| // Copyright 2020 The Tint Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "src/resolver/resolver.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <iomanip> |
| #include <limits> |
| #include <utility> |
| |
| #include "src/ast/alias.h" |
| #include "src/ast/array.h" |
| #include "src/ast/assignment_statement.h" |
| #include "src/ast/bitcast_expression.h" |
| #include "src/ast/break_statement.h" |
| #include "src/ast/call_statement.h" |
| #include "src/ast/continue_statement.h" |
| #include "src/ast/depth_texture.h" |
| #include "src/ast/disable_validation_decoration.h" |
| #include "src/ast/discard_statement.h" |
| #include "src/ast/fallthrough_statement.h" |
| #include "src/ast/for_loop_statement.h" |
| #include "src/ast/if_statement.h" |
| #include "src/ast/internal_decoration.h" |
| #include "src/ast/interpolate_decoration.h" |
| #include "src/ast/loop_statement.h" |
| #include "src/ast/matrix.h" |
| #include "src/ast/override_decoration.h" |
| #include "src/ast/pointer.h" |
| #include "src/ast/return_statement.h" |
| #include "src/ast/sampled_texture.h" |
| #include "src/ast/sampler.h" |
| #include "src/ast/storage_texture.h" |
| #include "src/ast/struct_block_decoration.h" |
| #include "src/ast/switch_statement.h" |
| #include "src/ast/type_name.h" |
| #include "src/ast/unary_op_expression.h" |
| #include "src/ast/variable_decl_statement.h" |
| #include "src/ast/vector.h" |
| #include "src/ast/workgroup_decoration.h" |
| #include "src/sem/array.h" |
| #include "src/sem/atomic_type.h" |
| #include "src/sem/call.h" |
| #include "src/sem/depth_multisampled_texture_type.h" |
| #include "src/sem/depth_texture_type.h" |
| #include "src/sem/for_loop_statement.h" |
| #include "src/sem/function.h" |
| #include "src/sem/if_statement.h" |
| #include "src/sem/loop_statement.h" |
| #include "src/sem/member_accessor_expression.h" |
| #include "src/sem/multisampled_texture_type.h" |
| #include "src/sem/pointer_type.h" |
| #include "src/sem/reference_type.h" |
| #include "src/sem/sampled_texture_type.h" |
| #include "src/sem/sampler_type.h" |
| #include "src/sem/statement.h" |
| #include "src/sem/storage_texture_type.h" |
| #include "src/sem/struct.h" |
| #include "src/sem/switch_statement.h" |
| #include "src/sem/variable.h" |
| #include "src/utils/defer.h" |
| #include "src/utils/get_or_create.h" |
| #include "src/utils/math.h" |
| #include "src/utils/reverse.h" |
| #include "src/utils/scoped_assignment.h" |
| |
| namespace tint { |
| namespace resolver { |
| namespace { |
| |
| using IntrinsicType = tint::sem::IntrinsicType; |
| |
| bool IsValidStorageTextureDimension(ast::TextureDimension dim) { |
| switch (dim) { |
| case ast::TextureDimension::k1d: |
| case ast::TextureDimension::k2d: |
| case ast::TextureDimension::k2dArray: |
| case ast::TextureDimension::k3d: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| bool IsValidStorageTextureImageFormat(ast::ImageFormat format) { |
| switch (format) { |
| case ast::ImageFormat::kR32Uint: |
| case ast::ImageFormat::kR32Sint: |
| case ast::ImageFormat::kR32Float: |
| case ast::ImageFormat::kRg32Uint: |
| case ast::ImageFormat::kRg32Sint: |
| case ast::ImageFormat::kRg32Float: |
| case ast::ImageFormat::kRgba8Unorm: |
| case ast::ImageFormat::kRgba8Snorm: |
| case ast::ImageFormat::kRgba8Uint: |
| case ast::ImageFormat::kRgba8Sint: |
| case ast::ImageFormat::kRgba16Uint: |
| case ast::ImageFormat::kRgba16Sint: |
| case ast::ImageFormat::kRgba16Float: |
| case ast::ImageFormat::kRgba32Uint: |
| case ast::ImageFormat::kRgba32Sint: |
| case ast::ImageFormat::kRgba32Float: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| /// @returns true if the decoration list contains a |
| /// ast::DisableValidationDecoration with the validation mode equal to |
| /// `validation` |
| bool IsValidationDisabled(const ast::DecorationList& decorations, |
| ast::DisabledValidation validation) { |
| for (auto* decoration : decorations) { |
| if (auto* dv = decoration->As<ast::DisableValidationDecoration>()) { |
| if (dv->Validation() == validation) { |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| /// @returns true if the decoration list does not contains a |
| /// ast::DisableValidationDecoration with the validation mode equal to |
| /// `validation` |
| bool IsValidationEnabled(const ast::DecorationList& decorations, |
| ast::DisabledValidation validation) { |
| return !IsValidationDisabled(decorations, validation); |
| } |
| |
| // Helper to stringify a pipeline IO decoration. |
| std::string deco_to_str(const ast::Decoration* deco) { |
| std::stringstream str; |
| if (auto* builtin = deco->As<ast::BuiltinDecoration>()) { |
| str << "builtin(" << builtin->value() << ")"; |
| } else if (auto* location = deco->As<ast::LocationDecoration>()) { |
| str << "location(" << location->value() << ")"; |
| } |
| return str.str(); |
| } |
| } // namespace |
| |
| Resolver::Resolver(ProgramBuilder* builder) |
| : builder_(builder), |
| diagnostics_(builder->Diagnostics()), |
| intrinsic_table_(IntrinsicTable::Create(*builder)) {} |
| |
| Resolver::~Resolver() = default; |
| |
| void Resolver::set_referenced_from_function_if_needed(VariableInfo* var, |
| bool local) { |
| if (current_function_ == nullptr) { |
| return; |
| } |
| |
| if (var->kind != VariableKind::kGlobal) { |
| return; |
| } |
| |
| current_function_->referenced_module_vars.add(var); |
| if (local) { |
| current_function_->local_referenced_module_vars.add(var); |
| } |
| } |
| |
| bool Resolver::Resolve() { |
| if (builder_->Diagnostics().contains_errors()) { |
| return false; |
| } |
| |
| bool result = ResolveInternal(); |
| |
| if (!result && !diagnostics_.contains_errors()) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "resolving failed, but no error was raised"; |
| return false; |
| } |
| |
| // Even if resolving failed, create all the semantic nodes for information we |
| // did generate. |
| CreateSemanticNodes(); |
| |
| return result; |
| } |
| |
| // https://gpuweb.github.io/gpuweb/wgsl/#plain-types-section |
| bool Resolver::IsPlain(const sem::Type* type) const { |
| return type->is_scalar() || type->Is<sem::Atomic>() || |
| type->Is<sem::Vector>() || type->Is<sem::Matrix>() || |
| type->Is<sem::Array>() || type->Is<sem::Struct>(); |
| } |
| |
| // https://gpuweb.github.io/gpuweb/wgsl.html#storable-types |
| bool Resolver::IsStorable(const sem::Type* type) const { |
| return IsPlain(type) || type->Is<sem::Texture>() || type->Is<sem::Sampler>(); |
| } |
| |
| // https://gpuweb.github.io/gpuweb/wgsl.html#host-shareable-types |
| bool Resolver::IsHostShareable(const sem::Type* type) const { |
| if (type->IsAnyOf<sem::I32, sem::U32, sem::F32>()) { |
| return true; |
| } |
| if (auto* vec = type->As<sem::Vector>()) { |
| return IsHostShareable(vec->type()); |
| } |
| if (auto* mat = type->As<sem::Matrix>()) { |
| return IsHostShareable(mat->type()); |
| } |
| if (auto* arr = type->As<sem::Array>()) { |
| return IsHostShareable(arr->ElemType()); |
| } |
| if (auto* str = type->As<sem::Struct>()) { |
| for (auto* member : str->Members()) { |
| if (!IsHostShareable(member->Type())) { |
| return false; |
| } |
| } |
| return true; |
| } |
| if (auto* atomic = type->As<sem::Atomic>()) { |
| return IsHostShareable(atomic->Type()); |
| } |
| return false; |
| } |
| |
| bool Resolver::ResolveInternal() { |
| Mark(&builder_->AST()); |
| |
| // Process everything else in the order they appear in the module. This is |
| // necessary for validation of use-before-declaration. |
| for (auto* decl : builder_->AST().GlobalDeclarations()) { |
| if (auto* td = decl->As<ast::TypeDecl>()) { |
| Mark(td); |
| if (!TypeDecl(td)) { |
| return false; |
| } |
| } else if (auto* func = decl->As<ast::Function>()) { |
| Mark(func); |
| if (!Function(func)) { |
| return false; |
| } |
| } else if (auto* var = decl->As<ast::Variable>()) { |
| Mark(var); |
| if (!GlobalVariable(var)) { |
| return false; |
| } |
| } else { |
| TINT_UNREACHABLE(Resolver, diagnostics_) |
| << "unhandled global declaration: " << decl->TypeInfo().name; |
| return false; |
| } |
| } |
| |
| if (!ValidatePipelineStages()) { |
| return false; |
| } |
| |
| bool result = true; |
| for (auto* node : builder_->ASTNodes().Objects()) { |
| if (marked_.count(node) == 0) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "AST node '" << node->TypeInfo().name |
| << "' was not reached by the resolver\n" |
| << "At: " << node->source() << "\n" |
| << "Content: " << builder_->str(node) << "\n" |
| << "Pointer: " << node; |
| result = false; |
| } |
| } |
| |
| return result; |
| } |
| |
| sem::Type* Resolver::Type(const ast::Type* ty) { |
| Mark(ty); |
| auto* s = [&]() -> sem::Type* { |
| if (ty->Is<ast::Void>()) { |
| return builder_->create<sem::Void>(); |
| } |
| if (ty->Is<ast::Bool>()) { |
| return builder_->create<sem::Bool>(); |
| } |
| if (ty->Is<ast::I32>()) { |
| return builder_->create<sem::I32>(); |
| } |
| if (ty->Is<ast::U32>()) { |
| return builder_->create<sem::U32>(); |
| } |
| if (ty->Is<ast::F32>()) { |
| return builder_->create<sem::F32>(); |
| } |
| if (auto* t = ty->As<ast::Vector>()) { |
| if (auto* el = Type(t->type())) { |
| if (auto* vector = builder_->create<sem::Vector>( |
| const_cast<sem::Type*>(el), t->size())) { |
| if (ValidateVector(vector, t->source())) { |
| return vector; |
| } |
| } |
| } |
| return nullptr; |
| } |
| if (auto* t = ty->As<ast::Matrix>()) { |
| if (auto* el = Type(t->type())) { |
| if (auto* column_type = builder_->create<sem::Vector>( |
| const_cast<sem::Type*>(el), t->rows())) { |
| if (auto* matrix = |
| builder_->create<sem::Matrix>(column_type, t->columns())) { |
| if (ValidateMatrix(matrix, t->source())) { |
| return matrix; |
| } |
| } |
| } |
| } |
| return nullptr; |
| } |
| if (auto* t = ty->As<ast::Array>()) { |
| return Array(t); |
| } |
| if (auto* t = ty->As<ast::Atomic>()) { |
| if (auto* el = Type(t->type())) { |
| auto* a = builder_->create<sem::Atomic>(const_cast<sem::Type*>(el)); |
| if (!ValidateAtomic(t, a)) { |
| return nullptr; |
| } |
| return a; |
| } |
| return nullptr; |
| } |
| if (auto* t = ty->As<ast::Pointer>()) { |
| if (auto* el = Type(t->type())) { |
| auto access = t->access(); |
| if (access == ast::kUndefined) { |
| access = DefaultAccessForStorageClass(t->storage_class()); |
| } |
| return builder_->create<sem::Pointer>(const_cast<sem::Type*>(el), |
| t->storage_class(), access); |
| } |
| return nullptr; |
| } |
| if (auto* t = ty->As<ast::Sampler>()) { |
| return builder_->create<sem::Sampler>(t->kind()); |
| } |
| if (auto* t = ty->As<ast::SampledTexture>()) { |
| if (auto* el = Type(t->type())) { |
| return builder_->create<sem::SampledTexture>( |
| t->dim(), const_cast<sem::Type*>(el)); |
| } |
| return nullptr; |
| } |
| if (auto* t = ty->As<ast::MultisampledTexture>()) { |
| if (auto* el = Type(t->type())) { |
| return builder_->create<sem::MultisampledTexture>( |
| t->dim(), const_cast<sem::Type*>(el)); |
| } |
| return nullptr; |
| } |
| if (auto* t = ty->As<ast::DepthTexture>()) { |
| return builder_->create<sem::DepthTexture>(t->dim()); |
| } |
| if (auto* t = ty->As<ast::DepthMultisampledTexture>()) { |
| return builder_->create<sem::DepthMultisampledTexture>(t->dim()); |
| } |
| if (auto* t = ty->As<ast::StorageTexture>()) { |
| if (auto* el = Type(t->type())) { |
| if (!ValidateStorageTexture(t)) { |
| return nullptr; |
| } |
| return builder_->create<sem::StorageTexture>( |
| t->dim(), t->image_format(), t->access(), |
| const_cast<sem::Type*>(el)); |
| } |
| return nullptr; |
| } |
| if (ty->As<ast::ExternalTexture>()) { |
| return builder_->create<sem::ExternalTexture>(); |
| } |
| if (auto* t = ty->As<ast::TypeName>()) { |
| auto it = named_type_info_.find(t->name()); |
| if (it == named_type_info_.end()) { |
| AddError( |
| "unknown type '" + builder_->Symbols().NameFor(t->name()) + "'", |
| t->source()); |
| return nullptr; |
| } |
| return it->second.sem; |
| } |
| TINT_UNREACHABLE(Resolver, diagnostics_) |
| << "Unhandled ast::Type: " << ty->TypeInfo().name; |
| return nullptr; |
| }(); |
| |
| if (s) { |
| builder_->Sem().Add(ty, s); |
| } |
| return s; |
| } |
| |
| bool Resolver::ValidateAtomic(const ast::Atomic* a, const sem::Atomic* s) { |
| // https://gpuweb.github.io/gpuweb/wgsl/#atomic-types |
| // T must be either u32 or i32. |
| if (!s->Type()->IsAnyOf<sem::U32, sem::I32>()) { |
| AddError("atomic only supports i32 or u32 types", |
| a->type() ? a->type()->source() : a->source()); |
| return false; |
| } |
| return true; |
| } |
| |
| bool Resolver::ValidateStorageTexture(const ast::StorageTexture* t) { |
| switch (t->access()) { |
| case ast::Access::kUndefined: |
| AddError("storage textures must have access control", t->source()); |
| return false; |
| case ast::Access::kReadWrite: |
| AddError("storage textures only support read-only and write-only access", |
| t->source()); |
| return false; |
| |
| case ast::Access::kRead: |
| case ast::Access::kWrite: |
| break; |
| } |
| |
| if (!IsValidStorageTextureDimension(t->dim())) { |
| AddError("cube dimensions for storage textures are not supported", |
| t->source()); |
| return false; |
| } |
| |
| if (!IsValidStorageTextureImageFormat(t->image_format())) { |
| AddError( |
| "image format must be one of the texel formats specified for storage " |
| "textues in https://gpuweb.github.io/gpuweb/wgsl/#texel-formats", |
| t->source()); |
| return false; |
| } |
| return true; |
| } |
| |
| Resolver::VariableInfo* Resolver::Variable(ast::Variable* var, |
| VariableKind kind, |
| uint32_t index /* = 0 */) { |
| if (variable_to_info_.count(var)) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "Variable " << builder_->Symbols().NameFor(var->symbol()) |
| << " already resolved"; |
| return nullptr; |
| } |
| |
| std::string type_name; |
| const sem::Type* storage_type = nullptr; |
| |
| // If the variable has a declared type, resolve it. |
| if (auto* ty = var->type()) { |
| type_name = ty->FriendlyName(builder_->Symbols()); |
| storage_type = Type(ty); |
| if (!storage_type) { |
| return nullptr; |
| } |
| } |
| |
| std::string rhs_type_name; |
| const sem::Type* rhs_type = nullptr; |
| |
| // Does the variable have a constructor? |
| if (auto* ctor = var->constructor()) { |
| Mark(var->constructor()); |
| if (!Expression(var->constructor())) { |
| return nullptr; |
| } |
| |
| // Fetch the constructor's type |
| rhs_type_name = TypeNameOf(ctor); |
| rhs_type = TypeOf(ctor); |
| if (!rhs_type) { |
| return nullptr; |
| } |
| |
| // If the variable has no declared type, infer it from the RHS |
| if (!storage_type) { |
| if (!var->is_const() && kind == VariableKind::kGlobal) { |
| AddError("global var declaration must specify a type", var->source()); |
| return nullptr; |
| } |
| |
| type_name = rhs_type_name; |
| storage_type = rhs_type->UnwrapRef(); // Implicit load of RHS |
| } |
| } else if (var->is_const() && kind != VariableKind::kParameter && |
| !ast::HasDecoration<ast::OverrideDecoration>(var->decorations())) { |
| AddError("let declaration must have an initializer", var->source()); |
| return nullptr; |
| } else if (!var->type()) { |
| AddError( |
| (kind == VariableKind::kGlobal) |
| ? "module scope var declaration requires a type and initializer" |
| : "function scope var declaration requires a type or initializer", |
| var->source()); |
| return nullptr; |
| } |
| |
| if (!storage_type) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "failed to determine storage type for variable '" + |
| builder_->Symbols().NameFor(var->symbol()) + "'\n" |
| << "Source: " << var->source(); |
| return nullptr; |
| } |
| |
| auto storage_class = var->declared_storage_class(); |
| if (storage_class == ast::StorageClass::kNone && !var->is_const()) { |
| // No declared storage class. Infer from usage / type. |
| if (kind == VariableKind::kLocal) { |
| storage_class = ast::StorageClass::kFunction; |
| } else if (storage_type->UnwrapRef()->is_handle()) { |
| // https://gpuweb.github.io/gpuweb/wgsl/#module-scope-variables |
| // If the store type is a texture type or a sampler type, then the |
| // variable declaration must not have a storage class decoration. The |
| // storage class will always be handle. |
| storage_class = ast::StorageClass::kUniformConstant; |
| } |
| } |
| |
| auto access = var->declared_access(); |
| if (access == ast::Access::kUndefined) { |
| access = DefaultAccessForStorageClass(storage_class); |
| } |
| |
| auto* type = storage_type; |
| if (!var->is_const()) { |
| // Variable declaration. Unlike `let`, `var` has storage. |
| // Variables are always of a reference type to the declared storage type. |
| type = |
| builder_->create<sem::Reference>(storage_type, storage_class, access); |
| } |
| |
| if (rhs_type && |
| !ValidateVariableConstructor(var, storage_class, storage_type, type_name, |
| rhs_type, rhs_type_name)) { |
| return nullptr; |
| } |
| |
| auto* info = |
| variable_infos_.Create(var, const_cast<sem::Type*>(type), type_name, |
| storage_class, access, kind, index); |
| variable_to_info_.emplace(var, info); |
| |
| return info; |
| } |
| |
| ast::Access Resolver::DefaultAccessForStorageClass( |
| ast::StorageClass storage_class) { |
| // https://gpuweb.github.io/gpuweb/wgsl/#storage-class |
| switch (storage_class) { |
| case ast::StorageClass::kStorage: |
| case ast::StorageClass::kUniform: |
| case ast::StorageClass::kUniformConstant: |
| return ast::Access::kRead; |
| default: |
| break; |
| } |
| return ast::Access::kReadWrite; |
| } |
| |
| bool Resolver::ValidateVariableConstructor(const ast::Variable* var, |
| ast::StorageClass storage_class, |
| const sem::Type* storage_type, |
| const std::string& type_name, |
| const sem::Type* rhs_type, |
| const std::string& rhs_type_name) { |
| auto* value_type = rhs_type->UnwrapRef(); // Implicit load of RHS |
| |
| // Value type has to match storage type |
| if (storage_type != value_type) { |
| std::string decl = var->is_const() ? "let" : "var"; |
| AddError("cannot initialize " + decl + " of type '" + type_name + |
| "' with value of type '" + rhs_type_name + "'", |
| var->source()); |
| return false; |
| } |
| |
| if (!var->is_const()) { |
| switch (storage_class) { |
| case ast::StorageClass::kPrivate: |
| case ast::StorageClass::kFunction: |
| break; // Allowed an initializer |
| default: |
| // https://gpuweb.github.io/gpuweb/wgsl/#var-and-let |
| // Optionally has an initializer expression, if the variable is in the |
| // private or function storage classes. |
| AddError("var of storage class '" + |
| std::string(ast::str(storage_class)) + |
| "' cannot have an initializer. var initializers are only " |
| "supported for the storage classes " |
| "'private' and 'function'", |
| var->source()); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool Resolver::GlobalVariable(ast::Variable* var) { |
| if (!ValidateNoDuplicateDefinition(var->symbol(), var->source(), |
| /* check_global_scope_only */ true)) { |
| return false; |
| } |
| |
| auto* info = Variable(var, VariableKind::kGlobal); |
| if (!info) { |
| return false; |
| } |
| variable_stack_.set_global(var->symbol(), info); |
| |
| if (!var->is_const() && info->storage_class == ast::StorageClass::kNone) { |
| AddError("global variables must have a storage class", var->source()); |
| return false; |
| } |
| if (var->is_const() && !(info->storage_class == ast::StorageClass::kNone)) { |
| AddError("global constants shouldn't have a storage class", var->source()); |
| return false; |
| } |
| |
| for (auto* deco : var->decorations()) { |
| Mark(deco); |
| |
| if (auto* override_deco = deco->As<ast::OverrideDecoration>()) { |
| // Track the constant IDs that are specified in the shader. |
| if (override_deco->HasValue()) { |
| constant_ids_.emplace(override_deco->value(), info); |
| } |
| } |
| } |
| |
| if (!ValidateNoDuplicateDecorations(var->decorations())) { |
| return false; |
| } |
| |
| if (auto bp = var->binding_point()) { |
| info->binding_point = {bp.group->value(), bp.binding->value()}; |
| } |
| |
| if (!ValidateGlobalVariable(info)) { |
| return false; |
| } |
| |
| if (!ApplyStorageClassUsageToType( |
| info->storage_class, const_cast<sem::Type*>(info->type->UnwrapRef()), |
| var->source())) { |
| AddNote("while instantiating variable " + |
| builder_->Symbols().NameFor(var->symbol()), |
| var->source()); |
| return false; |
| } |
| |
| // TODO(bclayton): Call this at the end of resolve on all uniform and storage |
| // referenced structs |
| if (!ValidateStorageClassLayout(info)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool Resolver::ValidateStorageClassLayout(const sem::Struct* str, |
| ast::StorageClass sc) { |
| // https://gpuweb.github.io/gpuweb/wgsl/#storage-class-layout-constraints |
| |
| auto is_uniform_struct_or_array = [sc](const sem::Type* ty) { |
| return sc == ast::StorageClass::kUniform && |
| ty->IsAnyOf<sem::Array, sem::Struct>(); |
| }; |
| |
| auto is_uniform_struct = [sc](const sem::Type* ty) { |
| return sc == ast::StorageClass::kUniform && ty->Is<sem::Struct>(); |
| }; |
| |
| auto required_alignment_of = [&](const sem::Type* ty) { |
| uint32_t actual_align = ty->Align(); |
| uint32_t required_align = actual_align; |
| if (is_uniform_struct_or_array(ty)) { |
| required_align = utils::RoundUp(16u, actual_align); |
| } |
| return required_align; |
| }; |
| |
| auto member_name_of = [this](const sem::StructMember* sm) { |
| return builder_->Symbols().NameFor(sm->Declaration()->symbol()); |
| }; |
| |
| auto type_name_of = [this](const sem::StructMember* sm) { |
| return sm->Declaration()->type()->FriendlyName(builder_->Symbols()); |
| }; |
| |
| // TODO(amaiorano): Output struct and member decorations so that this output |
| // can be copied verbatim back into source |
| auto get_struct_layout_string = [&](const sem::Struct* st) -> std::string { |
| std::stringstream ss; |
| |
| if (st->Members().empty()) { |
| TINT_ICE(Resolver, diagnostics_) << "Validation should have ensured that " |
| "structs have at least one member"; |
| return {}; |
| } |
| const auto* const last_member = st->Members().back(); |
| const uint32_t last_member_struct_padding_offset = |
| last_member->Offset() + last_member->Size(); |
| |
| // Compute max widths to align output |
| const auto offset_w = |
| static_cast<int>(::log10(last_member_struct_padding_offset)) + 1; |
| const auto size_w = static_cast<int>(::log10(st->Size())) + 1; |
| const auto align_w = static_cast<int>(::log10(st->Align())) + 1; |
| |
| auto print_struct_begin_line = [&](size_t align, size_t size, |
| std::string struct_name) { |
| ss << "/* " << std::setw(offset_w) << " " |
| << "align(" << std::setw(align_w) << align << ") size(" |
| << std::setw(size_w) << size << ") */ struct " << struct_name |
| << " {\n"; |
| }; |
| |
| auto print_struct_end_line = [&]() { |
| ss << "/* " |
| << std::setw(offset_w + size_w + align_w) << " " |
| << "*/ };"; |
| }; |
| |
| auto print_member_line = [&](size_t offset, size_t align, size_t size, |
| std::string s) { |
| ss << "/* offset(" << std::setw(offset_w) << offset << ") align(" |
| << std::setw(align_w) << align << ") size(" << std::setw(size_w) |
| << size << ") */ " << s << ";\n"; |
| }; |
| |
| print_struct_begin_line(st->Align(), st->Size(), |
| st->FriendlyName(builder_->Symbols())); |
| |
| for (size_t i = 0; i < st->Members().size(); ++i) { |
| auto* const m = st->Members()[i]; |
| |
| // Output field alignment padding, if any |
| auto* const prev_member = (i == 0) ? nullptr : str->Members()[i - 1]; |
| if (prev_member) { |
| uint32_t padding = |
| m->Offset() - (prev_member->Offset() + prev_member->Size()); |
| if (padding > 0) { |
| size_t padding_offset = m->Offset() - padding; |
| print_member_line(padding_offset, 1, padding, |
| "// -- implicit field alignment padding --"); |
| } |
| } |
| |
| // Output member |
| std::string member_name = member_name_of(m); |
| print_member_line(m->Offset(), m->Align(), m->Size(), |
| member_name_of(m) + " : " + type_name_of(m)); |
| } |
| |
| // Output struct size padding, if any |
| uint32_t struct_padding = st->Size() - last_member_struct_padding_offset; |
| if (struct_padding > 0) { |
| print_member_line(last_member_struct_padding_offset, 1, struct_padding, |
| "// -- implicit struct size padding --"); |
| } |
| |
| print_struct_end_line(); |
| |
| return ss.str(); |
| }; |
| |
| if (!ast::IsHostShareable(sc)) { |
| return true; |
| } |
| |
| for (size_t i = 0; i < str->Members().size(); ++i) { |
| auto* const m = str->Members()[i]; |
| uint32_t required_align = required_alignment_of(m->Type()); |
| |
| // Validate that member is at a valid byte offset |
| if (m->Offset() % required_align != 0) { |
| AddError("the offset of a struct member of type '" + type_name_of(m) + |
| "' in storage class '" + ast::str(sc) + |
| "' must be a multiple of " + std::to_string(required_align) + |
| " bytes, but '" + member_name_of(m) + |
| "' is currently at offset " + std::to_string(m->Offset()) + |
| ". Consider setting [[align(" + |
| std::to_string(required_align) + ")]] on this member", |
| m->Declaration()->source()); |
| |
| AddNote("see layout of struct:\n" + get_struct_layout_string(str), |
| str->Declaration()->source()); |
| |
| if (auto* member_str = m->Type()->As<sem::Struct>()) { |
| AddNote("and layout of struct member:\n" + |
| get_struct_layout_string(member_str), |
| member_str->Declaration()->source()); |
| } |
| |
| return false; |
| } |
| |
| // For uniform buffers, validate that the number of bytes between the |
| // previous member of type struct and the current is a multiple of 16 bytes. |
| auto* const prev_member = (i == 0) ? nullptr : str->Members()[i - 1]; |
| if (prev_member && is_uniform_struct(prev_member->Type())) { |
| const uint32_t prev_to_curr_offset = m->Offset() - prev_member->Offset(); |
| if (prev_to_curr_offset % 16 != 0) { |
| AddError( |
| "uniform storage requires that the number of bytes between the " |
| "start of the previous member of type struct and the current " |
| "member be a multiple of 16 bytes, but there are currently " + |
| std::to_string(prev_to_curr_offset) + " bytes between '" + |
| member_name_of(prev_member) + "' and '" + member_name_of(m) + |
| "'. Consider setting [[align(16)]] on this member", |
| m->Declaration()->source()); |
| |
| AddNote("see layout of struct:\n" + get_struct_layout_string(str), |
| str->Declaration()->source()); |
| |
| auto* prev_member_str = prev_member->Type()->As<sem::Struct>(); |
| AddNote("and layout of previous member struct:\n" + |
| get_struct_layout_string(prev_member_str), |
| prev_member_str->Declaration()->source()); |
| return false; |
| } |
| } |
| |
| // For uniform buffer array members, validate that array elements are |
| // aligned to 16 bytes |
| if (auto* arr = m->Type()->As<sem::Array>()) { |
| if (sc == ast::StorageClass::kUniform) { |
| // We already validated that this array member is itself aligned to 16 |
| // bytes above, so we only need to validate that stride is a multiple of |
| // 16 bytes. |
| if (arr->Stride() % 16 != 0) { |
| AddError( |
| "uniform storage requires that array elements be aligned to 16 " |
| "bytes, but array stride of '" + |
| member_name_of(m) + "' is currently " + |
| std::to_string(arr->Stride()) + |
| ". Consider setting [[stride(" + |
| std::to_string( |
| utils::RoundUp(required_align, arr->Stride())) + |
| ")]] on the array type", |
| m->Declaration()->type()->source()); |
| AddNote("see layout of struct:\n" + get_struct_layout_string(str), |
| str->Declaration()->source()); |
| return false; |
| } |
| } |
| } |
| |
| // If member is struct, recurse |
| if (auto* str_member = m->Type()->As<sem::Struct>()) { |
| // Cache result of struct + storage class pair |
| if (valid_struct_storage_layouts_.emplace(str_member, sc).second) { |
| if (!ValidateStorageClassLayout(str_member, sc)) { |
| return false; |
| } |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| bool Resolver::ValidateStorageClassLayout(const VariableInfo* info) { |
| if (auto* str = info->type->UnwrapRef()->As<sem::Struct>()) { |
| if (!ValidateStorageClassLayout(str, info->storage_class)) { |
| AddNote("see declaration of variable", info->declaration->source()); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool Resolver::ValidateGlobalVariable(const VariableInfo* info) { |
| if (!ValidateNoDuplicateDecorations(info->declaration->decorations())) { |
| return false; |
| } |
| |
| for (auto* deco : info->declaration->decorations()) { |
| if (info->declaration->is_const()) { |
| if (auto* override_deco = deco->As<ast::OverrideDecoration>()) { |
| if (override_deco->HasValue()) { |
| uint32_t id = override_deco->value(); |
| auto itr = constant_ids_.find(id); |
| if (itr != constant_ids_.end() && itr->second != info) { |
| AddError("pipeline constant IDs must be unique", deco->source()); |
| AddNote("a pipeline constant with an ID of " + std::to_string(id) + |
| " was previously declared " |
| "here:", |
| ast::GetDecoration<ast::OverrideDecoration>( |
| itr->second->declaration->decorations()) |
| ->source()); |
| return false; |
| } |
| if (id > 65535) { |
| AddError("pipeline constant IDs must be between 0 and 65535", |
| deco->source()); |
| return false; |
| } |
| } |
| } else { |
| AddError("decoration is not valid for constants", deco->source()); |
| return false; |
| } |
| } else { |
| bool is_shader_io_decoration = |
| deco->IsAnyOf<ast::BuiltinDecoration, ast::InterpolateDecoration, |
| ast::InvariantDecoration, ast::LocationDecoration>(); |
| bool has_io_storage_class = |
| info->storage_class == ast::StorageClass::kInput || |
| info->storage_class == ast::StorageClass::kOutput; |
| if (!(deco->IsAnyOf<ast::BindingDecoration, ast::GroupDecoration, |
| ast::InternalDecoration>()) && |
| (!is_shader_io_decoration || !has_io_storage_class)) { |
| AddError("decoration is not valid for variables", deco->source()); |
| return false; |
| } |
| } |
| } |
| |
| auto binding_point = info->declaration->binding_point(); |
| switch (info->storage_class) { |
| case ast::StorageClass::kUniform: |
| case ast::StorageClass::kStorage: |
| case ast::StorageClass::kUniformConstant: { |
| // https://gpuweb.github.io/gpuweb/wgsl/#resource-interface |
| // Each resource variable must be declared with both group and binding |
| // attributes. |
| if (!binding_point) { |
| AddError( |
| "resource variables require [[group]] and [[binding]] " |
| "decorations", |
| info->declaration->source()); |
| return false; |
| } |
| break; |
| } |
| default: |
| if (binding_point.binding || binding_point.group) { |
| // https://gpuweb.github.io/gpuweb/wgsl/#attribute-binding |
| // Must only be applied to a resource variable |
| AddError( |
| "non-resource variables must not have [[group]] or [[binding]] " |
| "decorations", |
| info->declaration->source()); |
| return false; |
| } |
| } |
| |
| // https://gpuweb.github.io/gpuweb/wgsl/#variable-declaration |
| // The access mode always has a default, and except for variables in the |
| // storage storage class, must not be written. |
| if (info->storage_class != ast::StorageClass::kStorage && |
| info->declaration->declared_access() != ast::Access::kUndefined) { |
| AddError( |
| "only variables in <storage> storage class may declare an access mode", |
| info->declaration->source()); |
| return false; |
| } |
| |
| switch (info->storage_class) { |
| case ast::StorageClass::kStorage: { |
| // https://gpuweb.github.io/gpuweb/wgsl/#module-scope-variables |
| // A variable in the storage storage class is a storage buffer variable. |
| // Its store type must be a host-shareable structure type with block |
| // attribute, satisfying the storage class constraints. |
| |
| auto* str = info->type->UnwrapRef()->As<sem::Struct>(); |
| |
| if (!str) { |
| AddError( |
| "variables declared in the <storage> storage class must be of a " |
| "structure type", |
| info->declaration->source()); |
| return false; |
| } |
| |
| if (!str->IsBlockDecorated()) { |
| AddError( |
| "structure used as a storage buffer must be declared with the " |
| "[[block]] decoration", |
| str->Declaration()->source()); |
| if (info->declaration->source().range.begin.line) { |
| AddNote("structure used as storage buffer here", |
| info->declaration->source()); |
| } |
| return false; |
| } |
| break; |
| } |
| case ast::StorageClass::kUniform: { |
| // https://gpuweb.github.io/gpuweb/wgsl/#module-scope-variables |
| // A variable in the uniform storage class is a uniform buffer variable. |
| // Its store type must be a host-shareable structure type with block |
| // attribute, satisfying the storage class constraints. |
| auto* str = info->type->UnwrapRef()->As<sem::Struct>(); |
| if (!str) { |
| AddError( |
| "variables declared in the <uniform> storage class must be of a " |
| "structure type", |
| info->declaration->source()); |
| return false; |
| } |
| |
| if (!str->IsBlockDecorated()) { |
| AddError( |
| "structure used as a uniform buffer must be declared with the " |
| "[[block]] decoration", |
| str->Declaration()->source()); |
| if (info->declaration->source().range.begin.line) { |
| AddNote("structure used as uniform buffer here", |
| info->declaration->source()); |
| } |
| return false; |
| } |
| |
| for (auto* member : str->Members()) { |
| if (auto* arr = member->Type()->As<sem::Array>()) { |
| if (arr->IsRuntimeSized()) { |
| AddError( |
| "structure containing a runtime sized array " |
| "cannot be used as a uniform buffer", |
| info->declaration->source()); |
| AddNote("structure is declared here", str->Declaration()->source()); |
| return false; |
| } |
| } |
| } |
| |
| break; |
| } |
| default: |
| break; |
| } |
| |
| if (!info->declaration->is_const()) { |
| if (!ValidateAtomicVariable(info)) { |
| return false; |
| } |
| } |
| |
| return ValidateVariable(info); |
| } |
| |
| // https://gpuweb.github.io/gpuweb/wgsl/#atomic-types |
| // Atomic types may only be instantiated by variables in the workgroup storage |
| // class or by storage buffer variables with a read_write access mode. |
| bool Resolver::ValidateAtomicVariable(const VariableInfo* info) { |
| auto sc = info->storage_class; |
| auto access = info->access; |
| auto* type = info->type->UnwrapRef(); |
| auto source = info->declaration->type() ? info->declaration->type()->source() |
| : info->declaration->source(); |
| |
| if (type->Is<sem::Atomic>()) { |
| if (sc != ast::StorageClass::kWorkgroup) { |
| AddError( |
| "atomic variables must have <storage> or <workgroup> storage class", |
| source); |
| return false; |
| } |
| } else if (type->IsAnyOf<sem::Struct, sem::Array>()) { |
| auto found = atomic_composite_info_.find(type); |
| if (found != atomic_composite_info_.end()) { |
| if (sc != ast::StorageClass::kStorage && |
| sc != ast::StorageClass::kWorkgroup) { |
| AddError( |
| "atomic variables must have <storage> or <workgroup> storage class", |
| source); |
| AddNote("atomic sub-type of '" + |
| type->FriendlyName(builder_->Symbols()) + |
| "' is declared here", |
| found->second); |
| return false; |
| } else if (sc == ast::StorageClass::kStorage && |
| access != ast::Access::kReadWrite) { |
| AddError( |
| "atomic variables in <storage> storage class must have read_write " |
| "access mode", |
| source); |
| AddNote("atomic sub-type of '" + |
| type->FriendlyName(builder_->Symbols()) + |
| "' is declared here", |
| found->second); |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| bool Resolver::ValidateVariable(const VariableInfo* info) { |
| auto* var = info->declaration; |
| auto* storage_type = info->type->UnwrapRef(); |
| |
| if (!var->is_const() && !IsStorable(storage_type)) { |
| AddError(storage_type->FriendlyName(builder_->Symbols()) + |
| " cannot be used as the type of a var", |
| var->source()); |
| return false; |
| } |
| |
| if (var->is_const() && info->kind != VariableKind::kParameter && |
| !(storage_type->IsConstructible() || storage_type->Is<sem::Pointer>())) { |
| AddError(storage_type->FriendlyName(builder_->Symbols()) + |
| " cannot be used as the type of a let", |
| var->source()); |
| return false; |
| } |
| |
| if (auto* r = storage_type->As<sem::Array>()) { |
| if (r->IsRuntimeSized()) { |
| AddError("runtime arrays may only appear as the last member of a struct", |
| var->source()); |
| return false; |
| } |
| } |
| |
| if (auto* r = storage_type->As<sem::MultisampledTexture>()) { |
| if (r->dim() != ast::TextureDimension::k2d) { |
| AddError("only 2d multisampled textures are supported", var->source()); |
| return false; |
| } |
| |
| if (!r->type()->UnwrapRef()->is_numeric_scalar()) { |
| AddError("texture_multisampled_2d<type>: type must be f32, i32 or u32", |
| var->source()); |
| return false; |
| } |
| } |
| |
| if (storage_type->is_handle() && |
| var->declared_storage_class() != ast::StorageClass::kNone) { |
| // https://gpuweb.github.io/gpuweb/wgsl/#module-scope-variables |
| // If the store type is a texture type or a sampler type, then the |
| // variable declaration must not have a storage class decoration. The |
| // storage class will always be handle. |
| AddError("variables of type '" + info->type_name + |
| "' must not have a storage class", |
| var->source()); |
| return false; |
| } |
| |
| if (IsValidationEnabled(var->decorations(), |
| ast::DisabledValidation::kIgnoreStorageClass) && |
| (var->declared_storage_class() == ast::StorageClass::kInput || |
| var->declared_storage_class() == ast::StorageClass::kOutput)) { |
| AddError("invalid use of input/output storage class", var->source()); |
| return false; |
| } |
| return true; |
| } |
| |
| bool Resolver::ValidateFunctionParameter(const ast::Function* func, |
| const VariableInfo* info) { |
| if (!ValidateVariable(info)) { |
| return false; |
| } |
| |
| for (auto* deco : info->declaration->decorations()) { |
| if (!func->IsEntryPoint() && !deco->Is<ast::InternalDecoration>()) { |
| AddError( |
| "decoration is not valid for non-entry point function parameters", |
| deco->source()); |
| return false; |
| } else if (!deco->IsAnyOf<ast::BuiltinDecoration, ast::InvariantDecoration, |
| ast::LocationDecoration, |
| ast::InterpolateDecoration, |
| ast::InternalDecoration>() && |
| (IsValidationEnabled( |
| info->declaration->decorations(), |
| ast::DisabledValidation::kEntryPointParameter) && |
| IsValidationEnabled( |
| info->declaration->decorations(), |
| ast::DisabledValidation:: |
| kIgnoreConstructibleFunctionParameter))) { |
| AddError("decoration is not valid for function parameters", |
| deco->source()); |
| return false; |
| } |
| } |
| |
| if (auto* ref = info->type->As<sem::Pointer>()) { |
| auto sc = ref->StorageClass(); |
| if (!(sc == ast::StorageClass::kFunction || |
| sc == ast::StorageClass::kPrivate || |
| sc == ast::StorageClass::kWorkgroup)) { |
| std::stringstream ss; |
| ss << "function parameter of pointer type cannot be in '" << sc |
| << "' storage class"; |
| AddError(ss.str(), info->declaration->source()); |
| return false; |
| } |
| } |
| |
| if (IsPlain(info->type)) { |
| if (!info->type->IsConstructible() && |
| IsValidationEnabled( |
| info->declaration->decorations(), |
| ast::DisabledValidation::kIgnoreConstructibleFunctionParameter)) { |
| AddError("store type of function parameter must be a constructible type", |
| info->declaration->source()); |
| return false; |
| } |
| } else if (!info->type->IsAnyOf<sem::Texture, sem::Sampler, sem::Pointer>()) { |
| AddError("store type of function parameter cannot be " + |
| info->type->FriendlyName(builder_->Symbols()), |
| info->declaration->source()); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool Resolver::ValidateBuiltinDecoration(const ast::BuiltinDecoration* deco, |
| const sem::Type* storage_type, |
| const bool is_input, |
| const bool is_struct_member) { |
| auto* type = storage_type->UnwrapRef(); |
| const auto stage = current_function_ |
| ? current_function_->declaration->pipeline_stage() |
| : ast::PipelineStage::kNone; |
| std::stringstream stage_name; |
| stage_name << stage; |
| bool is_stage_mismatch = false; |
| bool is_output = !is_input; |
| switch (deco->value()) { |
| case ast::Builtin::kPosition: |
| if (stage != ast::PipelineStage::kNone && |
| !((is_input && stage == ast::PipelineStage::kFragment) || |
| (is_output && stage == ast::PipelineStage::kVertex))) { |
| is_stage_mismatch = true; |
| } |
| if (!(type->is_float_vector() && type->As<sem::Vector>()->Width() == 4)) { |
| AddError("store type of " + deco_to_str(deco) + " must be 'vec4<f32>'", |
| deco->source()); |
| return false; |
| } |
| break; |
| case ast::Builtin::kGlobalInvocationId: |
| case ast::Builtin::kLocalInvocationId: |
| case ast::Builtin::kNumWorkgroups: |
| case ast::Builtin::kWorkgroupId: |
| if (stage != ast::PipelineStage::kNone && |
| !(stage == ast::PipelineStage::kCompute && is_input)) { |
| is_stage_mismatch = true; |
| } |
| if (!(type->is_unsigned_integer_vector() && |
| type->As<sem::Vector>()->Width() == 3)) { |
| AddError("store type of " + deco_to_str(deco) + " must be 'vec3<u32>'", |
| deco->source()); |
| return false; |
| } |
| break; |
| case ast::Builtin::kFragDepth: |
| if (stage != ast::PipelineStage::kNone && |
| !(stage == ast::PipelineStage::kFragment && !is_input)) { |
| is_stage_mismatch = true; |
| } |
| if (!type->Is<sem::F32>()) { |
| AddError("store type of " + deco_to_str(deco) + " must be 'f32'", |
| deco->source()); |
| return false; |
| } |
| break; |
| case ast::Builtin::kFrontFacing: |
| if (stage != ast::PipelineStage::kNone && |
| !(stage == ast::PipelineStage::kFragment && is_input)) { |
| is_stage_mismatch = true; |
| } |
| if (!type->Is<sem::Bool>()) { |
| AddError("store type of " + deco_to_str(deco) + " must be 'bool'", |
| deco->source()); |
| return false; |
| } |
| break; |
| case ast::Builtin::kLocalInvocationIndex: |
| if (stage != ast::PipelineStage::kNone && |
| !(stage == ast::PipelineStage::kCompute && is_input)) { |
| is_stage_mismatch = true; |
| } |
| if (!type->Is<sem::U32>()) { |
| AddError("store type of " + deco_to_str(deco) + " must be 'u32'", |
| deco->source()); |
| return false; |
| } |
| break; |
| case ast::Builtin::kVertexIndex: |
| case ast::Builtin::kInstanceIndex: |
| if (stage != ast::PipelineStage::kNone && |
| !(stage == ast::PipelineStage::kVertex && is_input)) { |
| is_stage_mismatch = true; |
| } |
| if (!type->Is<sem::U32>()) { |
| AddError("store type of " + deco_to_str(deco) + " must be 'u32'", |
| deco->source()); |
| return false; |
| } |
| break; |
| case ast::Builtin::kSampleMask: |
| if (stage != ast::PipelineStage::kNone && |
| !(stage == ast::PipelineStage::kFragment)) { |
| is_stage_mismatch = true; |
| } |
| if (!type->Is<sem::U32>()) { |
| AddError("store type of " + deco_to_str(deco) + " must be 'u32'", |
| deco->source()); |
| return false; |
| } |
| break; |
| case ast::Builtin::kSampleIndex: |
| if (stage != ast::PipelineStage::kNone && |
| !(stage == ast::PipelineStage::kFragment && is_input)) { |
| is_stage_mismatch = true; |
| } |
| if (!type->Is<sem::U32>()) { |
| AddError("store type of " + deco_to_str(deco) + " must be 'u32'", |
| deco->source()); |
| return false; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| // ignore builtin attribute on struct members to facillate data movement |
| // between stages |
| if (!is_struct_member) { |
| if (is_stage_mismatch) { |
| AddError(deco_to_str(deco) + " cannot be used in " + |
| (is_input ? "input of " : "output of ") + stage_name.str() + |
| " pipeline stage", |
| deco->source()); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool Resolver::ValidateInterpolateDecoration( |
| const ast::InterpolateDecoration* deco, |
| const sem::Type* storage_type) { |
| auto* type = storage_type->UnwrapRef(); |
| |
| if (!type->is_float_scalar_or_vector()) { |
| AddError( |
| "store type of interpolate attribute must be floating point scalar or " |
| "vector", |
| deco->source()); |
| return false; |
| } |
| |
| if (deco->type() == ast::InterpolationType::kFlat && |
| deco->sampling() != ast::InterpolationSampling::kNone) { |
| AddError("flat interpolation attribute must not have a sampling parameter", |
| deco->source()); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool Resolver::ValidateFunction(const ast::Function* func, |
| const FunctionInfo* info) { |
| if (!ValidateNoDuplicateDefinition(func->symbol(), func->source(), |
| /* check_global_scope_only */ true)) { |
| return false; |
| } |
| |
| auto workgroup_deco_count = 0; |
| for (auto* deco : func->decorations()) { |
| if (deco->Is<ast::WorkgroupDecoration>()) { |
| workgroup_deco_count++; |
| if (func->pipeline_stage() != ast::PipelineStage::kCompute) { |
| AddError( |
| "the workgroup_size attribute is only valid for compute stages", |
| deco->source()); |
| return false; |
| } |
| } else if (!deco->IsAnyOf<ast::StageDecoration, |
| ast::InternalDecoration>()) { |
| AddError("decoration is not valid for functions", deco->source()); |
| return false; |
| } |
| } |
| |
| if (func->params().size() > 255) { |
| AddError("functions may declare at most 255 parameters", func->source()); |
| return false; |
| } |
| |
| for (auto* param : func->params()) { |
| if (!ValidateFunctionParameter(func, variable_to_info_.at(param))) { |
| return false; |
| } |
| } |
| |
| if (!info->return_type->Is<sem::Void>()) { |
| if (!info->return_type->IsConstructible()) { |
| AddError("function return type must be a constructible type", |
| func->return_type()->source()); |
| return false; |
| } |
| |
| if (func->body()) { |
| if (!func->get_last_statement() || |
| !func->get_last_statement()->Is<ast::ReturnStatement>()) { |
| AddError("non-void function must end with a return statement", |
| func->source()); |
| return false; |
| } |
| } else if (IsValidationEnabled( |
| func->decorations(), |
| ast::DisabledValidation::kFunctionHasNoBody)) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "Function " << builder_->Symbols().NameFor(func->symbol()) |
| << " has no body"; |
| } |
| |
| for (auto* deco : func->return_type_decorations()) { |
| if (!func->IsEntryPoint()) { |
| AddError( |
| "decoration is not valid for non-entry point function return types", |
| deco->source()); |
| return false; |
| } |
| if (!deco->IsAnyOf<ast::BuiltinDecoration, ast::InternalDecoration, |
| ast::LocationDecoration, ast::InterpolateDecoration, |
| ast::InvariantDecoration>() && |
| (IsValidationEnabled(info->declaration->decorations(), |
| ast::DisabledValidation::kEntryPointParameter) && |
| IsValidationEnabled(info->declaration->decorations(), |
| ast::DisabledValidation:: |
| kIgnoreConstructibleFunctionParameter))) { |
| AddError("decoration is not valid for entry point return types", |
| deco->source()); |
| return false; |
| } |
| } |
| } |
| |
| if (func->IsEntryPoint()) { |
| if (!ValidateEntryPoint(func, info)) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool Resolver::ValidateEntryPoint(const ast::Function* func, |
| const FunctionInfo* info) { |
| // Use a lambda to validate the entry point decorations for a type. |
| // Persistent state is used to track which builtins and locations have |
| // already been seen, in order to catch conflicts. |
| // TODO(jrprice): This state could be stored in FunctionInfo instead, and |
| // then passed to sem::Function since it would be useful there too. |
| std::unordered_set<ast::Builtin> builtins; |
| std::unordered_set<uint32_t> locations; |
| enum class ParamOrRetType { |
| kParameter, |
| kReturnType, |
| }; |
| |
| // Inner lambda that is applied to a type and all of its members. |
| auto validate_entry_point_decorations_inner = |
| [&](const ast::DecorationList& decos, sem::Type* ty, Source source, |
| ParamOrRetType param_or_ret, bool is_struct_member) { |
| // Scan decorations for pipeline IO attributes. |
| // Check for overlap with attributes that have been seen previously. |
| ast::Decoration* pipeline_io_attribute = nullptr; |
| ast::InvariantDecoration* invariant_attribute = nullptr; |
| for (auto* deco : decos) { |
| auto is_invalid_compute_shader_decoration = false; |
| if (auto* builtin = deco->As<ast::BuiltinDecoration>()) { |
| if (pipeline_io_attribute) { |
| AddError("multiple entry point IO attributes", deco->source()); |
| AddNote( |
| "previously consumed " + deco_to_str(pipeline_io_attribute), |
| pipeline_io_attribute->source()); |
| return false; |
| } |
| pipeline_io_attribute = deco; |
| |
| if (builtins.count(builtin->value())) { |
| AddError( |
| deco_to_str(builtin) + |
| " attribute appears multiple times as pipeline " + |
| (param_or_ret == ParamOrRetType::kParameter ? "input" |
| : "output"), |
| func->source()); |
| return false; |
| } |
| |
| if (!ValidateBuiltinDecoration( |
| builtin, ty, |
| /* is_input */ param_or_ret == ParamOrRetType::kParameter, |
| /* is_struct_member */ is_struct_member)) { |
| return false; |
| } |
| builtins.emplace(builtin->value()); |
| } else if (auto* location = deco->As<ast::LocationDecoration>()) { |
| if (pipeline_io_attribute) { |
| AddError("multiple entry point IO attributes", deco->source()); |
| AddNote( |
| "previously consumed " + deco_to_str(pipeline_io_attribute), |
| pipeline_io_attribute->source()); |
| return false; |
| } |
| pipeline_io_attribute = deco; |
| |
| bool is_input = param_or_ret == ParamOrRetType::kParameter; |
| if (!ValidateLocationDecoration(location, ty, locations, source, |
| is_input)) { |
| return false; |
| } |
| } else if (auto* interpolate = |
| deco->As<ast::InterpolateDecoration>()) { |
| if (func->pipeline_stage() == ast::PipelineStage::kCompute) { |
| is_invalid_compute_shader_decoration = true; |
| } else if (!ValidateInterpolateDecoration(interpolate, ty)) { |
| return false; |
| } |
| } else if (auto* invariant = deco->As<ast::InvariantDecoration>()) { |
| if (func->pipeline_stage() == ast::PipelineStage::kCompute) { |
| is_invalid_compute_shader_decoration = true; |
| } |
| invariant_attribute = invariant; |
| } |
| if (is_invalid_compute_shader_decoration) { |
| std::string input_or_output = |
| param_or_ret == ParamOrRetType::kParameter ? "inputs" |
| : "output"; |
| AddError( |
| "decoration is not valid for compute shader " + input_or_output, |
| deco->source()); |
| return false; |
| } |
| } |
| |
| if (IsValidationEnabled( |
| decos, ast::DisabledValidation::kEntryPointParameter)) { |
| if (!ty->Is<sem::Struct>() && !pipeline_io_attribute) { |
| std::string err = "missing entry point IO attribute"; |
| if (!is_struct_member) { |
| err += (param_or_ret == ParamOrRetType::kParameter |
| ? " on parameter" |
| : " on return type"); |
| } |
| AddError(err, source); |
| return false; |
| } |
| |
| if (invariant_attribute) { |
| bool has_position = false; |
| if (pipeline_io_attribute) { |
| if (auto* builtin = |
| pipeline_io_attribute->As<ast::BuiltinDecoration>()) { |
| has_position = (builtin->value() == ast::Builtin::kPosition); |
| } |
| } |
| if (!has_position) { |
| AddError( |
| "invariant attribute must only be applied to a position " |
| "builtin", |
| invariant_attribute->source()); |
| return false; |
| } |
| } |
| } |
| return true; |
| }; |
| |
| // Outer lambda for validating the entry point decorations for a type. |
| auto validate_entry_point_decorations = [&](const ast::DecorationList& decos, |
| sem::Type* ty, Source source, |
| ParamOrRetType param_or_ret) { |
| if (!validate_entry_point_decorations_inner(decos, ty, source, param_or_ret, |
| /*is_struct_member*/ false)) { |
| return false; |
| } |
| |
| if (auto* str = ty->As<sem::Struct>()) { |
| for (auto* member : str->Members()) { |
| if (!validate_entry_point_decorations_inner( |
| member->Declaration()->decorations(), member->Type(), |
| member->Declaration()->source(), param_or_ret, |
| /*is_struct_member*/ true)) { |
| AddNote("while analysing entry point '" + |
| builder_->Symbols().NameFor(func->symbol()) + "'", |
| func->source()); |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| }; |
| |
| for (auto* param : info->parameters) { |
| if (!validate_entry_point_decorations( |
| param->declaration->decorations(), param->type, |
| param->declaration->source(), ParamOrRetType::kParameter)) { |
| return false; |
| } |
| } |
| |
| // Clear IO sets after parameter validation. Builtin and location attributes |
| // in return types should be validated independently from those used in |
| // parameters. |
| builtins.clear(); |
| locations.clear(); |
| |
| if (!info->return_type->Is<sem::Void>()) { |
| if (!validate_entry_point_decorations(func->return_type_decorations(), |
| info->return_type, func->source(), |
| ParamOrRetType::kReturnType)) { |
| return false; |
| } |
| } |
| |
| if (func->pipeline_stage() == ast::PipelineStage::kVertex && |
| builtins.count(ast::Builtin::kPosition) == 0) { |
| // Check module-scope variables, as the SPIR-V sanitizer generates these. |
| bool found = false; |
| for (auto* var : info->referenced_module_vars) { |
| if (auto* builtin = ast::GetDecoration<ast::BuiltinDecoration>( |
| var->declaration->decorations())) { |
| if (builtin->value() == ast::Builtin::kPosition) { |
| found = true; |
| break; |
| } |
| } |
| } |
| if (!found) { |
| AddError( |
| "a vertex shader must include the 'position' builtin in its return " |
| "type", |
| func->source()); |
| return false; |
| } |
| } |
| |
| if (func->pipeline_stage() == ast::PipelineStage::kCompute) { |
| if (!ast::HasDecoration<ast::WorkgroupDecoration>(func->decorations())) { |
| AddError( |
| "a compute shader must include 'workgroup_size' in its " |
| "attributes", |
| func->source()); |
| return false; |
| } |
| } |
| |
| // Validate there are no resource variable binding collisions |
| std::unordered_map<sem::BindingPoint, const ast::Variable*> binding_points; |
| for (auto* var_info : info->referenced_module_vars) { |
| if (!var_info->declaration->binding_point()) { |
| continue; |
| } |
| auto bp = var_info->binding_point; |
| auto res = binding_points.emplace(bp, var_info->declaration); |
| if (!res.second && |
| IsValidationEnabled(var_info->declaration->decorations(), |
| ast::DisabledValidation::kBindingPointCollision) && |
| IsValidationEnabled(res.first->second->decorations(), |
| ast::DisabledValidation::kBindingPointCollision)) { |
| // https://gpuweb.github.io/gpuweb/wgsl/#resource-interface |
| // Bindings must not alias within a shader stage: two different |
| // variables in the resource interface of a given shader must not have |
| // the same group and binding values, when considered as a pair of |
| // values. |
| auto func_name = builder_->Symbols().NameFor(info->declaration->symbol()); |
| AddError("entry point '" + func_name + |
| "' references multiple variables that use the " |
| "same resource binding [[group(" + |
| std::to_string(bp.group) + "), binding(" + |
| std::to_string(bp.binding) + ")]]", |
| var_info->declaration->source()); |
| AddNote("first resource binding usage declared here", |
| res.first->second->source()); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool Resolver::Function(ast::Function* func) { |
| auto* info = function_infos_.Create<FunctionInfo>(func); |
| |
| if (func->IsEntryPoint()) { |
| entry_points_.emplace_back(info); |
| } |
| |
| TINT_SCOPED_ASSIGNMENT(current_function_, info); |
| |
| variable_stack_.push_scope(); |
| uint32_t parameter_index = 0; |
| std::unordered_map<Symbol, Source> parameter_names; |
| for (auto* param : func->params()) { |
| Mark(param); |
| |
| { // Check the parameter name is unique for the function |
| auto emplaced = parameter_names.emplace(param->symbol(), param->source()); |
| if (!emplaced.second) { |
| auto name = builder_->Symbols().NameFor(param->symbol()); |
| AddError("redefinition of parameter '" + name + "'", param->source()); |
| AddNote("previous definition is here", emplaced.first->second); |
| return false; |
| } |
| } |
| |
| auto* param_info = |
| Variable(param, VariableKind::kParameter, parameter_index++); |
| if (!param_info) { |
| return false; |
| } |
| |
| for (auto* deco : param->decorations()) { |
| Mark(deco); |
| } |
| if (!ValidateNoDuplicateDecorations(param->decorations())) { |
| return false; |
| } |
| |
| variable_stack_.set(param->symbol(), param_info); |
| info->parameters.emplace_back(param_info); |
| |
| if (!ApplyStorageClassUsageToType(param->declared_storage_class(), |
| param_info->type, param->source())) { |
| AddNote("while instantiating parameter " + |
| builder_->Symbols().NameFor(param->symbol()), |
| param->source()); |
| return false; |
| } |
| |
| if (auto* str = param_info->type->As<sem::Struct>()) { |
| switch (func->pipeline_stage()) { |
| case ast::PipelineStage::kVertex: |
| str->AddUsage(sem::PipelineStageUsage::kVertexInput); |
| break; |
| case ast::PipelineStage::kFragment: |
| str->AddUsage(sem::PipelineStageUsage::kFragmentInput); |
| break; |
| case ast::PipelineStage::kCompute: |
| str->AddUsage(sem::PipelineStageUsage::kComputeInput); |
| break; |
| case ast::PipelineStage::kNone: |
| break; |
| } |
| } |
| } |
| |
| if (auto* ty = func->return_type()) { |
| info->return_type = Type(ty); |
| info->return_type_name = ty->FriendlyName(builder_->Symbols()); |
| if (!info->return_type) { |
| return false; |
| } |
| } else { |
| info->return_type = builder_->create<sem::Void>(); |
| info->return_type_name = |
| info->return_type->FriendlyName(builder_->Symbols()); |
| } |
| |
| if (auto* str = info->return_type->As<sem::Struct>()) { |
| if (!ApplyStorageClassUsageToType(ast::StorageClass::kNone, str, |
| func->source())) { |
| AddNote("while instantiating return type for " + |
| builder_->Symbols().NameFor(func->symbol()), |
| func->source()); |
| return false; |
| } |
| |
| switch (func->pipeline_stage()) { |
| case ast::PipelineStage::kVertex: |
| str->AddUsage(sem::PipelineStageUsage::kVertexOutput); |
| break; |
| case ast::PipelineStage::kFragment: |
| str->AddUsage(sem::PipelineStageUsage::kFragmentOutput); |
| break; |
| case ast::PipelineStage::kCompute: |
| str->AddUsage(sem::PipelineStageUsage::kComputeOutput); |
| break; |
| case ast::PipelineStage::kNone: |
| break; |
| } |
| } |
| |
| if (func->body()) { |
| Mark(func->body()); |
| if (current_compound_statement_) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "Resolver::Function() called with a current compound statement"; |
| return false; |
| } |
| auto* sem_block = builder_->create<sem::FunctionBlockStatement>(func); |
| builder_->Sem().Add(func->body(), sem_block); |
| if (!Scope(sem_block, [&] { return Statements(func->body()->list()); })) { |
| return false; |
| } |
| } |
| variable_stack_.pop_scope(); |
| |
| for (auto* deco : func->decorations()) { |
| Mark(deco); |
| } |
| if (!ValidateNoDuplicateDecorations(func->decorations())) { |
| return false; |
| } |
| |
| for (auto* deco : func->return_type_decorations()) { |
| Mark(deco); |
| } |
| if (!ValidateNoDuplicateDecorations(func->return_type_decorations())) { |
| return false; |
| } |
| |
| // Set work-group size defaults. |
| for (int i = 0; i < 3; i++) { |
| info->workgroup_size[i].value = 1; |
| info->workgroup_size[i].overridable_const = nullptr; |
| } |
| |
| if (auto* workgroup = |
| ast::GetDecoration<ast::WorkgroupDecoration>(func->decorations())) { |
| auto values = workgroup->values(); |
| auto any_i32 = false; |
| auto any_u32 = false; |
| for (int i = 0; i < 3; i++) { |
| // Each argument to this decoration can either be a literal, an |
| // identifier for a module-scope constants, or nullptr if not specified. |
| |
| auto* expr = values[i]; |
| if (!expr) { |
| // Not specified, just use the default. |
| continue; |
| } |
| |
| Mark(expr); |
| if (!Expression(expr)) { |
| return false; |
| } |
| |
| constexpr const char* kErrBadType = |
| "workgroup_size argument must be either literal or module-scope " |
| "constant of type i32 or u32"; |
| constexpr const char* kErrInconsistentType = |
| "workgroup_size arguments must be of the same type, either i32 " |
| "or u32"; |
| |
| auto* ty = TypeOf(expr); |
| bool is_i32 = ty->UnwrapRef()->Is<sem::I32>(); |
| bool is_u32 = ty->UnwrapRef()->Is<sem::U32>(); |
| if (!is_i32 && !is_u32) { |
| AddError(kErrBadType, expr->source()); |
| return false; |
| } |
| |
| any_i32 = any_i32 || is_i32; |
| any_u32 = any_u32 || is_u32; |
| if (any_i32 && any_u32) { |
| AddError(kErrInconsistentType, expr->source()); |
| return false; |
| } |
| |
| if (auto* ident = expr->As<ast::IdentifierExpression>()) { |
| // We have an identifier of a module-scope constant. |
| VariableInfo* var = nullptr; |
| if (!variable_stack_.get(ident->symbol(), &var) || |
| !(var->declaration->is_const())) { |
| AddError(kErrBadType, expr->source()); |
| return false; |
| } |
| |
| // Capture the constant if an [[override]] attribute is present. |
| if (ast::HasDecoration<ast::OverrideDecoration>( |
| var->declaration->decorations())) { |
| info->workgroup_size[i].overridable_const = var->declaration; |
| } |
| |
| expr = var->declaration->constructor(); |
| if (!expr) { |
| // No constructor means this value must be overriden by the user. |
| info->workgroup_size[i].value = 0; |
| continue; |
| } |
| } else if (!expr->Is<ast::ScalarConstructorExpression>()) { |
| AddError( |
| "workgroup_size argument must be either a literal or a " |
| "module-scope constant", |
| values[i]->source()); |
| return false; |
| } |
| |
| auto val = ConstantValueOf(expr); |
| if (!val) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "could not resolve constant workgroup_size constant value"; |
| continue; |
| } |
| // Validate and set the default value for this dimension. |
| if (is_i32 ? val.Elements()[0].i32 < 1 : val.Elements()[0].u32 < 1) { |
| AddError("workgroup_size argument must be at least 1", |
| values[i]->source()); |
| return false; |
| } |
| |
| info->workgroup_size[i].value = |
| is_i32 ? static_cast<uint32_t>(val.Elements()[0].i32) |
| : val.Elements()[0].u32; |
| } |
| } |
| |
| if (!ValidateFunction(func, info)) { |
| return false; |
| } |
| |
| // Register the function information _after_ processing the statements. This |
| // allows us to catch a function calling itself when determining the call |
| // information as this function doesn't exist until it's finished. |
| symbol_to_function_[func->symbol()] = info; |
| function_to_info_.emplace(func, info); |
| |
| return true; |
| } |
| |
| bool Resolver::Statements(const ast::StatementList& stmts) { |
| for (auto* stmt : stmts) { |
| Mark(stmt); |
| if (!Statement(stmt)) { |
| return false; |
| } |
| } |
| if (!ValidateStatements(stmts)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool Resolver::ValidateStatements(const ast::StatementList& stmts) { |
| bool unreachable = false; |
| for (auto* stmt : stmts) { |
| if (unreachable) { |
| AddError("code is unreachable", stmt->source()); |
| return false; |
| } |
| |
| auto* nested_stmt = stmt; |
| while (auto* block = nested_stmt->As<ast::BlockStatement>()) { |
| if (block->empty()) { |
| break; |
| } |
| nested_stmt = block->statements().back(); |
| } |
| if (nested_stmt->IsAnyOf<ast::ReturnStatement, ast::BreakStatement, |
| ast::ContinueStatement, ast::DiscardStatement>()) { |
| unreachable = true; |
| } |
| } |
| return true; |
| } |
| |
| bool Resolver::Statement(ast::Statement* stmt) { |
| if (stmt->Is<ast::CaseStatement>()) { |
| AddError("case statement can only be used inside a switch statement", |
| stmt->source()); |
| return false; |
| } |
| if (stmt->Is<ast::ElseStatement>()) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "Resolver::Statement() encountered an Else statement. Else " |
| "statements are embedded in If statements, so should never be " |
| "encountered as top-level statements"; |
| return false; |
| } |
| |
| // Compound statements. These create their own sem::CompoundStatement |
| // bindings. |
| if (auto* b = stmt->As<ast::BlockStatement>()) { |
| return BlockStatement(b); |
| } |
| if (auto* l = stmt->As<ast::ForLoopStatement>()) { |
| return ForLoopStatement(l); |
| } |
| if (auto* l = stmt->As<ast::LoopStatement>()) { |
| return LoopStatement(l); |
| } |
| if (auto* i = stmt->As<ast::IfStatement>()) { |
| return IfStatement(i); |
| } |
| if (auto* s = stmt->As<ast::SwitchStatement>()) { |
| return SwitchStatement(s); |
| } |
| |
| // Non-Compound statements |
| sem::Statement* sem_statement = |
| builder_->create<sem::Statement>(stmt, current_compound_statement_); |
| builder_->Sem().Add(stmt, sem_statement); |
| TINT_SCOPED_ASSIGNMENT(current_statement_, sem_statement); |
| if (auto* a = stmt->As<ast::AssignmentStatement>()) { |
| return Assignment(a); |
| } |
| if (stmt->Is<ast::BreakStatement>()) { |
| if (!sem_statement->FindFirstParent<sem::LoopBlockStatement>() && |
| !sem_statement->FindFirstParent<sem::SwitchCaseBlockStatement>()) { |
| AddError("break statement must be in a loop or switch case", |
| stmt->source()); |
| return false; |
| } |
| return true; |
| } |
| if (auto* c = stmt->As<ast::CallStatement>()) { |
| Mark(c->expr()); |
| if (!Expression(c->expr())) { |
| return false; |
| } |
| if (!ValidateCallStatement(c)) { |
| return false; |
| } |
| return true; |
| } |
| if (stmt->Is<ast::ContinueStatement>()) { |
| // Set if we've hit the first continue statement in our parent loop |
| if (auto* block = |
| current_block_->FindFirstParent< |
| sem::LoopBlockStatement, sem::LoopContinuingBlockStatement>()) { |
| if (auto* loop_block = block->As<sem::LoopBlockStatement>()) { |
| if (loop_block->FirstContinue() == size_t(~0)) { |
| const_cast<sem::LoopBlockStatement*>(loop_block) |
| ->SetFirstContinue(loop_block->Decls().size()); |
| } |
| } else { |
| AddError("continuing blocks must not contain a continue statement", |
| stmt->source()); |
| return false; |
| } |
| } else { |
| AddError("continue statement must be in a loop", stmt->source()); |
| return false; |
| } |
| |
| return true; |
| } |
| if (stmt->Is<ast::DiscardStatement>()) { |
| if (auto* continuing = |
| sem_statement |
| ->FindFirstParent<sem::LoopContinuingBlockStatement>()) { |
| AddError("continuing blocks must not contain a discard statement", |
| stmt->source()); |
| if (continuing != sem_statement->Parent()) { |
| AddNote("see continuing block here", |
| continuing->Declaration()->source()); |
| } |
| return false; |
| } |
| return true; |
| } |
| if (stmt->Is<ast::FallthroughStatement>()) { |
| return true; |
| } |
| if (auto* r = stmt->As<ast::ReturnStatement>()) { |
| return Return(r); |
| } |
| if (auto* v = stmt->As<ast::VariableDeclStatement>()) { |
| return VariableDeclStatement(v); |
| } |
| |
| AddError( |
| "unknown statement type for type determination: " + builder_->str(stmt), |
| stmt->source()); |
| return false; |
| } |
| |
| bool Resolver::CaseStatement(ast::CaseStatement* stmt) { |
| auto* sem = builder_->create<sem::SwitchCaseBlockStatement>( |
| stmt->body(), current_compound_statement_); |
| builder_->Sem().Add(stmt, sem); |
| builder_->Sem().Add(stmt->body(), sem); |
| Mark(stmt->body()); |
| for (auto* sel : stmt->selectors()) { |
| Mark(sel); |
| } |
| return Scope(sem, [&] { return Statements(stmt->body()->list()); }); |
| } |
| |
| bool Resolver::IfStatement(ast::IfStatement* stmt) { |
| auto* sem = |
| builder_->create<sem::IfStatement>(stmt, current_compound_statement_); |
| builder_->Sem().Add(stmt, sem); |
| return Scope(sem, [&] { |
| Mark(stmt->condition()); |
| if (!Expression(stmt->condition())) { |
| return false; |
| } |
| |
| auto* cond_type = TypeOf(stmt->condition())->UnwrapRef(); |
| if (!cond_type->Is<sem::Bool>()) { |
| AddError("if statement condition must be bool, got " + |
| cond_type->FriendlyName(builder_->Symbols()), |
| stmt->condition()->source()); |
| return false; |
| } |
| |
| Mark(stmt->body()); |
| auto* body = builder_->create<sem::BlockStatement>( |
| stmt->body(), current_compound_statement_); |
| builder_->Sem().Add(stmt->body(), body); |
| if (!Scope(body, [&] { return Statements(stmt->body()->list()); })) { |
| return false; |
| } |
| |
| for (auto* else_stmt : stmt->else_statements()) { |
| Mark(else_stmt); |
| if (!ElseStatement(else_stmt)) { |
| return false; |
| } |
| } |
| return true; |
| }); |
| } |
| |
| bool Resolver::ElseStatement(ast::ElseStatement* stmt) { |
| auto* sem = |
| builder_->create<sem::ElseStatement>(stmt, current_compound_statement_); |
| builder_->Sem().Add(stmt, sem); |
| return Scope(sem, [&] { |
| if (auto* cond = stmt->condition()) { |
| Mark(cond); |
| if (!Expression(cond)) { |
| return false; |
| } |
| |
| auto* else_cond_type = TypeOf(cond)->UnwrapRef(); |
| if (!else_cond_type->Is<sem::Bool>()) { |
| AddError("else statement condition must be bool, got " + |
| else_cond_type->FriendlyName(builder_->Symbols()), |
| cond->source()); |
| return false; |
| } |
| } |
| |
| Mark(stmt->body()); |
| auto* body = builder_->create<sem::BlockStatement>( |
| stmt->body(), current_compound_statement_); |
| builder_->Sem().Add(stmt->body(), body); |
| return Scope(body, [&] { return Statements(stmt->body()->list()); }); |
| }); |
| } |
| |
| bool Resolver::BlockStatement(ast::BlockStatement* stmt) { |
| auto* sem = builder_->create<sem::BlockStatement>( |
| stmt->As<ast::BlockStatement>(), current_compound_statement_); |
| builder_->Sem().Add(stmt, sem); |
| return Scope(sem, [&] { return Statements(stmt->list()); }); |
| } |
| |
| bool Resolver::LoopStatement(ast::LoopStatement* stmt) { |
| auto* sem = |
| builder_->create<sem::LoopStatement>(stmt, current_compound_statement_); |
| builder_->Sem().Add(stmt, sem); |
| return Scope(sem, [&] { |
| Mark(stmt->body()); |
| |
| auto* body = builder_->create<sem::LoopBlockStatement>( |
| stmt->body(), current_compound_statement_); |
| builder_->Sem().Add(stmt->body(), body); |
| return Scope(body, [&] { |
| if (!Statements(stmt->body()->list())) { |
| return false; |
| } |
| if (stmt->continuing()) { // has_continuing() also checks for empty() |
| Mark(stmt->continuing()); |
| } |
| if (stmt->has_continuing()) { |
| auto* continuing = builder_->create<sem::LoopContinuingBlockStatement>( |
| stmt->continuing(), current_compound_statement_); |
| builder_->Sem().Add(stmt->continuing(), continuing); |
| if (!Scope(continuing, |
| [&] { return Statements(stmt->continuing()->list()); })) { |
| return false; |
| } |
| } |
| return true; |
| }); |
| }); |
| } |
| |
| bool Resolver::ForLoopStatement(ast::ForLoopStatement* stmt) { |
| auto* sem = builder_->create<sem::ForLoopStatement>( |
| stmt, current_compound_statement_); |
| builder_->Sem().Add(stmt, sem); |
| return Scope(sem, [&] { |
| if (auto* initializer = stmt->initializer()) { |
| Mark(initializer); |
| if (!Statement(initializer)) { |
| return false; |
| } |
| } |
| |
| if (auto* condition = stmt->condition()) { |
| Mark(condition); |
| if (!Expression(condition)) { |
| return false; |
| } |
| |
| if (!TypeOf(condition)->UnwrapRef()->Is<sem::Bool>()) { |
| AddError( |
| "for-loop condition must be bool, got " + TypeNameOf(condition), |
| condition->source()); |
| return false; |
| } |
| } |
| |
| if (auto* continuing = stmt->continuing()) { |
| Mark(continuing); |
| if (!Statement(continuing)) { |
| return false; |
| } |
| } |
| |
| Mark(stmt->body()); |
| |
| auto* body = builder_->create<sem::LoopBlockStatement>( |
| stmt->body(), current_compound_statement_); |
| builder_->Sem().Add(stmt->body(), body); |
| return Scope(body, [&] { return Statements(stmt->body()->statements()); }); |
| }); |
| } |
| |
| bool Resolver::TraverseExpressions(ast::Expression* root, |
| std::vector<ast::Expression*>& out) { |
| std::vector<ast::Expression*> to_visit; |
| to_visit.emplace_back(root); |
| |
| auto add = [&](ast::Expression* e) { |
| Mark(e); |
| to_visit.emplace_back(e); |
| }; |
| |
| while (!to_visit.empty()) { |
| auto* expr = to_visit.back(); |
| to_visit.pop_back(); |
| |
| out.emplace_back(expr); |
| |
| if (auto* array = expr->As<ast::ArrayAccessorExpression>()) { |
| add(array->array()); |
| add(array->idx_expr()); |
| } else if (auto* bin_op = expr->As<ast::BinaryExpression>()) { |
| add(bin_op->lhs()); |
| add(bin_op->rhs()); |
| } else if (auto* bitcast = expr->As<ast::BitcastExpression>()) { |
| add(bitcast->expr()); |
| } else if (auto* call = expr->As<ast::CallExpression>()) { |
| for (auto* arg : call->params()) { |
| add(arg); |
| } |
| } else if (auto* type_ctor = expr->As<ast::TypeConstructorExpression>()) { |
| for (auto* value : type_ctor->values()) { |
| add(value); |
| } |
| } else if (auto* member = expr->As<ast::MemberAccessorExpression>()) { |
| add(member->structure()); |
| } else if (auto* unary = expr->As<ast::UnaryOpExpression>()) { |
| add(unary->expr()); |
| } else if (expr->IsAnyOf<ast::ScalarConstructorExpression, |
| ast::IdentifierExpression>()) { |
| // Leaf expression |
| } else { |
| TINT_ICE(Resolver, diagnostics_) |
| << "unhandled expression type: " << expr->TypeInfo().name; |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool Resolver::Expression(ast::Expression* root) { |
| std::vector<ast::Expression*> sorted; |
| if (!TraverseExpressions(root, sorted)) { |
| return false; |
| } |
| |
| for (auto* expr : utils::Reverse(sorted)) { |
| bool ok = false; |
| if (auto* array = expr->As<ast::ArrayAccessorExpression>()) { |
| ok = ArrayAccessor(array); |
| } else if (auto* bin_op = expr->As<ast::BinaryExpression>()) { |
| ok = Binary(bin_op); |
| } else if (auto* bitcast = expr->As<ast::BitcastExpression>()) { |
| ok = Bitcast(bitcast); |
| } else if (auto* call = expr->As<ast::CallExpression>()) { |
| ok = Call(call); |
| } else if (auto* ctor = expr->As<ast::ConstructorExpression>()) { |
| ok = Constructor(ctor); |
| } else if (auto* ident = expr->As<ast::IdentifierExpression>()) { |
| ok = Identifier(ident); |
| } else if (auto* member = expr->As<ast::MemberAccessorExpression>()) { |
| ok = MemberAccessor(member); |
| } else if (auto* unary = expr->As<ast::UnaryOpExpression>()) { |
| ok = UnaryOp(unary); |
| } else { |
| TINT_ICE(Resolver, diagnostics_) |
| << "unhandled expression type: " << expr->TypeInfo().name; |
| return false; |
| } |
| if (!ok) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool Resolver::ArrayAccessor(ast::ArrayAccessorExpression* expr) { |
| auto* idx = expr->idx_expr(); |
| auto* res = TypeOf(expr->array()); |
| auto* parent_type = res->UnwrapRef(); |
| const sem::Type* ret = nullptr; |
| if (auto* arr = parent_type->As<sem::Array>()) { |
| ret = arr->ElemType(); |
| } else if (auto* vec = parent_type->As<sem::Vector>()) { |
| ret = vec->type(); |
| } else if (auto* mat = parent_type->As<sem::Matrix>()) { |
| ret = builder_->create<sem::Vector>(mat->type(), mat->rows()); |
| } else { |
| AddError("cannot index type '" + TypeNameOf(expr->array()) + "'", |
| expr->source()); |
| return false; |
| } |
| |
| if (!TypeOf(idx)->UnwrapRef()->IsAnyOf<sem::I32, sem::U32>()) { |
| AddError("index must be of type 'i32' or 'u32', found: '" + |
| TypeNameOf(idx) + "'", |
| idx->source()); |
| return false; |
| } |
| |
| if (parent_type->Is<sem::Array>() || parent_type->Is<sem::Matrix>()) { |
| if (!res->Is<sem::Reference>()) { |
| // TODO(bclayton): expand this to allow any const_expr expression |
| // https://github.com/gpuweb/gpuweb/issues/1272 |
| auto* scalar = idx->As<ast::ScalarConstructorExpression>(); |
| if (!scalar || !scalar->literal()->As<ast::IntLiteral>()) { |
| AddError("index must be signed or unsigned integer literal", |
| idx->source()); |
| return false; |
| } |
| } |
| } |
| |
| // If we're extracting from a reference, we return a reference. |
| if (auto* ref = res->As<sem::Reference>()) { |
| ret = builder_->create<sem::Reference>(ret, ref->StorageClass(), |
| ref->Access()); |
| } |
| SetExprInfo(expr, ret); |
| |
| return true; |
| } |
| |
| bool Resolver::Bitcast(ast::BitcastExpression* expr) { |
| auto* ty = Type(expr->type()); |
| if (!ty) { |
| return false; |
| } |
| if (ty->Is<sem::Pointer>()) { |
| AddError("cannot cast to a pointer", expr->source()); |
| return false; |
| } |
| SetExprInfo(expr, ty, expr->type()->FriendlyName(builder_->Symbols())); |
| return true; |
| } |
| |
| bool Resolver::Call(ast::CallExpression* call) { |
| Mark(call->func()); |
| auto* ident = call->func(); |
| auto name = builder_->Symbols().NameFor(ident->symbol()); |
| |
| auto intrinsic_type = sem::ParseIntrinsicType(name); |
| if (intrinsic_type != IntrinsicType::kNone) { |
| if (!IntrinsicCall(call, intrinsic_type)) { |
| return false; |
| } |
| } else { |
| if (!FunctionCall(call)) { |
| return false; |
| } |
| } |
| |
| return ValidateCall(call); |
| } |
| |
| bool Resolver::ValidateCall(ast::CallExpression* call) { |
| if (TypeOf(call)->Is<sem::Void>()) { |
| bool is_call_statement = false; |
| if (current_statement_) { |
| if (auto* call_stmt = |
| As<ast::CallStatement>(current_statement_->Declaration())) { |
| if (call_stmt->expr() == call) { |
| is_call_statement = true; |
| } |
| } |
| } |
| if (!is_call_statement) { |
| // https://gpuweb.github.io/gpuweb/wgsl/#function-call-expr |
| // If the called function does not return a value, a function call |
| // statement should be used instead. |
| auto* ident = call->func(); |
| auto name = builder_->Symbols().NameFor(ident->symbol()); |
| // A function call is made to either a user declared function or an |
| // intrinsic. function_calls_ only maps CallExpression to user declared |
| // functions |
| bool is_function = function_calls_.count(call) != 0; |
| AddError((is_function ? "function" : "intrinsic") + std::string(" '") + |
| name + "' does not return a value", |
| call->source()); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool Resolver::ValidateCallStatement(ast::CallStatement* stmt) { |
| const sem::Type* return_type = TypeOf(stmt->expr()); |
| if (!return_type->Is<sem::Void>()) { |
| // https://gpuweb.github.io/gpuweb/wgsl/#function-call-statement |
| // A function call statement executes a function call where the called |
| // function does not return a value. If the called function returns a value, |
| // that value must be consumed either through assignment, evaluation in |
| // another expression or through use of the ignore built-in function (see |
| // § 16.13 Value-steering functions). |
| AddError( |
| "result of called function was not used. If this was intentional wrap " |
| "the function call in ignore()", |
| stmt->source()); |
| return false; |
| } |
| return true; |
| } |
| |
| bool Resolver::IntrinsicCall(ast::CallExpression* call, |
| sem::IntrinsicType intrinsic_type) { |
| std::vector<const sem::Type*> arg_tys; |
| arg_tys.reserve(call->params().size()); |
| for (auto* expr : call->params()) { |
| arg_tys.emplace_back(TypeOf(expr)); |
| } |
| |
| auto* result = |
| intrinsic_table_->Lookup(intrinsic_type, arg_tys, call->source()); |
| if (!result) { |
| return false; |
| } |
| |
| if (result->IsDeprecated()) { |
| AddWarning("use of deprecated intrinsic", call->source()); |
| } |
| |
| auto* out = builder_->create<sem::Call>(call, result, current_statement_); |
| builder_->Sem().Add(call, out); |
| SetExprInfo(call, result->ReturnType()); |
| |
| current_function_->intrinsic_calls.emplace_back( |
| IntrinsicCallInfo{call, result}); |
| |
| if (IsTextureIntrinsic(intrinsic_type) && |
| !ValidateTextureIntrinsicFunction(call, out)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool Resolver::ValidateTextureIntrinsicFunction( |
| const ast::CallExpression* ast_call, |
| const sem::Call* sem_call) { |
| auto* intrinsic = sem_call->Target()->As<sem::Intrinsic>(); |
| if (!intrinsic) { |
| return false; |
| } |
| std::string func_name = intrinsic->str(); |
| auto index = |
| sem::IndexOf(intrinsic->Parameters(), sem::ParameterUsage::kOffset); |
| if (index > -1) { |
| auto* param = ast_call->params()[index]; |
| if (param->Is<ast::TypeConstructorExpression>()) { |
| auto values = ConstantValueOf(param); |
| if (!values.IsValid()) { |
| AddError( |
| "'" + func_name + "' offset parameter must be a const_expression", |
| param->source()); |
| return false; |
| } |
| if (!values.Type()->Is<sem::Vector>() || |
| !values.ElementType()->Is<sem::I32>()) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "failed to resolve '" + func_name + "' offset parameter type"; |
| return false; |
| } |
| for (auto offset : values.Elements()) { |
| auto offset_value = offset.i32; |
| if (offset_value < -8 || offset_value > 7) { |
| AddError("each offset component of '" + func_name + |
| "' must be at least -8 and at most 7. " |
| "found: '" + |
| std::to_string(offset_value) + "'", |
| param->source()); |
| return false; |
| } |
| } |
| } else { |
| AddError( |
| "'" + func_name + "' offset parameter must be a const_expression", |
| param->source()); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool Resolver::FunctionCall(const ast::CallExpression* call) { |
| auto* ident = call->func(); |
| auto name = builder_->Symbols().NameFor(ident->symbol()); |
| |
| auto callee_func_it = symbol_to_function_.find(ident->symbol()); |
| if (callee_func_it == symbol_to_function_.end()) { |
| if (current_function_ && |
| current_function_->declaration->symbol() == ident->symbol()) { |
| AddError("recursion is not permitted. '" + name + |
| "' attempted to call itself.", |
| call->source()); |
| } else { |
| AddError("unable to find called function: " + name, call->source()); |
| } |
| return false; |
| } |
| auto* callee_func = callee_func_it->second; |
| |
| if (current_function_) { |
| callee_func->callsites.push_back(call); |
| |
| // Note: Requires called functions to be resolved first. |
| // This is currently guaranteed as functions must be declared before |
| // use. |
| current_function_->transitive_calls.add(callee_func); |
| for (auto* transitive_call : callee_func->transitive_calls) { |
| current_function_->transitive_calls.add(transitive_call); |
| } |
| |
| // We inherit any referenced variables from the callee. |
| for (auto* var : callee_func->referenced_module_vars) { |
| set_referenced_from_function_if_needed(var, false); |
| } |
| } |
| |
| function_calls_.emplace(call, |
| FunctionCallInfo{callee_func, current_statement_}); |
| SetExprInfo(call, callee_func->return_type, callee_func->return_type_name); |
| |
| if (!ValidateFunctionCall(call, callee_func)) { |
| return false; |
| } |
| return true; |
| } |
| |
| bool Resolver::ValidateFunctionCall(const ast::CallExpression* call, |
| const FunctionInfo* target) { |
| auto* ident = call->func(); |
| auto name = builder_->Symbols().NameFor(ident->symbol()); |
| |
| if (target->declaration->IsEntryPoint()) { |
| // https://www.w3.org/TR/WGSL/#function-restriction |
| // An entry point must never be the target of a function call. |
| AddError("entry point functions cannot be the target of a function call", |
| call->source()); |
| return false; |
| } |
| |
| if (call->params().size() != target->parameters.size()) { |
| bool more = call->params().size() > target->parameters.size(); |
| AddError("too " + (more ? std::string("many") : std::string("few")) + |
| " arguments in call to '" + name + "', expected " + |
| std::to_string(target->parameters.size()) + ", got " + |
| std::to_string(call->params().size()), |
| call->source()); |
| return false; |
| } |
| |
| for (size_t i = 0; i < call->params().size(); ++i) { |
| const VariableInfo* param = target->parameters[i]; |
| const ast::Expression* arg_expr = call->params()[i]; |
| auto* arg_type = TypeOf(arg_expr)->UnwrapRef(); |
| |
| if (param->type != arg_type) { |
| AddError("type mismatch for argument " + std::to_string(i + 1) + |
| " in call to '" + name + "', expected '" + |
| param->type->FriendlyName(builder_->Symbols()) + "', got '" + |
| arg_type->FriendlyName(builder_->Symbols()) + "'", |
| arg_expr->source()); |
| return false; |
| } |
| |
| if (param->declaration->type()->Is<ast::Pointer>()) { |
| auto is_valid = false; |
| if (auto* ident_expr = arg_expr->As<ast::IdentifierExpression>()) { |
| VariableInfo* var; |
| if (!variable_stack_.get(ident_expr->symbol(), &var)) { |
| TINT_ICE(Resolver, diagnostics_) << "failed to resolve identifier"; |
| return false; |
| } |
| if (var->kind == VariableKind::kParameter) { |
| is_valid = true; |
| } |
| } else if (auto* unary = arg_expr->As<ast::UnaryOpExpression>()) { |
| if (unary->op() == ast::UnaryOp::kAddressOf) { |
| if (auto* ident_unary = |
| unary->expr()->As<ast::IdentifierExpression>()) { |
| VariableInfo* var; |
| if (!variable_stack_.get(ident_unary->symbol(), &var)) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "failed to resolve identifier"; |
| return false; |
| } |
| if (var->declaration->is_const()) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "Resolver::FunctionCall() encountered an address-of " |
| "expression of a constant identifier expression"; |
| return false; |
| } |
| is_valid = true; |
| } |
| } |
| } |
| |
| if (!is_valid) { |
| AddError( |
| "expected an address-of expression of a variable identifier " |
| "expression or a function parameter", |
| arg_expr->source()); |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| bool Resolver::Constructor(ast::ConstructorExpression* expr) { |
| if (auto* type_ctor = expr->As<ast::TypeConstructorExpression>()) { |
| auto* type = Type(type_ctor->type()); |
| if (!type) { |
| return false; |
| } |
| |
| auto type_name = type_ctor->type()->FriendlyName(builder_->Symbols()); |
| |
| // Now that the argument types have been determined, make sure that they |
| // obey the constructor type rules laid out in |
| // https://gpuweb.github.io/gpuweb/wgsl.html#type-constructor-expr. |
| bool ok = true; |
| if (auto* vec_type = type->As<sem::Vector>()) { |
| ok = ValidateVectorConstructor(type_ctor, vec_type, type_name); |
| } else if (auto* mat_type = type->As<sem::Matrix>()) { |
| ok = ValidateMatrixConstructor(type_ctor, mat_type, type_name); |
| } else if (type->is_scalar()) { |
| ok = ValidateScalarConstructor(type_ctor, type, type_name); |
| } else if (auto* arr_type = type->As<sem::Array>()) { |
| ok = ValidateArrayConstructor(type_ctor, arr_type); |
| } else if (auto* struct_type = type->As<sem::Struct>()) { |
| ok = ValidateStructureConstructor(type_ctor, struct_type); |
| } else { |
| AddError("type is not constructible", type_ctor->source()); |
| return false; |
| } |
| if (!ok) { |
| return false; |
| } |
| SetExprInfo(expr, type, type_name); |
| return true; |
| } |
| |
| if (auto* scalar_ctor = expr->As<ast::ScalarConstructorExpression>()) { |
| Mark(scalar_ctor->literal()); |
| auto* type = TypeOf(scalar_ctor->literal()); |
| if (!type) { |
| return false; |
| } |
| SetExprInfo(expr, type); |
| return true; |
| } |
| |
| TINT_ICE(Resolver, diagnostics_) << "unexpected constructor expression type"; |
| return false; |
| } |
| |
| bool Resolver::ValidateStructureConstructor( |
| const ast::TypeConstructorExpression* ctor, |
| const sem::Struct* struct_type) { |
| if (!struct_type->IsConstructible()) { |
| AddError("struct constructor has non-constructible type", ctor->source()); |
| return false; |
| } |
| |
| if (ctor->values().size() > 0) { |
| if (ctor->values().size() != struct_type->Members().size()) { |
| std::string fm = ctor->values().size() < struct_type->Members().size() |
| ? "few" |
| : "many"; |
| AddError("struct constructor has too " + fm + " inputs: expected " + |
| std::to_string(struct_type->Members().size()) + ", found " + |
| std::to_string(ctor->values().size()), |
| ctor->source()); |
| return false; |
| } |
| for (auto* member : struct_type->Members()) { |
| auto* value = ctor->values()[member->Index()]; |
| if (member->Type() != TypeOf(value)->UnwrapRef()) { |
| AddError( |
| "type in struct constructor does not match struct member type: " |
| "expected '" + |
| member->Type()->FriendlyName(builder_->Symbols()) + |
| "', found '" + TypeNameOf(value) + "'", |
| value->source()); |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| bool Resolver::ValidateArrayConstructor( |
| const ast::TypeConstructorExpression* ctor, |
| const sem::Array* array_type) { |
| auto& values = ctor->values(); |
| auto* elem_type = array_type->ElemType(); |
| for (auto* value : values) { |
| auto* value_type = TypeOf(value)->UnwrapRef(); |
| if (value_type != elem_type) { |
| AddError( |
| "type in array constructor does not match array type: " |
| "expected '" + |
| elem_type->FriendlyName(builder_->Symbols()) + "', found '" + |
| TypeNameOf(value) + "'", |
| value->source()); |
| return false; |
| } |
| } |
| |
| if (array_type->IsRuntimeSized()) { |
| AddError("cannot init a runtime-sized array", ctor->source()); |
| return false; |
| } else if (!elem_type->IsConstructible()) { |
| AddError("array constructor has non-constructible element type", |
| ctor->type()->As<ast::Array>()->type()->source()); |
| return false; |
| } else if (!values.empty() && (values.size() != array_type->Count())) { |
| std::string fm = values.size() < array_type->Count() ? "few" : "many"; |
| AddError("array constructor has too " + fm + " elements: expected " + |
| std::to_string(array_type->Count()) + ", found " + |
| std::to_string(values.size()), |
| ctor->source()); |
| return false; |
| } else if (values.size() > array_type->Count()) { |
| AddError("array constructor has too many elements: expected " + |
| std::to_string(array_type->Count()) + ", found " + |
| std::to_string(values.size()), |
| ctor->source()); |
| return false; |
| } |
| return true; |
| } |
| |
| bool Resolver::ValidateVectorConstructor( |
| const ast::TypeConstructorExpression* ctor, |
| const sem::Vector* vec_type, |
| const std::string& type_name) { |
| auto& values = ctor->values(); |
| auto* elem_type = vec_type->type(); |
| size_t value_cardinality_sum = 0; |
| for (auto* value : values) { |
| auto* value_type = TypeOf(value)->UnwrapRef(); |
| if (value_type->is_scalar()) { |
| if (elem_type != value_type) { |
| AddError( |
| "type in vector constructor does not match vector type: " |
| "expected '" + |
| elem_type->FriendlyName(builder_->Symbols()) + "', found '" + |
| TypeNameOf(value) + "'", |
| value->source()); |
| return false; |
| } |
| |
| value_cardinality_sum++; |
| } else if (auto* value_vec = value_type->As<sem::Vector>()) { |
| auto* value_elem_type = value_vec->type(); |
| // A mismatch of vector type parameter T is only an error if multiple |
| // arguments are present. A single argument constructor constitutes a |
| // type conversion expression. |
| if (elem_type != value_elem_type && values.size() > 1u) { |
| AddError( |
| "type in vector constructor does not match vector type: " |
| "expected '" + |
| elem_type->FriendlyName(builder_->Symbols()) + "', found '" + |
| value_elem_type->FriendlyName(builder_->Symbols()) + "'", |
| value->source()); |
| return false; |
| } |
| |
| value_cardinality_sum += value_vec->Width(); |
| } else { |
| // A vector constructor can only accept vectors and scalars. |
| AddError("expected vector or scalar type in vector constructor; found: " + |
| value_type->FriendlyName(builder_->Symbols()), |
| value->source()); |
| return false; |
| } |
| } |
| |
| // A correct vector constructor must either be a zero-value expression, |
| // a single-value initializer (splat) expression, or the number of components |
| // of all constructor arguments must add up to the vector cardinality. |
| if (value_cardinality_sum > 1 && value_cardinality_sum != vec_type->Width()) { |
| if (values.empty()) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "constructor arguments expected to be non-empty!"; |
| } |
| const Source& values_start = values[0]->source(); |
| const Source& values_end = values[values.size() - 1]->source(); |
| AddError("attempted to construct '" + type_name + "' with " + |
| std::to_string(value_cardinality_sum) + " component(s)", |
| Source::Combine(values_start, values_end)); |
| return false; |
| } |
| return true; |
| } |
| |
| bool Resolver::ValidateVector(const sem::Vector* ty, const Source& source) { |
| if (!ty->type()->is_scalar()) { |
| AddError("vector element type must be 'bool', 'f32', 'i32' or 'u32'", |
| source); |
| return false; |
| } |
| return true; |
| } |
| |
| bool Resolver::ValidateMatrix(const sem::Matrix* ty, const Source& source) { |
| if (!ty->is_float_matrix()) { |
| AddError("matrix element type must be 'f32'", source); |
| return false; |
| } |
| return true; |
| } |
| |
| bool Resolver::ValidateMatrixConstructor( |
| const ast::TypeConstructorExpression* ctor, |
| const sem::Matrix* matrix_type, |
| const std::string& type_name) { |
| auto& values = ctor->values(); |
| // Zero Value expression |
| if (values.empty()) { |
| return true; |
| } |
| |
| if (!ValidateMatrix(matrix_type, ctor->source())) { |
| return false; |
| } |
| |
| auto* elem_type = matrix_type->type(); |
| if (matrix_type->columns() != values.size()) { |
| const Source& values_start = values[0]->source(); |
| const Source& values_end = values[values.size() - 1]->source(); |
| AddError("expected " + std::to_string(matrix_type->columns()) + " '" + |
| VectorPretty(matrix_type->rows(), elem_type) + |
| "' arguments in '" + type_name + "' constructor, found " + |
| std::to_string(values.size()), |
| Source::Combine(values_start, values_end)); |
| return false; |
| } |
| |
| for (auto* value : values) { |
| auto* value_type = TypeOf(value)->UnwrapRef(); |
| auto* value_vec = value_type->As<sem::Vector>(); |
| |
| if (!value_vec || value_vec->Width() != matrix_type->rows() || |
| elem_type != value_vec->type()) { |
| AddError("expected argument type '" + |
| VectorPretty(matrix_type->rows(), elem_type) + "' in '" + |
| type_name + "' constructor, found '" + TypeNameOf(value) + |
| "'", |
| value->source()); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool Resolver::ValidateScalarConstructor( |
| const ast::TypeConstructorExpression* ctor, |
| const sem::Type* type, |
| const std::string& type_name) { |
| if (ctor->values().size() == 0) { |
| return true; |
| } |
| if (ctor->values().size() > 1) { |
| AddError("expected zero or one value in constructor, got " + |
| std::to_string(ctor->values().size()), |
| ctor->source()); |
| return false; |
| } |
| |
| // Validate constructor |
| auto* value = ctor->values()[0]; |
| auto* value_type = TypeOf(value)->UnwrapRef(); |
| |
| using Bool = sem::Bool; |
| using I32 = sem::I32; |
| using U32 = sem::U32; |
| using F32 = sem::F32; |
| |
| const bool is_valid = (type->Is<Bool>() && value_type->is_scalar()) || |
| (type->Is<I32>() && value_type->is_scalar()) || |
| (type->Is<U32>() && value_type->is_scalar()) || |
| (type->Is<F32>() && value_type->is_scalar()); |
| if (!is_valid) { |
| AddError("cannot construct '" + type_name + "' with a value of type '" + |
| TypeNameOf(value) + "'", |
| ctor->source()); |
| |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool Resolver::Identifier(ast::IdentifierExpression* expr) { |
| auto symbol = expr->symbol(); |
| VariableInfo* var; |
| if (variable_stack_.get(symbol, &var)) { |
| SetExprInfo(expr, var->type, var->type_name); |
| |
| var->users.push_back(expr); |
| set_referenced_from_function_if_needed(var, true); |
| |
| if (current_block_) { |
| // If identifier is part of a loop continuing block, make sure it |
| // doesn't refer to a variable that is bypassed by a continue statement |
| // in the loop's body block. |
| if (auto* continuing_block = |
| current_block_ |
| ->FindFirstParent<sem::LoopContinuingBlockStatement>()) { |
| auto* loop_block = |
| continuing_block->FindFirstParent<sem::LoopBlockStatement>(); |
| if (loop_block->FirstContinue() != size_t(~0)) { |
| auto& decls = loop_block->Decls(); |
| // If our identifier is in loop_block->decls, make sure its index is |
| // less than first_continue |
| auto iter = std::find_if( |
| decls.begin(), decls.end(), |
| [&symbol](auto* v) { return v->symbol() == symbol; }); |
| if (iter != decls.end()) { |
| auto var_decl_index = |
| static_cast<size_t>(std::distance(decls.begin(), iter)); |
| if (var_decl_index >= loop_block->FirstContinue()) { |
| AddError("continue statement bypasses declaration of '" + |
| builder_->Symbols().NameFor(symbol) + |
| "' in continuing block", |
| expr->source()); |
| return false; |
| } |
| } |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| auto iter = symbol_to_function_.find(symbol); |
| if (iter != symbol_to_function_.end()) { |
| AddError("missing '(' for function call", expr->source().End()); |
| return false; |
| } |
| |
| std::string name = builder_->Symbols().NameFor(symbol); |
| if (sem::ParseIntrinsicType(name) != IntrinsicType::kNone) { |
| AddError("missing '(' for intrinsic call", expr->source().End()); |
| return false; |
| } |
| |
| AddError("identifier must be declared before use: " + name, expr->source()); |
| return false; |
| } |
| |
| bool Resolver::MemberAccessor(ast::MemberAccessorExpression* expr) { |
| auto* structure = TypeOf(expr->structure()); |
| auto* storage_type = structure->UnwrapRef(); |
| |
| sem::Type* ret = nullptr; |
| std::vector<uint32_t> swizzle; |
| |
| if (auto* str = storage_type->As<sem::Struct>()) { |
| Mark(expr->member()); |
| auto symbol = expr->member()->symbol(); |
| |
| const sem::StructMember* member = nullptr; |
| for (auto* m : str->Members()) { |
| if (m->Name() == symbol) { |
| ret = m->Type(); |
| member = m; |
| break; |
| } |
| } |
| |
| if (ret == nullptr) { |
| AddError( |
| "struct member " + builder_->Symbols().NameFor(symbol) + " not found", |
| expr->source()); |
| return false; |
| } |
| |
| // If we're extracting from a reference, we return a reference. |
| if (auto* ref = structure->As<sem::Reference>()) { |
| ret = builder_->create<sem::Reference>(ret, ref->StorageClass(), |
| ref->Access()); |
| } |
| |
| builder_->Sem().Add(expr, builder_->create<sem::StructMemberAccess>( |
| expr, ret, current_statement_, member)); |
| } else if (auto* vec = storage_type->As<sem::Vector>()) { |
| Mark(expr->member()); |
| std::string s = builder_->Symbols().NameFor(expr->member()->symbol()); |
| auto size = s.size(); |
| swizzle.reserve(s.size()); |
| |
| for (auto c : s) { |
| switch (c) { |
| case 'x': |
| case 'r': |
| swizzle.emplace_back(0); |
| break; |
| case 'y': |
| case 'g': |
| swizzle.emplace_back(1); |
| break; |
| case 'z': |
| case 'b': |
| swizzle.emplace_back(2); |
| break; |
| case 'w': |
| case 'a': |
| swizzle.emplace_back(3); |
| break; |
| default: |
| AddError("invalid vector swizzle character", |
| expr->member()->source().Begin() + swizzle.size()); |
| return false; |
| } |
| |
| if (swizzle.back() >= vec->Width()) { |
| AddError("invalid vector swizzle member", expr->member()->source()); |
| return false; |
| } |
| } |
| |
| if (size < 1 || size > 4) { |
| AddError("invalid vector swizzle size", expr->member()->source()); |
| return false; |
| } |
| |
| // All characters are valid, check if they're being mixed |
| auto is_rgba = [](char c) { |
| return c == 'r' || c == 'g' || c == 'b' || c == 'a'; |
| }; |
| auto is_xyzw = [](char c) { |
| return c == 'x' || c == 'y' || c == 'z' || c == 'w'; |
| }; |
| if (!std::all_of(s.begin(), s.end(), is_rgba) && |
| !std::all_of(s.begin(), s.end(), is_xyzw)) { |
| AddError("invalid mixing of vector swizzle characters rgba with xyzw", |
| expr->member()->source()); |
| return false; |
| } |
| |
| if (size == 1) { |
| // A single element swizzle is just the type of the vector. |
| ret = vec->type(); |
| // If we're extracting from a reference, we return a reference. |
| if (auto* ref = structure->As<sem::Reference>()) { |
| ret = builder_->create<sem::Reference>(ret, ref->StorageClass(), |
| ref->Access()); |
| } |
| } else { |
| // The vector will have a number of components equal to the length of |
| // the swizzle. |
| ret = builder_->create<sem::Vector>(vec->type(), |
| static_cast<uint32_t>(size)); |
| } |
| builder_->Sem().Add( |
| expr, builder_->create<sem::Swizzle>(expr, ret, current_statement_, |
| std::move(swizzle))); |
| } else { |
| AddError( |
| "invalid member accessor expression. Expected vector or struct, got '" + |
| TypeNameOf(expr->structure()) + "'", |
| expr->structure()->source()); |
| return false; |
| } |
| |
| SetExprInfo(expr, ret); |
| |
| return true; |
| } |
| |
| bool Resolver::Binary(ast::BinaryExpression* expr) { |
| using Bool = sem::Bool; |
| using F32 = sem::F32; |
| using I32 = sem::I32; |
| using U32 = sem::U32; |
| using Matrix = sem::Matrix; |
| using Vector = sem::Vector; |
| |
| auto* lhs_type = const_cast<sem::Type*>(TypeOf(expr->lhs())->UnwrapRef()); |
| auto* rhs_type = const_cast<sem::Type*>(TypeOf(expr->rhs())->UnwrapRef()); |
| |
| auto* lhs_vec = lhs_type->As<Vector>(); |
| auto* lhs_vec_elem_type = lhs_vec ? lhs_vec->type() : nullptr; |
| auto* rhs_vec = rhs_type->As<Vector>(); |
| auto* rhs_vec_elem_type = rhs_vec ? rhs_vec->type() : nullptr; |
| |
| const bool matching_vec_elem_types = |
| lhs_vec_elem_type && rhs_vec_elem_type && |
| (lhs_vec_elem_type == rhs_vec_elem_type) && |
| (lhs_vec->Width() == rhs_vec->Width()); |
| |
| const bool matching_types = matching_vec_elem_types || (lhs_type == rhs_type); |
| |
| // Binary logical expressions |
| if (expr->IsLogicalAnd() || expr->IsLogicalOr()) { |
| if (matching_types && lhs_type->Is<Bool>()) { |
| SetExprInfo(expr, lhs_type); |
| return true; |
| } |
| } |
| if (expr->IsOr() || expr->IsAnd()) { |
| if (matching_types && lhs_type->Is<Bool>()) { |
| SetExprInfo(expr, lhs_type); |
| return true; |
| } |
| if (matching_types && lhs_vec_elem_type && lhs_vec_elem_type->Is<Bool>()) { |
| SetExprInfo(expr, lhs_type); |
| return true; |
| } |
| } |
| |
| // Arithmetic expressions |
| if (expr->IsArithmetic()) { |
| // Binary arithmetic expressions over scalars |
| if (matching_types && lhs_type->is_numeric_scalar()) { |
| SetExprInfo(expr, lhs_type); |
| return true; |
| } |
| |
| // Binary arithmetic expressions over vectors |
| if (matching_types && lhs_vec_elem_type && |
| lhs_vec_elem_type->is_numeric_scalar()) { |
| SetExprInfo(expr, lhs_type); |
| return true; |
| } |
| |
| // Binary arithmetic expressions with mixed scalar and vector operands |
| if (lhs_vec_elem_type && (lhs_vec_elem_type == rhs_type)) { |
| if (expr->IsModulo()) { |
| if (rhs_type->is_integer_scalar()) { |
| SetExprInfo(expr, lhs_type); |
| return true; |
| } |
| } else if (rhs_type->is_numeric_scalar()) { |
| SetExprInfo(expr, lhs_type); |
| return true; |
| } |
| } |
| if (rhs_vec_elem_type && (rhs_vec_elem_type == lhs_type)) { |
| if (expr->IsModulo()) { |
| if (lhs_type->is_integer_scalar()) { |
| SetExprInfo(expr, rhs_type); |
| return true; |
| } |
| } else if (lhs_type->is_numeric_scalar()) { |
| SetExprInfo(expr, rhs_type); |
| return true; |
| } |
| } |
| } |
| |
| // Matrix arithmetic |
| auto* lhs_mat = lhs_type->As<Matrix>(); |
| auto* lhs_mat_elem_type = lhs_mat ? lhs_mat->type() : nullptr; |
| auto* rhs_mat = rhs_type->As<Matrix>(); |
| auto* rhs_mat_elem_type = rhs_mat ? rhs_mat->type() : nullptr; |
| // Addition and subtraction of float matrices |
| if ((expr->IsAdd() || expr->IsSubtract()) && lhs_mat_elem_type && |
| lhs_mat_elem_type->Is<F32>() && rhs_mat_elem_type && |
| rhs_mat_elem_type->Is<F32>() && |
| (lhs_mat->columns() == rhs_mat->columns()) && |
| (lhs_mat->rows() == rhs_mat->rows())) { |
| SetExprInfo(expr, rhs_type); |
| return true; |
| } |
| if (expr->IsMultiply()) { |
| // Multiplication of a matrix and a scalar |
| if (lhs_type->Is<F32>() && rhs_mat_elem_type && |
| rhs_mat_elem_type->Is<F32>()) { |
| SetExprInfo(expr, rhs_type); |
| return true; |
| } |
| if (lhs_mat_elem_type && lhs_mat_elem_type->Is<F32>() && |
| rhs_type->Is<F32>()) { |
| SetExprInfo(expr, lhs_type); |
| return true; |
| } |
| |
| // Vector times matrix |
| if (lhs_vec_elem_type && lhs_vec_elem_type->Is<F32>() && |
| rhs_mat_elem_type && rhs_mat_elem_type->Is<F32>() && |
| (lhs_vec->Width() == rhs_mat->rows())) { |
| SetExprInfo(expr, builder_->create<sem::Vector>(lhs_vec->type(), |
| rhs_mat->columns())); |
| return true; |
| } |
| |
| // Matrix times vector |
| if (lhs_mat_elem_type && lhs_mat_elem_type->Is<F32>() && |
| rhs_vec_elem_type && rhs_vec_elem_type->Is<F32>() && |
| (lhs_mat->columns() == rhs_vec->Width())) { |
| SetExprInfo(expr, builder_->create<sem::Vector>(rhs_vec->type(), |
| lhs_mat->rows())); |
| return true; |
| } |
| |
| // Matrix times matrix |
| if (lhs_mat_elem_type && lhs_mat_elem_type->Is<F32>() && |
| rhs_mat_elem_type && rhs_mat_elem_type->Is<F32>() && |
| (lhs_mat->columns() == rhs_mat->rows())) { |
| SetExprInfo(expr, builder_->create<sem::Matrix>( |
| builder_->create<sem::Vector>(lhs_mat_elem_type, |
| lhs_mat->rows()), |
| rhs_mat->columns())); |
| return true; |
| } |
| } |
| |
| // Comparison expressions |
| if (expr->IsComparison()) { |
| if (matching_types) { |
| // Special case for bools: only == and != |
| if (lhs_type->Is<Bool>() && (expr->IsEqual() || expr->IsNotEqual())) { |
| SetExprInfo(expr, builder_->create<sem::Bool>()); |
| return true; |
| } |
| |
| // For the rest, we can compare i32, u32, and f32 |
| if (lhs_type->IsAnyOf<I32, U32, F32>()) { |
| SetExprInfo(expr, builder_->create<sem::Bool>()); |
| return true; |
| } |
| } |
| |
| // Same for vectors |
| if (matching_vec_elem_types) { |
| if (lhs_vec_elem_type->Is<Bool>() && |
| (expr->IsEqual() || expr->IsNotEqual())) { |
| SetExprInfo(expr, builder_->create<sem::Vector>( |
| builder_->create<sem::Bool>(), lhs_vec->Width())); |
| return true; |
| } |
| |
| if (lhs_vec_elem_type->is_numeric_scalar()) { |
| SetExprInfo(expr, builder_->create<sem::Vector>( |
| builder_->create<sem::Bool>(), lhs_vec->Width())); |
| return true; |
| } |
| } |
| } |
| |
| // Binary bitwise operations |
| if (expr->IsBitwise()) { |
| if (matching_types && lhs_type->is_integer_scalar_or_vector()) { |
| SetExprInfo(expr, lhs_type); |
| return true; |
| } |
| } |
| |
| // Bit shift expressions |
| if (expr->IsBitshift()) { |
| // Type validation rules are the same for left or right shift, despite |
| // differences in computation rules (i.e. right shift can be arithmetic or |
| // logical depending on lhs type). |
| |
| if (lhs_type->IsAnyOf<I32, U32>() && rhs_type->Is<U32>()) { |
| SetExprInfo(expr, lhs_type); |
| return true; |
| } |
| |
| if (lhs_vec_elem_type && lhs_vec_elem_type->IsAnyOf<I32, U32>() && |
| rhs_vec_elem_type && rhs_vec_elem_type->Is<U32>()) { |
| SetExprInfo(expr, lhs_type); |
| return true; |
| } |
| } |
| |
| AddError("Binary expression operand types are invalid for this operation: " + |
| lhs_type->FriendlyName(builder_->Symbols()) + " " + |
| FriendlyName(expr->op()) + " " + |
| rhs_type->FriendlyName(builder_->Symbols()), |
| expr->source()); |
| return false; |
| } |
| |
| bool Resolver::UnaryOp(ast::UnaryOpExpression* unary) { |
| auto* expr_type = TypeOf(unary->expr()); |
| if (!expr_type) { |
| return false; |
| } |
| |
| std::string type_name; |
| const sem::Type* type = nullptr; |
| |
| switch (unary->op()) { |
| case ast::UnaryOp::kNot: |
| // Result type matches the deref'd inner type. |
| type_name = TypeNameOf(unary->expr()); |
| type = expr_type->UnwrapRef(); |
| if (!type->Is<sem::Bool>() && !type->is_bool_vector()) { |
| AddError("cannot logical negate expression of type '" + |
| TypeNameOf(unary->expr()), |
| unary->expr()->source()); |
| return false; |
| } |
| break; |
| |
| case ast::UnaryOp::kComplement: |
| // Result type matches the deref'd inner type. |
| type_name = TypeNameOf(unary->expr()); |
| type = expr_type->UnwrapRef(); |
| if (!type->is_integer_scalar_or_vector()) { |
| AddError("cannot bitwise complement expression of type '" + |
| TypeNameOf(unary->expr()), |
| unary->expr()->source()); |
| return false; |
| } |
| break; |
| |
| case ast::UnaryOp::kNegation: |
| // Result type matches the deref'd inner type. |
| type_name = TypeNameOf(unary->expr()); |
| type = expr_type->UnwrapRef(); |
| if (!(type->IsAnyOf<sem::F32, sem::I32>() || |
| type->is_signed_integer_vector() || type->is_float_vector())) { |
| AddError( |
| "cannot negate expression of type '" + TypeNameOf(unary->expr()), |
| unary->expr()->source()); |
| return false; |
| } |
| break; |
| |
| case ast::UnaryOp::kAddressOf: |
| if (auto* ref = expr_type->As<sem::Reference>()) { |
| if (ref->StoreType()->UnwrapRef()->is_handle()) { |
| AddError( |
| "cannot take the address of expression in handle storage class", |
| unary->expr()->source()); |
| return false; |
| } |
| type = builder_->create<sem::Pointer>( |
| ref->StoreType(), ref->StorageClass(), ref->Access()); |
| } else { |
| AddError("cannot take the address of expression", |
| unary->expr()->source()); |
| return false; |
| } |
| break; |
| |
| case ast::UnaryOp::kIndirection: |
| if (auto* ptr = expr_type->As<sem::Pointer>()) { |
| type = builder_->create<sem::Reference>( |
| ptr->StoreType(), ptr->StorageClass(), ptr->Access()); |
| } else { |
| AddError("cannot dereference expression of type '" + |
| TypeNameOf(unary->expr()) + "'", |
| unary->expr()->source()); |
| return false; |
| } |
| break; |
| } |
| |
| SetExprInfo(unary, type); |
| return true; |
| } |
| |
| bool Resolver::VariableDeclStatement(const ast::VariableDeclStatement* stmt) { |
| ast::Variable* var = stmt->variable(); |
| Mark(var); |
| |
| if (!ValidateNoDuplicateDefinition(var->symbol(), var->source())) { |
| return false; |
| } |
| |
| auto* info = Variable(var, VariableKind::kLocal); |
| if (!info) { |
| return false; |
| } |
| |
| for (auto* deco : var->decorations()) { |
| Mark(deco); |
| if (!deco->Is<ast::InternalDecoration>()) { |
| AddError("decorations are not valid on local variables", deco->source()); |
| return false; |
| } |
| } |
| |
| variable_stack_.set(var->symbol(), info); |
| if (current_block_) { // Not all statements are inside a block |
| current_block_->AddDecl(var); |
| } |
| |
| if (!ValidateVariable(info)) { |
| return false; |
| } |
| |
| if (!var->is_const() && |
| IsValidationEnabled(var->decorations(), |
| ast::DisabledValidation::kIgnoreStorageClass)) { |
| if (!info->type->UnwrapRef()->IsConstructible()) { |
| AddError("function variable must have a constructible type", |
| var->type() ? var->type()->source() : var->source()); |
| return false; |
| } |
| if (info->storage_class != ast::StorageClass::kFunction) { |
| if (info->storage_class != ast::StorageClass::kNone) { |
| AddError("function variable has a non-function storage class", |
| stmt->source()); |
| return false; |
| } |
| info->storage_class = ast::StorageClass::kFunction; |
| } |
| } |
| |
| if (!ApplyStorageClassUsageToType(info->storage_class, info->type, |
| var->source())) { |
| AddNote("while instantiating variable " + |
| builder_->Symbols().NameFor(var->symbol()), |
| var->source()); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| sem::Type* Resolver::TypeDecl(const ast::TypeDecl* named_type) { |
| sem::Type* result = nullptr; |
| if (auto* alias = named_type->As<ast::Alias>()) { |
| result = Type(alias->type()); |
| } else if (auto* str = named_type->As<ast::Struct>()) { |
| result = Structure(str); |
| } else { |
| TINT_UNREACHABLE(Resolver, diagnostics_) << "Unhandled TypeDecl"; |
| } |
| |
| if (!result) { |
| return nullptr; |
| } |
| |
| named_type_info_.emplace(named_type->name(), |
| TypeDeclInfo{named_type, result}); |
| |
| if (!ValidateTypeDecl(named_type)) { |
| return nullptr; |
| } |
| |
| builder_->Sem().Add(named_type, result); |
| return result; |
| } |
| |
| bool Resolver::ValidateTypeDecl(const ast::TypeDecl* named_type) const { |
| auto iter = named_type_info_.find(named_type->name()); |
| if (iter == named_type_info_.end()) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "ValidateTypeDecl called() before TypeDecl()"; |
| } |
| if (iter->second.ast != named_type) { |
| AddError("type with the name '" + |
| builder_->Symbols().NameFor(named_type->name()) + |
| "' was already declared", |
| named_type->source()); |
| AddNote("first declared here", iter->second.ast->source()); |
| return false; |
| } |
| return true; |
| } |
| |
| sem::Type* Resolver::TypeOf(const ast::Expression* expr) { |
| auto it = expr_info_.find(expr); |
| if (it != expr_info_.end()) { |
| return const_cast<sem::Type*>(it->second.type); |
| } |
| return nullptr; |
| } |
| |
| std::string Resolver::TypeNameOf(const ast::Expression* expr) { |
| auto it = expr_info_.find(expr); |
| if (it != expr_info_.end()) { |
| return it->second.type_name; |
| } |
| return ""; |
| } |
| |
| sem::Type* Resolver::TypeOf(const ast::Literal* lit) { |
| if (lit->Is<ast::SintLiteral>()) { |
| return builder_->create<sem::I32>(); |
| } |
| if (lit->Is<ast::UintLiteral>()) { |
| return builder_->create<sem::U32>(); |
| } |
| if (lit->Is<ast::FloatLiteral>()) { |
| return builder_->create<sem::F32>(); |
| } |
| if (lit->Is<ast::BoolLiteral>()) { |
| return builder_->create<sem::Bool>(); |
| } |
| TINT_UNREACHABLE(Resolver, diagnostics_) |
| << "Unhandled literal type: " << lit->TypeInfo().name; |
| return nullptr; |
| } |
| |
| void Resolver::SetExprInfo(const ast::Expression* expr, |
| const sem::Type* type, |
| std::string type_name) { |
| if (expr_info_.count(expr)) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "SetExprInfo() called twice for the same expression"; |
| } |
| if (type_name.empty()) { |
| type_name = type->FriendlyName(builder_->Symbols()); |
| } |
| auto constant_value = EvaluateConstantValue(expr, type); |
| expr_info_.emplace( |
| expr, ExpressionInfo{type, std::move(type_name), current_statement_, |
| std::move(constant_value)}); |
| } |
| |
| bool Resolver::ValidatePipelineStages() { |
| auto check_workgroup_storage = [&](FunctionInfo* func, |
| FunctionInfo* entry_point) { |
| auto stage = entry_point->declaration->pipeline_stage(); |
| if (stage != ast::PipelineStage::kCompute) { |
| for (auto* var : func->local_referenced_module_vars) { |
| if (var->storage_class == ast::StorageClass::kWorkgroup) { |
| std::stringstream stage_name; |
| stage_name << stage; |
| for (auto* user : var->users) { |
| auto it = expr_info_.find(user->As<ast::Expression>()); |
| if (it != expr_info_.end()) { |
| if (func->declaration->symbol() == |
| it->second.statement->Function()->symbol()) { |
| AddError("workgroup memory cannot be used by " + |
| stage_name.str() + " pipeline stage", |
| user->source()); |
| break; |
| } |
| } |
| } |
| AddNote("variable is declared here", var->declaration->source()); |
| if (func != entry_point) { |
| TraverseCallChain(entry_point, func, [&](FunctionInfo* f) { |
| AddNote( |
| "called by function '" + |
| builder_->Symbols().NameFor(f->declaration->symbol()) + |
| "'", |
| f->declaration->source()); |
| }); |
| AddNote("called by entry point '" + |
| builder_->Symbols().NameFor( |
| entry_point->declaration->symbol()) + |
| "'", |
| entry_point->declaration->source()); |
| } |
| return false; |
| } |
| } |
| } |
| return true; |
| }; |
| |
| for (auto* entry_point : entry_points_) { |
| if (!check_workgroup_storage(entry_point, entry_point)) { |
| return false; |
| } |
| for (auto* func : entry_point->transitive_calls) { |
| if (!check_workgroup_storage(func, entry_point)) { |
| return false; |
| } |
| } |
| } |
| |
| auto check_intrinsic_calls = [&](FunctionInfo* func, |
| FunctionInfo* entry_point) { |
| auto stage = entry_point->declaration->pipeline_stage(); |
| for (auto& call : func->intrinsic_calls) { |
| if (!call.intrinsic->SupportedStages().Contains(stage)) { |
| std::stringstream err; |
| err << "built-in cannot be used by " << stage << " pipeline stage"; |
| AddError(err.str(), call.call->source()); |
| if (func != entry_point) { |
| TraverseCallChain(entry_point, func, [&](FunctionInfo* f) { |
| AddNote("called by function '" + |
| builder_->Symbols().NameFor(f->declaration->symbol()) + |
| "'", |
| f->declaration->source()); |
| }); |
| AddNote("called by entry point '" + |
| builder_->Symbols().NameFor( |
| entry_point->declaration->symbol()) + |
| "'", |
| entry_point->declaration->source()); |
| } |
| return false; |
| } |
| } |
| return true; |
| }; |
| |
| for (auto* entry_point : entry_points_) { |
| if (!check_intrinsic_calls(entry_point, entry_point)) { |
| return false; |
| } |
| for (auto* func : entry_point->transitive_calls) { |
| if (!check_intrinsic_calls(func, entry_point)) { |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| template <typename CALLBACK> |
| void Resolver::TraverseCallChain(FunctionInfo* from, |
| FunctionInfo* to, |
| CALLBACK&& callback) const { |
| for (auto* f : from->transitive_calls) { |
| if (f == to) { |
| callback(f); |
| return; |
| } |
| if (f->transitive_calls.contains(to)) { |
| TraverseCallChain(f, to, callback); |
| callback(f); |
| return; |
| } |
| } |
| TINT_ICE(Resolver, diagnostics_) |
| << "TraverseCallChain() 'from' does not transitively call 'to'"; |
| } |
| |
| void Resolver::CreateSemanticNodes() const { |
| auto& sem = builder_->Sem(); |
| |
| // Collate all the 'ancestor_entry_points' - this is a map of function |
| // symbol to all the entry points that transitively call the function. |
| std::unordered_map<Symbol, std::vector<Symbol>> ancestor_entry_points; |
| for (auto* entry_point : entry_points_) { |
| for (auto* call : entry_point->transitive_calls) { |
| auto& vec = ancestor_entry_points[call->declaration->symbol()]; |
| vec.emplace_back(entry_point->declaration->symbol()); |
| } |
| } |
| |
| // The next pipeline constant ID to try to allocate. |
| uint16_t next_constant_id = 0; |
| |
| // Create semantic nodes for all ast::Variables |
| std::unordered_map<const tint::ast::Variable*, sem::Parameter*> sem_params; |
| for (auto it : variable_to_info_) { |
| auto* var = it.first; |
| auto* info = it.second; |
| |
| sem::Variable* sem_var = nullptr; |
| |
| if (auto* override_deco = |
| ast::GetDecoration<ast::OverrideDecoration>(var->decorations())) { |
| // Create a pipeline overridable constant. |
| uint16_t constant_id; |
| if (override_deco->HasValue()) { |
| constant_id = static_cast<uint16_t>(override_deco->value()); |
| } else { |
| // No ID was specified, so allocate the next available ID. |
| constant_id = next_constant_id; |
| while (constant_ids_.count(constant_id)) { |
| if (constant_id == UINT16_MAX) { |
| TINT_ICE(Resolver, builder_->Diagnostics()) |
| << "no more pipeline constant IDs available"; |
| return; |
| } |
| constant_id++; |
| } |
| next_constant_id = constant_id + 1; |
| } |
| |
| sem_var = |
| builder_->create<sem::GlobalVariable>(var, info->type, constant_id); |
| } else { |
| switch (info->kind) { |
| case VariableKind::kGlobal: |
| sem_var = builder_->create<sem::GlobalVariable>( |
| var, info->type, info->storage_class, info->access, |
| info->binding_point); |
| break; |
| case VariableKind::kLocal: |
| sem_var = builder_->create<sem::LocalVariable>( |
| var, info->type, info->storage_class, info->access); |
| break; |
| case VariableKind::kParameter: { |
| auto* param = builder_->create<sem::Parameter>( |
| var, info->index, info->type, info->storage_class, info->access); |
| sem_var = param; |
| sem_params.emplace(var, param); |
| break; |
| } |
| } |
| } |
| |
| std::vector<const sem::VariableUser*> users; |
| for (auto* user : info->users) { |
| // Create semantic node for the identifier expression if necessary |
| auto* sem_expr = sem.Get(user); |
| if (sem_expr == nullptr) { |
| auto& expr_info = expr_info_.at(user); |
| auto* type = expr_info.type; |
| auto* stmt = expr_info.statement; |
| auto* sem_user = builder_->create<sem::VariableUser>( |
| user, type, stmt, sem_var, expr_info.constant_value); |
| sem_var->AddUser(sem_user); |
| sem.Add(user, sem_user); |
| } else { |
| auto* sem_user = sem_expr->As<sem::VariableUser>(); |
| if (!sem_user) { |
| TINT_ICE(Resolver, diagnostics_) << "expected sem::VariableUser, got " |
| << sem_expr->TypeInfo().name; |
| } |
| sem_var->AddUser(sem_user); |
| } |
| } |
| sem.Add(var, sem_var); |
| } |
| |
| auto remap_vars = [&sem](const std::vector<VariableInfo*>& in) { |
| std::vector<const sem::Variable*> out; |
| out.reserve(in.size()); |
| for (auto* info : in) { |
| out.emplace_back(sem.Get(info->declaration)); |
| } |
| return out; |
| }; |
| |
| // Create semantic nodes for all ast::Functions |
| std::unordered_map<FunctionInfo*, sem::Function*> func_info_to_sem_func; |
| for (auto it : function_to_info_) { |
| auto* func = it.first; |
| auto* info = it.second; |
| |
| std::vector<sem::Parameter*> parameters; |
| parameters.reserve(info->parameters.size()); |
| for (auto* p : info->parameters) { |
| parameters.emplace_back(sem_params.at(p->declaration)); |
| } |
| |
| auto* sem_func = builder_->create<sem::Function>( |
| info->declaration, const_cast<sem::Type*>(info->return_type), |
| parameters, remap_vars(info->referenced_module_vars), |
| remap_vars(info->local_referenced_module_vars), info->return_statements, |
| info->callsites, ancestor_entry_points[func->symbol()], |
| info->workgroup_size); |
| func_info_to_sem_func.emplace(info, sem_func); |
| sem.Add(func, sem_func); |
| } |
| |
| // Create semantic nodes for all ast::CallExpressions |
| for (auto it : function_calls_) { |
| auto* call = it.first; |
| auto info = it.second; |
| auto* sem_func = func_info_to_sem_func.at(info.function); |
| sem.Add(call, builder_->create<sem::Call>(call, sem_func, info.statement)); |
| } |
| |
| // Create semantic nodes for all remaining expression types |
| for (auto it : expr_info_) { |
| auto* expr = it.first; |
| auto& info = it.second; |
| if (sem.Get(expr)) { |
| // Expression has already been assigned a semantic node |
| continue; |
| } |
| sem.Add(expr, builder_->create<sem::Expression>( |
| const_cast<ast::Expression*>(expr), info.type, |
| info.statement, info.constant_value)); |
| } |
| } |
| |
| sem::Array* Resolver::Array(const ast::Array* arr) { |
| auto source = arr->source(); |
| |
| auto* elem_type = Type(arr->type()); |
| if (!elem_type) { |
| return nullptr; |
| } |
| |
| if (!IsPlain(elem_type)) { // Check must come before GetDefaultAlignAndSize() |
| AddError(elem_type->FriendlyName(builder_->Symbols()) + |
| " cannot be used as an element type of an array", |
| source); |
| return nullptr; |
| } |
| |
| uint32_t el_align = elem_type->Align(); |
| uint32_t el_size = elem_type->Size(); |
| |
| if (!ValidateNoDuplicateDecorations(arr->decorations())) { |
| return nullptr; |
| } |
| |
| // Look for explicit stride via [[stride(n)]] decoration |
| uint32_t explicit_stride = 0; |
| for (auto* deco : arr->decorations()) { |
| Mark(deco); |
| if (auto* sd = deco->As<ast::StrideDecoration>()) { |
| explicit_stride = sd->stride(); |
| if (!ValidateArrayStrideDecoration(sd, el_size, el_align, source)) { |
| return nullptr; |
| } |
| continue; |
| } |
| |
| AddError("decoration is not valid for array types", deco->source()); |
| return nullptr; |
| } |
| |
| // Calculate implicit stride |
| uint64_t implicit_stride = utils::RoundUp<uint64_t>(el_align, el_size); |
| |
| uint64_t stride = explicit_stride ? explicit_stride : implicit_stride; |
| |
| // Evaluate the constant array size expression. |
| // sem::Array uses a size of 0 for a runtime-sized array. |
| uint32_t count = 0; |
| if (auto* count_expr = arr->Size()) { |
| Mark(count_expr); |
| if (!Expression(count_expr)) { |
| return nullptr; |
| } |
| |
| auto size_source = count_expr->source(); |
| |
| auto* ty = TypeOf(count_expr)->UnwrapRef(); |
| if (!ty->is_integer_scalar()) { |
| AddError("array size must be integer scalar", size_source); |
| return nullptr; |
| } |
| |
| if (auto* ident = count_expr->As<ast::IdentifierExpression>()) { |
| // Make sure the identifier is a non-overridable module-scope constant. |
| VariableInfo* var = nullptr; |
| bool is_global = false; |
| if (!variable_stack_.get(ident->symbol(), &var, &is_global) || |
| !is_global || !var->declaration->is_const()) { |
| AddError("array size identifier must be a module-scope constant", |
| size_source); |
| return nullptr; |
| } |
| if (ast::HasDecoration<ast::OverrideDecoration>( |
| var->declaration->decorations())) { |
| AddError("array size expression must not be pipeline-overridable", |
| size_source); |
| return nullptr; |
| } |
| |
| count_expr = var->declaration->constructor(); |
| } else if (!count_expr->Is<ast::ScalarConstructorExpression>()) { |
| AddError( |
| "array size expression must be either a literal or a module-scope " |
| "constant", |
| size_source); |
| return nullptr; |
| } |
| |
| auto count_val = ConstantValueOf(count_expr); |
| if (!count_val) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "could not resolve array size expression"; |
| return nullptr; |
| } |
| |
| if (ty->is_signed_integer_scalar() ? count_val.Elements()[0].i32 < 1 |
| : count_val.Elements()[0].u32 < 1u) { |
| AddError("array size must be at least 1", size_source); |
| return nullptr; |
| } |
| |
| count = count_val.Elements()[0].u32; |
| } |
| |
| auto size = std::max<uint64_t>(count, 1) * stride; |
| if (size > std::numeric_limits<uint32_t>::max()) { |
| std::stringstream msg; |
| msg << "array size in bytes must not exceed 0x" << std::hex |
| << std::numeric_limits<uint32_t>::max() << ", but is 0x" << std::hex |
| << size; |
| AddError(msg.str(), arr->source()); |
| return nullptr; |
| } |
| if (stride > std::numeric_limits<uint32_t>::max() || |
| implicit_stride > std::numeric_limits<uint32_t>::max()) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "calculated array stride exceeds uint32"; |
| return nullptr; |
| } |
| auto* out = builder_->create<sem::Array>( |
| elem_type, count, el_align, static_cast<uint32_t>(size), |
| static_cast<uint32_t>(stride), static_cast<uint32_t>(implicit_stride)); |
| |
| if (!ValidateArray(out, source)) { |
| return nullptr; |
| } |
| |
| if (elem_type->Is<sem::Atomic>()) { |
| atomic_composite_info_.emplace(out, arr->type()->source()); |
| } else { |
| auto found = atomic_composite_info_.find(elem_type); |
| if (found != atomic_composite_info_.end()) { |
| atomic_composite_info_.emplace(out, found->second); |
| } |
| } |
| |
| return out; |
| } |
| |
| bool Resolver::ValidateArray(const sem::Array* arr, const Source& source) { |
| auto* el_ty = arr->ElemType(); |
| |
| if (auto* el_str = el_ty->As<sem::Struct>()) { |
| if (el_str->IsBlockDecorated()) { |
| // https://gpuweb.github.io/gpuweb/wgsl/#attributes |
| // A structure type with the block attribute must not be: |
| // * the element type of an array type |
| // * the member type in another structure |
| AddError( |
| "A structure type with a [[block]] decoration cannot be used as an " |
| "element of an array", |
| source); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool Resolver::ValidateArrayStrideDecoration(const ast::StrideDecoration* deco, |
| uint32_t el_size, |
| uint32_t el_align, |
| const Source& source) { |
| auto stride = deco->stride(); |
| bool is_valid_stride = |
| (stride >= el_size) && (stride >= el_align) && (stride % el_align == 0); |
| if (!is_valid_stride) { |
| // https://gpuweb.github.io/gpuweb/wgsl/#array-layout-rules |
| // Arrays decorated with the stride attribute must have a stride that is |
| // at least the size of the element type, and be a multiple of the |
| // element type's alignment value. |
| AddError( |
| "arrays decorated with the stride attribute must have a stride " |
| "that is at least the size of the element type, and be a multiple " |
| "of the element type's alignment value.", |
| source); |
| return false; |
| } |
| return true; |
| } |
| |
| bool Resolver::ValidateStructure(const sem::Struct* str) { |
| if (str->Members().empty()) { |
| AddError("structures must have at least one member", |
| str->Declaration()->source()); |
| return false; |
| } |
| |
| std::unordered_set<uint32_t> locations; |
| for (auto* member : str->Members()) { |
| if (auto* r = member->Type()->As<sem::Array>()) { |
| if (r->IsRuntimeSized()) { |
| if (member != str->Members().back()) { |
| AddError( |
| "runtime arrays may only appear as the last member of a struct", |
| member->Declaration()->source()); |
| return false; |
| } |
| if (!str->IsBlockDecorated()) { |
| AddError( |
| "a struct containing a runtime-sized array " |
| "requires the [[block]] attribute: '" + |
| builder_->Symbols().NameFor(str->Declaration()->name()) + "'", |
| member->Declaration()->source()); |
| return false; |
| } |
| } |
| } |
| |
| auto has_position = false; |
| ast::InvariantDecoration* invariant_attribute = nullptr; |
| for (auto* deco : member->Declaration()->decorations()) { |
| if (!deco->IsAnyOf<ast::BuiltinDecoration, // |
| ast::InternalDecoration, // |
| ast::InterpolateDecoration, // |
| ast::InvariantDecoration, // |
| ast::LocationDecoration, // |
| ast::StructMemberOffsetDecoration, // |
| ast::StructMemberSizeDecoration, // |
| ast::StructMemberAlignDecoration>()) { |
| if (deco->Is<ast::StrideDecoration>() && |
| IsValidationDisabled( |
| member->Declaration()->decorations(), |
| ast::DisabledValidation::kIgnoreStrideDecoration)) { |
| continue; |
| } |
| AddError("decoration is not valid for structure members", |
| deco->source()); |
| return false; |
| } |
| |
| if (auto* invariant = deco->As<ast::InvariantDecoration>()) { |
| invariant_attribute = invariant; |
| } else if (auto* location = deco->As<ast::LocationDecoration>()) { |
| if (!ValidateLocationDecoration(location, member->Type(), locations, |
| member->Declaration()->source())) { |
| return false; |
| } |
| } else if (auto* builtin = deco->As<ast::BuiltinDecoration>()) { |
| if (!ValidateBuiltinDecoration(builtin, member->Type(), |
| /* is_input */ false, |
| /* is_struct_member */ true)) { |
| return false; |
| } |
| if (builtin->value() == ast::Builtin::kPosition) { |
| has_position = true; |
| } |
| } else if (auto* interpolate = deco->As<ast::InterpolateDecoration>()) { |
| if (!ValidateInterpolateDecoration(interpolate, member->Type())) { |
| return false; |
| } |
| } |
| } |
| |
| if (invariant_attribute && !has_position) { |
| AddError("invariant attribute must only be applied to a position builtin", |
| invariant_attribute->source()); |
| return false; |
| } |
| |
| if (auto* member_struct_type = member->Type()->As<sem::Struct>()) { |
| if (auto* member_struct_type_block_decoration = |
| ast::GetDecoration<ast::StructBlockDecoration>( |
| member_struct_type->Declaration()->decorations())) { |
| AddError("structs must not contain [[block]] decorated struct members", |
| member->Declaration()->source()); |
| AddNote("see member's struct decoration here", |
| member_struct_type_block_decoration->source()); |
| return false; |
| } |
| } |
| } |
| |
| for (auto* deco : str->Declaration()->decorations()) { |
| if (!(deco->Is<ast::StructBlockDecoration>())) { |
| AddError("decoration is not valid for struct declarations", |
| deco->source()); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool Resolver::ValidateLocationDecoration( |
| const ast::LocationDecoration* location, |
| const sem::Type* type, |
| std::unordered_set<uint32_t>& locations, |
| const Source& source, |
| const bool is_input) { |
| std::string inputs_or_output = is_input ? "inputs" : "output"; |
| if (current_function_ && current_function_->declaration->pipeline_stage() == |
| ast::PipelineStage::kCompute) { |
| AddError("decoration is not valid for compute shader " + inputs_or_output, |
| location->source()); |
| return false; |
| } |
| |
| if (!type->is_numeric_scalar_or_vector()) { |
| std::string invalid_type = type->FriendlyName(builder_->Symbols()); |
| AddError("cannot apply 'location' attribute to declaration of type '" + |
| invalid_type + "'", |
| source); |
| AddNote( |
| "'location' attribute must only be applied to declarations of " |
| "numeric scalar or numeric vector type", |
| location->source()); |
| return false; |
| } |
| |
| if (locations.count(location->value())) { |
| AddError(deco_to_str(location) + " attribute appears multiple times", |
| location->source()); |
| return false; |
| } |
| locations.emplace(location->value()); |
| |
| return true; |
| } |
| |
| sem::Struct* Resolver::Structure(const ast::Struct* str) { |
| if (!ValidateNoDuplicateDecorations(str->decorations())) { |
| return nullptr; |
| } |
| for (auto* deco : str->decorations()) { |
| Mark(deco); |
| } |
| |
| sem::StructMemberList sem_members; |
| sem_members.reserve(str->members().size()); |
| |
| // Calculate the effective size and alignment of each field, and the overall |
| // size of the structure. |
| // For size, use the size attribute if provided, otherwise use the default |
| // size for the type. |
| // For alignment, use the alignment attribute if provided, otherwise use the |
| // default alignment for the member type. |
| // Diagnostic errors are raised if a basic rule is violated. |
| // Validation of storage-class rules requires analysing the actual variable |
| // usage of the structure, and so is performed as part of the variable |
| // validation. |
| uint64_t struct_size = 0; |
| uint64_t struct_align = 1; |
| std::unordered_map<Symbol, ast::StructMember*> member_map; |
| |
| for (auto* member : str->members()) { |
| Mark(member); |
| auto result = member_map.emplace(member->symbol(), member); |
| if (!result.second) { |
| AddError("redefinition of '" + |
| builder_->Symbols().NameFor(member->symbol()) + "'", |
| member->source()); |
| AddNote("previous definition is here", result.first->second->source()); |
| return nullptr; |
| } |
| |
| // Resolve member type |
| auto* type = Type(member->type()); |
| if (!type) { |
| return nullptr; |
| } |
| |
| // Validate member type |
| if (!IsPlain(type)) { |
| AddError(type->FriendlyName(builder_->Symbols()) + |
| " cannot be used as the type of a structure member", |
| member->source()); |
| return nullptr; |
| } |
| |
| uint64_t offset = struct_size; |
| uint64_t align = type->Align(); |
| uint64_t size = type->Size(); |
| |
| if (!ValidateNoDuplicateDecorations(member->decorations())) { |
| return nullptr; |
| } |
| |
| bool has_offset_deco = false; |
| bool has_align_deco = false; |
| bool has_size_deco = false; |
| for (auto* deco : member->decorations()) { |
| Mark(deco); |
| if (auto* o = deco->As<ast::StructMemberOffsetDecoration>()) { |
| // Offset decorations are not part of the WGSL spec, but are emitted |
| // by the SPIR-V reader. |
| if (o->offset() < struct_size) { |
| AddError("offsets must be in ascending order", o->source()); |
| return nullptr; |
| } |
| offset = o->offset(); |
| align = 1; |
| has_offset_deco = true; |
| } else if (auto* a = deco->As<ast::StructMemberAlignDecoration>()) { |
| if (a->align() <= 0 || !utils::IsPowerOfTwo(a->align())) { |
| AddError("align value must be a positive, power-of-two integer", |
| a->source()); |
| return nullptr; |
| } |
| align = a->align(); |
| has_align_deco = true; |
| } else if (auto* s = deco->As<ast::StructMemberSizeDecoration>()) { |
| if (s->size() < size) { |
| AddError("size must be at least as big as the type's size (" + |
| std::to_string(size) + ")", |
| s->source()); |
| return nullptr; |
| } |
| size = s->size(); |
| has_size_deco = true; |
| } |
| } |
| |
| if (has_offset_deco && (has_align_deco || has_size_deco)) { |
| AddError( |
| "offset decorations cannot be used with align or size decorations", |
| member->source()); |
| return nullptr; |
| } |
| |
| offset = utils::RoundUp(align, offset); |
| if (offset > std::numeric_limits<uint32_t>::max()) { |
| std::stringstream msg; |
| msg << "struct member has byte offset 0x" << std::hex << offset |
| << ", but must not exceed 0x" << std::hex |
| << std::numeric_limits<uint32_t>::max(); |
| AddError(msg.str(), member->source()); |
| return nullptr; |
| } |
| |
| auto* sem_member = builder_->create<sem::StructMember>( |
| member, member->symbol(), const_cast<sem::Type*>(type), |
| static_cast<uint32_t>(sem_members.size()), offset, align, size); |
| builder_->Sem().Add(member, sem_member); |
| sem_members.emplace_back(sem_member); |
| |
| struct_size = offset + size; |
| struct_align = std::max(struct_align, align); |
| } |
| |
| uint64_t size_no_padding = struct_size; |
| struct_size = utils::RoundUp(struct_align, struct_size); |
| |
| if (struct_size > std::numeric_limits<uint32_t>::max()) { |
| std::stringstream msg; |
| msg << "struct size in bytes must not exceed 0x" << std::hex |
| << std::numeric_limits<uint32_t>::max() << ", but is 0x" << std::hex |
| << struct_size; |
| AddError(msg.str(), str->source()); |
| return nullptr; |
| } |
| if (struct_align > std::numeric_limits<uint32_t>::max()) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "calculated struct stride exceeds uint32"; |
| return nullptr; |
| } |
| |
| auto* out = builder_->create<sem::Struct>( |
| str, str->name(), sem_members, static_cast<uint32_t>(struct_align), |
| static_cast<uint32_t>(struct_size), |
| static_cast<uint32_t>(size_no_padding)); |
| |
| for (size_t i = 0; i < sem_members.size(); i++) { |
| auto* mem_type = sem_members[i]->Type(); |
| if (mem_type->Is<sem::Atomic>()) { |
| atomic_composite_info_.emplace(out, |
| sem_members[i]->Declaration()->source()); |
| break; |
| } else { |
| auto found = atomic_composite_info_.find(mem_type); |
| if (found != atomic_composite_info_.end()) { |
| atomic_composite_info_.emplace(out, found->second); |
| break; |
| } |
| } |
| } |
| |
| if (!ValidateStructure(out)) { |
| return nullptr; |
| } |
| |
| return out; |
| } |
| |
| bool Resolver::ValidateReturn(const ast::ReturnStatement* ret) { |
| auto* func_type = current_function_->return_type; |
| |
| auto* ret_type = ret->has_value() ? TypeOf(ret->value())->UnwrapRef() |
| : builder_->create<sem::Void>(); |
| |
| if (func_type->UnwrapRef() != ret_type) { |
| AddError( |
| "return statement type must match its function " |
| "return type, returned '" + |
| ret_type->FriendlyName(builder_->Symbols()) + "', expected '" + |
| current_function_->return_type_name + "'", |
| ret->source()); |
| return false; |
| } |
| |
| auto* sem = builder_->Sem().Get(ret); |
| if (auto* continuing = |
| sem->FindFirstParent<sem::LoopContinuingBlockStatement>()) { |
| AddError("continuing blocks must not contain a return statement", |
| ret->source()); |
| if (continuing != sem->Parent()) { |
| AddNote("see continuing block here", continuing->Declaration()->source()); |
| } |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool Resolver::Return(ast::ReturnStatement* ret) { |
| current_function_->return_statements.push_back(ret); |
| |
| if (auto* value = ret->value()) { |
| Mark(value); |
| if (!Expression(value)) { |
| return false; |
| } |
| } |
| |
| // Validate after processing the return value expression so that its type is |
| // available for validation. |
| return ValidateReturn(ret); |
| } |
| |
| bool Resolver::ValidateSwitch(const ast::SwitchStatement* s) { |
| auto* cond_type = TypeOf(s->condition())->UnwrapRef(); |
| if (!cond_type->is_integer_scalar()) { |
| AddError( |
| "switch statement selector expression must be of a " |
| "scalar integer type", |
| s->condition()->source()); |
| return false; |
| } |
| |
| bool has_default = false; |
| std::unordered_set<uint32_t> selector_set; |
| |
| for (auto* case_stmt : s->body()) { |
| if (case_stmt->IsDefault()) { |
| if (has_default) { |
| // More than one default clause |
| AddError("switch statement must have exactly one default clause", |
| case_stmt->source()); |
| return false; |
| } |
| has_default = true; |
| } |
| |
| for (auto* selector : case_stmt->selectors()) { |
| if (cond_type != TypeOf(selector)) { |
| AddError( |
| "the case selector values must have the same " |
| "type as the selector expression.", |
| case_stmt->source()); |
| return false; |
| } |
| |
| auto v = selector->value_as_u32(); |
| if (selector_set.find(v) != selector_set.end()) { |
| AddError( |
| "a literal value must not appear more than once in " |
| "the case selectors for a switch statement: '" + |
| builder_->str(selector) + "'", |
| case_stmt->source()); |
| return false; |
| } |
| selector_set.emplace(v); |
| } |
| } |
| |
| if (!has_default) { |
| // No default clause |
| AddError("switch statement must have a default clause", s->source()); |
| return false; |
| } |
| |
| if (!s->body().empty()) { |
| auto* last_clause = s->body().back()->As<ast::CaseStatement>(); |
| auto* last_stmt = last_clause->body()->last(); |
| if (last_stmt && last_stmt->Is<ast::FallthroughStatement>()) { |
| AddError( |
| "a fallthrough statement must not appear as " |
| "the last statement in last clause of a switch", |
| last_stmt->source()); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool Resolver::SwitchStatement(ast::SwitchStatement* stmt) { |
| auto* sem = |
| builder_->create<sem::SwitchStatement>(stmt, current_compound_statement_); |
| builder_->Sem().Add(stmt, sem); |
| return Scope(sem, [&] { |
| Mark(stmt->condition()); |
| if (!Expression(stmt->condition())) { |
| return false; |
| } |
| for (auto* case_stmt : stmt->body()) { |
| Mark(case_stmt); |
| if (!CaseStatement(case_stmt)) { |
| return false; |
| } |
| } |
| if (!ValidateSwitch(stmt)) { |
| return false; |
| } |
| return true; |
| }); |
| } |
| |
| bool Resolver::Assignment(ast::AssignmentStatement* a) { |
| Mark(a->lhs()); |
| Mark(a->rhs()); |
| |
| if (!Expression(a->lhs()) || !Expression(a->rhs())) { |
| return false; |
| } |
| return ValidateAssignment(a); |
| } |
| |
| bool Resolver::ValidateAssignment(const ast::AssignmentStatement* a) { |
| // https://gpuweb.github.io/gpuweb/wgsl/#assignment-statement |
| auto const* lhs_type = TypeOf(a->lhs()); |
| auto const* rhs_type = TypeOf(a->rhs()); |
| |
| if (auto* ident = a->lhs()->As<ast::IdentifierExpression>()) { |
| VariableInfo* var; |
| if (variable_stack_.get(ident->symbol(), &var)) { |
| if (var->kind == VariableKind::kParameter) { |
| AddError("cannot assign to function parameter", a->lhs()->source()); |
| AddNote("'" + builder_->Symbols().NameFor(ident->symbol()) + |
| "' is declared here:", |
| var->declaration->source()); |
| return false; |
| } |
| if (var->declaration->is_const()) { |
| AddError("cannot assign to const", a->lhs()->source()); |
| AddNote("'" + builder_->Symbols().NameFor(ident->symbol()) + |
| "' is declared here:", |
| var->declaration->source()); |
| return false; |
| } |
| } |
| } |
| |
| auto* lhs_ref = lhs_type->As<sem::Reference>(); |
| if (!lhs_ref) { |
| // LHS is not a reference, so it has no storage. |
| AddError("cannot assign to value of type '" + TypeNameOf(a->lhs()) + "'", |
| a->lhs()->source()); |
| return false; |
| } |
| |
| auto* storage_type = lhs_ref->StoreType(); |
| auto* value_type = rhs_type->UnwrapRef(); // Implicit load of RHS |
| |
| // Value type has to match storage type |
| if (storage_type != value_type) { |
| AddError("cannot assign '" + TypeNameOf(a->rhs()) + "' to '" + |
| TypeNameOf(a->lhs()) + "'", |
| a->source()); |
| return false; |
| } |
| if (!storage_type->IsConstructible()) { |
| AddError("storage type of assignment must be constructible", a->source()); |
| return false; |
| } |
| if (lhs_ref->Access() == ast::Access::kRead) { |
| AddError( |
| "cannot store into a read-only type '" + TypeNameOf(a->lhs()) + "'", |
| a->source()); |
| return false; |
| } |
| return true; |
| } |
| |
| bool Resolver::ValidateNoDuplicateDefinition(Symbol sym, |
| const Source& source, |
| bool check_global_scope_only) { |
| if (check_global_scope_only) { |
| bool is_global = false; |
| VariableInfo* var; |
| if (variable_stack_.get(sym, &var, &is_global)) { |
| if (is_global) { |
| AddError("redefinition of '" + builder_->Symbols().NameFor(sym) + "'", |
| source); |
| AddNote("previous definition is here", var->declaration->source()); |
| return false; |
| } |
| } |
| auto it = symbol_to_function_.find(sym); |
| if (it != symbol_to_function_.end()) { |
| AddError("redefinition of '" + builder_->Symbols().NameFor(sym) + "'", |
| source); |
| AddNote("previous definition is here", it->second->declaration->source()); |
| return false; |
| } |
| } else { |
| VariableInfo* var; |
| if (variable_stack_.get(sym, &var)) { |
| AddError("redefinition of '" + builder_->Symbols().NameFor(sym) + "'", |
| source); |
| AddNote("previous definition is here", var->declaration->source()); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool Resolver::ValidateNoDuplicateDecorations( |
| const ast::DecorationList& decorations) { |
| std::unordered_map<const TypeInfo*, Source> seen; |
| for (auto* d : decorations) { |
| auto res = seen.emplace(&d->TypeInfo(), d->source()); |
| if (!res.second && !d->Is<ast::InternalDecoration>()) { |
| AddError("duplicate " + d->name() + " decoration", d->source()); |
| AddNote("first decoration declared here", res.first->second); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool Resolver::ApplyStorageClassUsageToType(ast::StorageClass sc, |
| sem::Type* ty, |
| const Source& usage) { |
| ty = const_cast<sem::Type*>(ty->UnwrapRef()); |
| |
| if (auto* str = ty->As<sem::Struct>()) { |
| if (str->StorageClassUsage().count(sc)) { |
| return true; // Already applied |
| } |
| |
| str->AddUsage(sc); |
| |
| for (auto* member : str->Members()) { |
| if (!ApplyStorageClassUsageToType(sc, member->Type(), usage)) { |
| std::stringstream err; |
| err << "while analysing structure member " |
| << str->FriendlyName(builder_->Symbols()) << "." |
| << builder_->Symbols().NameFor(member->Declaration()->symbol()); |
| AddNote(err.str(), member->Declaration()->source()); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| if (auto* arr = ty->As<sem::Array>()) { |
| return ApplyStorageClassUsageToType( |
| sc, const_cast<sem::Type*>(arr->ElemType()), usage); |
| } |
| |
| if (ast::IsHostShareable(sc) && !IsHostShareable(ty)) { |
| std::stringstream err; |
| err << "Type '" << ty->FriendlyName(builder_->Symbols()) |
| << "' cannot be used in storage class '" << sc |
| << "' as it is non-host-shareable"; |
| AddError(err.str(), usage); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| template <typename F> |
| bool Resolver::Scope(sem::CompoundStatement* stmt, F&& callback) { |
| auto* prev_current_statement = current_statement_; |
| auto* prev_current_compound_statement = current_compound_statement_; |
| auto* prev_current_block = current_block_; |
| current_statement_ = stmt; |
| current_compound_statement_ = stmt; |
| current_block_ = stmt->As<sem::BlockStatement>(); |
| variable_stack_.push_scope(); |
| |
| TINT_DEFER({ |
| TINT_DEFER(variable_stack_.pop_scope()); |
| current_block_ = prev_current_block; |
| current_compound_statement_ = prev_current_compound_statement; |
| current_statement_ = prev_current_statement; |
| }); |
| |
| return callback(); |
| } |
| |
| std::string Resolver::VectorPretty(uint32_t size, |
| const sem::Type* element_type) { |
| sem::Vector vec_type(element_type, size); |
| return vec_type.FriendlyName(builder_->Symbols()); |
| } |
| |
| void Resolver::Mark(const ast::Node* node) { |
| if (node == nullptr) { |
| TINT_ICE(Resolver, diagnostics_) << "Resolver::Mark() called with nullptr"; |
| } |
| if (marked_.emplace(node).second) { |
| return; |
| } |
| TINT_ICE(Resolver, diagnostics_) |
| << "AST node '" << node->TypeInfo().name |
| << "' was encountered twice in the same AST of a Program\n" |
| << "At: " << node->source() << "\n" |
| << "Content: " << builder_->str(node) << "\n" |
| << "Pointer: " << node; |
| } |
| |
| void Resolver::AddError(const std::string& msg, const Source& source) const { |
| diagnostics_.add_error(diag::System::Resolver, msg, source); |
| } |
| |
| void Resolver::AddWarning(const std::string& msg, const Source& source) const { |
| diagnostics_.add_warning(diag::System::Resolver, msg, source); |
| } |
| |
| void Resolver::AddNote(const std::string& msg, const Source& source) const { |
| diagnostics_.add_note(diag::System::Resolver, msg, source); |
| } |
| |
| Resolver::VariableInfo::VariableInfo(const ast::Variable* decl, |
| sem::Type* ty, |
| const std::string& tn, |
| ast::StorageClass sc, |
| ast::Access ac, |
| VariableKind k, |
| uint32_t idx) |
| : declaration(decl), |
| type(ty), |
| type_name(tn), |
| storage_class(sc), |
| access(ac), |
| kind(k), |
| index(idx) {} |
| |
| Resolver::VariableInfo::~VariableInfo() = default; |
| |
| Resolver::FunctionInfo::FunctionInfo(ast::Function* decl) : declaration(decl) {} |
| Resolver::FunctionInfo::~FunctionInfo() = default; |
| |
| } // namespace resolver |
| } // namespace tint |