPoint_SetForResources) {
// [[group(1), binding(2)]] var s1 : sampler;
// [[group(3), binding(4)]] var s2 : sampler;
auto* s1 = Global(Sym(), ty.sampler(ast::SamplerKind::kSampler),
ast::DecorationList{create<ast::GroupDecoration>(1),
create<ast::BindingDecoration>(2)});
auto* s2 = Global(Sym(), ty.sampler(ast::SamplerKind::kSampler),
ast::DecorationList{create<ast::GroupDecoration>(3),
create<ast::BindingDecoration>(4)});
EXPECT_TRUE(r()->Resolve()) << r()->error();
EXPECT_EQ(Sem().Get<sem::GlobalVariable>(s1)->BindingPoint(),
(sem::BindingPoint{1u, 2u}));
EXPECT_EQ(Sem().Get<sem::GlobalVariable>(s2)->BindingPoint(),
(sem::BindingPoint{3u, 4u}));
}
TEST_F(ResolverTest, Function_EntryPoints_StageDecoration) {
// fn b() {}
// fn c() { b(); }
// fn a() { c(); }
// fn ep_1() { a(); b(); }
// fn ep_2() { c();}
//
// c -> {ep_1, ep_2}
// a -> {ep_1}
// b -> {ep_1, ep_2}
// ep_1 -> {}
// ep_2 -> {}
Global("first", ty.f32(), ast::StorageClass::kPrivate);
Global("second", ty.f32(), ast::StorageClass::kPrivate);
Global("call_a", ty.f32(), ast::StorageClass::kPrivate);
Global("call_b", ty.f32(), ast::StorageClass::kPrivate);
Global("call_c", ty.f32(), ast::StorageClass::kPrivate);
ast::VariableList params;
auto* func_b =
Func("b", params, ty.f32(), {Return(0.0f)}, ast::DecorationList{});
auto* func_c =
Func("c", params, ty.f32(), {Assign("second", Call("b")), Return(0.0f)},
ast::DecorationList{});
auto* func_a =
Func("a", params, ty.f32(), {Assign("first", Call("c")), Return(0.0f)},
ast::DecorationList{});
auto* ep_1 = Func("ep_1", params, ty.void_(),
{
Assign("call_a", Call("a")),
Assign("call_b", Call("b")),
},
ast::DecorationList{Stage(ast::PipelineStage::kCompute),
WorkgroupSize(1)});
auto* ep_2 = Func("ep_2", params, ty.void_(),
{
Assign("call_c", Call("c")),
},
ast::DecorationList{Stage(ast::PipelineStage::kCompute),
WorkgroupSize(1)});
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* func_b_sem = Sem().Get(func_b);
auto* func_a_sem = Sem().Get(func_a);
auto* func_c_sem = Sem().Get(func_c);
auto* ep_1_sem = Sem().Get(ep_1);
auto* ep_2_sem = Sem().Get(ep_2);
ASSERT_NE(func_b_sem, nullptr);
ASSERT_NE(func_a_sem, nullptr);
ASSERT_NE(func_c_sem, nullptr);
ASSERT_NE(ep_1_sem, nullptr);
ASSERT_NE(ep_2_sem, nullptr);
EXPECT_EQ(func_b_sem->Parameters().size(), 0u);
EXPECT_EQ(func_a_sem->Parameters().size(), 0u);
EXPECT_EQ(func_c_sem->Parameters().size(), 0u);
const auto& b_eps = func_b_sem->AncestorEntryPoints();
ASSERT_EQ(2u, b_eps.size());
EXPECT_EQ(Symbols().Register("ep_1"), b_eps[0]);
EXPECT_EQ(Symbols().Register("ep_2"), b_eps[1]);
const auto& a_eps = func_a_sem->AncestorEntryPoints();
ASSERT_EQ(1u, a_eps.size());
EXPECT_EQ(Symbols().Register("ep_1"), a_eps[0]);
const auto& c_eps = func_c_sem->AncestorEntryPoints();
ASSERT_EQ(2u, c_eps.size());
EXPECT_EQ(Symbols().Register("ep_1"), c_eps[0]);
EXPECT_EQ(Symbols().Register("ep_2"), c_eps[1]);
EXPECT_TRUE(ep_1_sem->AncestorEntryPoints().empty());
EXPECT_TRUE(ep_2_sem->AncestorEntryPoints().empty());
}
// Check for linear-time traversal of functions reachable from entry points.
// See: crbug.com/tint/245
TEST_F(ResolverTest, Function_EntryPoints_LinearTime) {
// fn lNa() { }
// fn lNb() { }
// ...
// fn l2a() { l3a(); l3b(); }
// fn l2b() { l3a(); l3b(); }
// fn l1a() { l2a(); l2b(); }
// fn l1b() { l2a(); l2b(); }
// fn main() { l1a(); l1b(); }
static constexpr int levels = 64;
auto fn_a = [](int level) { return "l" + std::to_string(level + 1) + "a"; };
auto fn_b = [](int level) { return "l" + std::to_string(level + 1) + "b"; };
Func(fn_a(levels), {}, ty.void_(), {}, {});
Func(fn_b(levels), {}, ty.void_(), {}, {});
for (int i = levels - 1; i >= 0; i--) {
Func(fn_a(i), {}, ty.void_(),
{
create<ast::CallStatement>(Call(fn_a(i + 1))),
create<ast::CallStatement>(Call(fn_b(i + 1))),
},
{});
Func(fn_b(i), {}, ty.void_(),
{
create<ast::CallStatement>(Call(fn_a(i + 1))),
create<ast::CallStatement>(Call(fn_b(i + 1))),
},
{});
}
Func("main", {}, ty.void_(),
{
create<ast::CallStatement>(Call(fn_a(0))),
create<ast::CallStatement>(Call(fn_b(0))),
},
{Stage(ast::PipelineStage::kCompute), WorkgroupSize(1)});
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
// Test for crbug.com/tint/728
TEST_F(ResolverTest, ASTNodesAreReached) {
Structure("A", {Member("x", ty.array<f32, 4>(4))});
Structure("B", {Member("x", ty.array<f32, 4>(4))});
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverTest, ASTNodeNotReached) {
EXPECT_FATAL_FAILURE(
{
ProgramBuilder builder;
builder.Expr("1");
Resolver(&builder).Resolve();
},
"internal compiler error: AST node 'tint::ast::IdentifierExpression' was "
"not reached by the resolver");
}
TEST_F(ResolverTest, ASTNodeReachedTwice) {
EXPECT_FATAL_FAILURE(
{
ProgramBuilder builder;
auto* expr = builder.Expr("1");
auto* usesExprTwice = builder.Add(expr, expr);
builder.Global("g", builder.ty.i32(), ast::StorageClass::kPrivate,
usesExprTwice);
Resolver(&builder).Resolve();
},
"internal compiler error: AST node 'tint::ast::IdentifierExpression' was "
"encountered twice in the same AST of a Program");
}
TEST_F(ResolverTest, UnaryOp_Not) {
Global("ident", ty.vec4<f32>(), ast::StorageClass::kPrivate);
auto* der = create<ast::UnaryOpExpression>(ast::UnaryOp::kNot,
Expr(Source{{12, 34}}, "ident"));
WrapInFunction(der);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: cannot logical negate expression of type 'vec4<f32>");
}
TEST_F(ResolverTest, UnaryOp_Complement) {
Global("ident", ty.vec4<f32>(), ast::StorageClass::kPrivate);
auto* der = create<ast::UnaryOpExpression>(ast::UnaryOp::kComplement,
Expr(Source{{12, 34}}, "ident"));
WrapInFunction(der);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(
r()->error(),
"12:34 error: cannot bitwise complement expression of type 'vec4<f32>");
}
TEST_F(ResolverTest, UnaryOp_Negation) {
Global("ident", ty.u32(), ast::StorageClass::kPrivate);
auto* der = create<ast::UnaryOpExpression>(ast::UnaryOp::kNegation,
Expr(Source{{12, 34}}, "ident"));
WrapInFunction(der);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: cannot negate expression of type 'u32");
}
} // namespace
} // namespace resolver
} // namespace tint