| /// Copyright 2020 The Tint Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "src/writer/hlsl/generator_impl.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <iomanip> |
| #include <set> |
| #include <utility> |
| #include <vector> |
| |
| #include "src/ast/call_statement.h" |
| #include "src/ast/fallthrough_statement.h" |
| #include "src/ast/internal_decoration.h" |
| #include "src/ast/interpolate_decoration.h" |
| #include "src/ast/override_decoration.h" |
| #include "src/ast/variable_decl_statement.h" |
| #include "src/debug.h" |
| #include "src/sem/array.h" |
| #include "src/sem/atomic_type.h" |
| #include "src/sem/block_statement.h" |
| #include "src/sem/call.h" |
| #include "src/sem/depth_multisampled_texture_type.h" |
| #include "src/sem/depth_texture_type.h" |
| #include "src/sem/function.h" |
| #include "src/sem/member_accessor_expression.h" |
| #include "src/sem/multisampled_texture_type.h" |
| #include "src/sem/sampled_texture_type.h" |
| #include "src/sem/statement.h" |
| #include "src/sem/storage_texture_type.h" |
| #include "src/sem/struct.h" |
| #include "src/sem/variable.h" |
| #include "src/transform/add_empty_entry_point.h" |
| #include "src/transform/calculate_array_length.h" |
| #include "src/transform/canonicalize_entry_point_io.h" |
| #include "src/transform/decompose_memory_access.h" |
| #include "src/transform/external_texture_transform.h" |
| #include "src/transform/fold_trivial_single_use_lets.h" |
| #include "src/transform/inline_pointer_lets.h" |
| #include "src/transform/loop_to_for_loop.h" |
| #include "src/transform/manager.h" |
| #include "src/transform/num_workgroups_from_uniform.h" |
| #include "src/transform/pad_array_elements.h" |
| #include "src/transform/promote_initializers_to_const_var.h" |
| #include "src/transform/simplify.h" |
| #include "src/transform/zero_init_workgroup_memory.h" |
| #include "src/utils/defer.h" |
| #include "src/utils/get_or_create.h" |
| #include "src/utils/scoped_assignment.h" |
| #include "src/writer/append_vector.h" |
| #include "src/writer/float_to_string.h" |
| |
| namespace tint { |
| namespace writer { |
| namespace hlsl { |
| namespace { |
| |
| const char kTempNamePrefix[] = "tint_tmp"; |
| const char kSpecConstantPrefix[] = "WGSL_SPEC_CONSTANT_"; |
| |
| const char* image_format_to_rwtexture_type(ast::ImageFormat image_format) { |
| switch (image_format) { |
| case ast::ImageFormat::kRgba8Unorm: |
| case ast::ImageFormat::kRgba8Snorm: |
| case ast::ImageFormat::kRgba16Float: |
| case ast::ImageFormat::kR32Float: |
| case ast::ImageFormat::kRg32Float: |
| case ast::ImageFormat::kRgba32Float: |
| return "float4"; |
| case ast::ImageFormat::kRgba8Uint: |
| case ast::ImageFormat::kRgba16Uint: |
| case ast::ImageFormat::kR32Uint: |
| case ast::ImageFormat::kRg32Uint: |
| case ast::ImageFormat::kRgba32Uint: |
| return "uint4"; |
| case ast::ImageFormat::kRgba8Sint: |
| case ast::ImageFormat::kRgba16Sint: |
| case ast::ImageFormat::kR32Sint: |
| case ast::ImageFormat::kRg32Sint: |
| case ast::ImageFormat::kRgba32Sint: |
| return "int4"; |
| default: |
| return nullptr; |
| } |
| } |
| |
| // Helper for writing " : register(RX, spaceY)", where R is the register, X is |
| // the binding point binding value, and Y is the binding point group value. |
| struct RegisterAndSpace { |
| RegisterAndSpace(char r, ast::Variable::BindingPoint bp) |
| : reg(r), binding_point(bp) {} |
| |
| char const reg; |
| ast::Variable::BindingPoint const binding_point; |
| }; |
| |
| std::ostream& operator<<(std::ostream& s, const RegisterAndSpace& rs) { |
| s << " : register(" << rs.reg << rs.binding_point.binding->value() |
| << ", space" << rs.binding_point.group->value() << ")"; |
| return s; |
| } |
| |
| } // namespace |
| |
| SanitizedResult Sanitize(const Program* in, |
| sem::BindingPoint root_constant_binding_point, |
| bool disable_workgroup_init) { |
| transform::Manager manager; |
| transform::DataMap data; |
| |
| // Attempt to convert `loop`s into for-loops. This is to try and massage the |
| // output into something that will not cause FXC to choke or misbehave. |
| manager.Add<transform::FoldTrivialSingleUseLets>(); |
| manager.Add<transform::LoopToForLoop>(); |
| |
| if (!disable_workgroup_init) { |
| // ZeroInitWorkgroupMemory must come before CanonicalizeEntryPointIO as |
| // ZeroInitWorkgroupMemory may inject new builtin parameters. |
| manager.Add<transform::ZeroInitWorkgroupMemory>(); |
| } |
| manager.Add<transform::CanonicalizeEntryPointIO>(); |
| // NumWorkgroupsFromUniform must come after CanonicalizeEntryPointIO, as it |
| // assumes that num_workgroups builtins only appear as struct members and are |
| // only accessed directly via member accessors. |
| manager.Add<transform::NumWorkgroupsFromUniform>(); |
| manager.Add<transform::InlinePointerLets>(); |
| // Simplify cleans up messy `*(&(expr))` expressions from InlinePointerLets. |
| manager.Add<transform::Simplify>(); |
| // DecomposeMemoryAccess must come after InlinePointerLets as we cannot take |
| // the address of calls to DecomposeMemoryAccess::Intrinsic. Must also come |
| // after Simplify, as we need to fold away the address-of and defers of |
| // `*(&(intrinsic_load()))` expressions. |
| manager.Add<transform::DecomposeMemoryAccess>(); |
| // CalculateArrayLength must come after DecomposeMemoryAccess, as |
| // DecomposeMemoryAccess special-cases the arrayLength() intrinsic, which |
| // will be transformed by CalculateArrayLength |
| manager.Add<transform::CalculateArrayLength>(); |
| manager.Add<transform::ExternalTextureTransform>(); |
| manager.Add<transform::PromoteInitializersToConstVar>(); |
| manager.Add<transform::PadArrayElements>(); |
| manager.Add<transform::AddEmptyEntryPoint>(); |
| |
| data.Add<transform::CanonicalizeEntryPointIO::Config>( |
| transform::CanonicalizeEntryPointIO::ShaderStyle::kHlsl); |
| data.Add<transform::NumWorkgroupsFromUniform::Config>( |
| root_constant_binding_point); |
| |
| SanitizedResult result; |
| result.program = std::move(manager.Run(in, data).program); |
| return result; |
| } |
| |
| GeneratorImpl::GeneratorImpl(const Program* program) : TextGenerator(program) {} |
| |
| GeneratorImpl::~GeneratorImpl() = default; |
| |
| bool GeneratorImpl::Generate() { |
| const TypeInfo* last_kind = nullptr; |
| size_t last_padding_line = 0; |
| |
| for (auto* decl : builder_.AST().GlobalDeclarations()) { |
| if (decl->Is<ast::Alias>()) { |
| continue; // Ignore aliases. |
| } |
| |
| // Emit a new line between declarations if the type of declaration has |
| // changed, or we're about to emit a function |
| auto* kind = &decl->TypeInfo(); |
| if (current_buffer_->lines.size() != last_padding_line) { |
| if (last_kind && (last_kind != kind || decl->Is<ast::Function>())) { |
| line(); |
| last_padding_line = current_buffer_->lines.size(); |
| } |
| } |
| last_kind = kind; |
| |
| if (auto* global = decl->As<ast::Variable>()) { |
| if (!EmitGlobalVariable(global)) { |
| return false; |
| } |
| } else if (auto* str = decl->As<ast::Struct>()) { |
| auto* ty = builder_.Sem().Get(str); |
| auto storage_class_uses = ty->StorageClassUsage(); |
| if (storage_class_uses.size() != |
| (storage_class_uses.count(ast::StorageClass::kStorage) + |
| storage_class_uses.count(ast::StorageClass::kUniform))) { |
| // The structure is used as something other than a storage buffer or |
| // uniform buffer, so it needs to be emitted. |
| // Storage buffer are read and written to via a ByteAddressBuffer |
| // instead of true structure. |
| // Structures used as uniform buffer are read from an array of vectors |
| // instead of true structure. |
| if (!EmitStructType(current_buffer_, ty)) { |
| return false; |
| } |
| } |
| } else if (auto* func = decl->As<ast::Function>()) { |
| if (func->IsEntryPoint()) { |
| if (!EmitEntryPointFunction(func)) { |
| return false; |
| } |
| } else { |
| if (!EmitFunction(func)) { |
| return false; |
| } |
| } |
| } else { |
| TINT_ICE(Writer, diagnostics_) |
| << "unhandled module-scope declaration: " << decl->TypeInfo().name; |
| return false; |
| } |
| } |
| |
| if (!helpers_.lines.empty()) { |
| current_buffer_->Insert(helpers_, 0, 0); |
| } |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitDynamicVectorAssignment( |
| const ast::AssignmentStatement* stmt, |
| const sem::Vector* vec) { |
| auto name = |
| utils::GetOrCreate(dynamic_vector_write_, vec, [&]() -> std::string { |
| std::string fn; |
| { |
| std::ostringstream ss; |
| if (!EmitType(ss, vec, tint::ast::StorageClass::kInvalid, |
| ast::Access::kUndefined, "")) { |
| return ""; |
| } |
| fn = UniqueIdentifier("set_" + ss.str()); |
| } |
| { |
| auto out = line(&helpers_); |
| out << "void " << fn << "(inout "; |
| if (!EmitTypeAndName(out, vec, ast::StorageClass::kInvalid, |
| ast::Access::kUndefined, "vec")) { |
| return ""; |
| } |
| out << ", int idx, "; |
| if (!EmitTypeAndName(out, vec->type(), ast::StorageClass::kInvalid, |
| ast::Access::kUndefined, "val")) { |
| return ""; |
| } |
| out << ") {"; |
| } |
| { |
| ScopedIndent si(&helpers_); |
| auto out = line(&helpers_); |
| switch (vec->Width()) { |
| case 2: |
| out << "vec = (idx.xx == int2(0, 1)) ? val.xx : vec;"; |
| break; |
| case 3: |
| out << "vec = (idx.xxx == int3(0, 1, 2)) ? val.xxx : vec;"; |
| break; |
| case 4: |
| out << "vec = (idx.xxxx == int4(0, 1, 2, 3)) ? val.xxxx : vec;"; |
| break; |
| default: |
| TINT_UNREACHABLE(Writer, builder_.Diagnostics()) |
| << "invalid vector size " << vec->Width(); |
| break; |
| } |
| } |
| line(&helpers_) << "}"; |
| line(&helpers_); |
| return fn; |
| }); |
| |
| if (name.empty()) { |
| return false; |
| } |
| |
| auto* ast_access_expr = stmt->lhs()->As<ast::ArrayAccessorExpression>(); |
| |
| auto out = line(); |
| out << name << "("; |
| if (!EmitExpression(out, ast_access_expr->array())) { |
| return false; |
| } |
| out << ", "; |
| if (!EmitExpression(out, ast_access_expr->idx_expr())) { |
| return false; |
| } |
| out << ", "; |
| if (!EmitExpression(out, stmt->rhs())) { |
| return false; |
| } |
| out << ");"; |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitArrayAccessor(std::ostream& out, |
| ast::ArrayAccessorExpression* expr) { |
| if (!EmitExpression(out, expr->array())) { |
| return false; |
| } |
| out << "["; |
| |
| if (!EmitExpression(out, expr->idx_expr())) { |
| return false; |
| } |
| out << "]"; |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitBitcast(std::ostream& out, |
| ast::BitcastExpression* expr) { |
| auto* type = TypeOf(expr); |
| if (auto* vec = type->UnwrapRef()->As<sem::Vector>()) { |
| type = vec->type(); |
| } |
| |
| if (!type->is_integer_scalar() && !type->is_float_scalar()) { |
| diagnostics_.add_error(diag::System::Writer, |
| "Unable to do bitcast to type " + type->type_name()); |
| return false; |
| } |
| |
| out << "as"; |
| if (!EmitType(out, type, ast::StorageClass::kNone, ast::Access::kReadWrite, |
| "")) { |
| return false; |
| } |
| out << "("; |
| if (!EmitExpression(out, expr->expr())) { |
| return false; |
| } |
| out << ")"; |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitAssign(ast::AssignmentStatement* stmt) { |
| if (auto* idx = stmt->lhs()->As<ast::ArrayAccessorExpression>()) { |
| if (auto* vec = TypeOf(idx->array())->UnwrapRef()->As<sem::Vector>()) { |
| auto* rhs_sem = builder_.Sem().Get(idx->idx_expr()); |
| if (!rhs_sem->ConstantValue().IsValid()) { |
| return EmitDynamicVectorAssignment(stmt, vec); |
| } |
| } |
| } |
| |
| auto out = line(); |
| if (!EmitExpression(out, stmt->lhs())) { |
| return false; |
| } |
| out << " = "; |
| if (!EmitExpression(out, stmt->rhs())) { |
| return false; |
| } |
| out << ";"; |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitBinary(std::ostream& out, ast::BinaryExpression* expr) { |
| if (expr->op() == ast::BinaryOp::kLogicalAnd || |
| expr->op() == ast::BinaryOp::kLogicalOr) { |
| auto name = UniqueIdentifier(kTempNamePrefix); |
| |
| { |
| auto pre = line(); |
| pre << "bool " << name << " = "; |
| if (!EmitExpression(pre, expr->lhs())) { |
| return false; |
| } |
| pre << ";"; |
| } |
| |
| if (expr->op() == ast::BinaryOp::kLogicalOr) { |
| line() << "if (!" << name << ") {"; |
| } else { |
| line() << "if (" << name << ") {"; |
| } |
| |
| { |
| ScopedIndent si(this); |
| auto pre = line(); |
| pre << name << " = "; |
| if (!EmitExpression(pre, expr->rhs())) { |
| return false; |
| } |
| pre << ";"; |
| } |
| |
| line() << "}"; |
| |
| out << "(" << name << ")"; |
| return true; |
| } |
| |
| auto* lhs_type = TypeOf(expr->lhs())->UnwrapRef(); |
| auto* rhs_type = TypeOf(expr->rhs())->UnwrapRef(); |
| // Multiplying by a matrix requires the use of `mul` in order to get the |
| // type of multiply we desire. |
| if (expr->op() == ast::BinaryOp::kMultiply && |
| ((lhs_type->Is<sem::Vector>() && rhs_type->Is<sem::Matrix>()) || |
| (lhs_type->Is<sem::Matrix>() && rhs_type->Is<sem::Vector>()) || |
| (lhs_type->Is<sem::Matrix>() && rhs_type->Is<sem::Matrix>()))) { |
| // Matrices are transposed, so swap LHS and RHS. |
| out << "mul("; |
| if (!EmitExpression(out, expr->rhs())) { |
| return false; |
| } |
| out << ", "; |
| if (!EmitExpression(out, expr->lhs())) { |
| return false; |
| } |
| out << ")"; |
| |
| return true; |
| } |
| |
| out << "("; |
| TINT_DEFER(out << ")"); |
| |
| if (!EmitExpression(out, expr->lhs())) { |
| return false; |
| } |
| out << " "; |
| |
| switch (expr->op()) { |
| case ast::BinaryOp::kAnd: |
| out << "&"; |
| break; |
| case ast::BinaryOp::kOr: |
| out << "|"; |
| break; |
| case ast::BinaryOp::kXor: |
| out << "^"; |
| break; |
| case ast::BinaryOp::kLogicalAnd: |
| case ast::BinaryOp::kLogicalOr: { |
| // These are both handled above. |
| TINT_UNREACHABLE(Writer, diagnostics_); |
| return false; |
| } |
| case ast::BinaryOp::kEqual: |
| out << "=="; |
| break; |
| case ast::BinaryOp::kNotEqual: |
| out << "!="; |
| break; |
| case ast::BinaryOp::kLessThan: |
| out << "<"; |
| break; |
| case ast::BinaryOp::kGreaterThan: |
| out << ">"; |
| break; |
| case ast::BinaryOp::kLessThanEqual: |
| out << "<="; |
| break; |
| case ast::BinaryOp::kGreaterThanEqual: |
| out << ">="; |
| break; |
| case ast::BinaryOp::kShiftLeft: |
| out << "<<"; |
| break; |
| case ast::BinaryOp::kShiftRight: |
| // TODO(dsinclair): MSL is based on C++14, and >> in C++14 has |
| // implementation-defined behaviour for negative LHS. We may have to |
| // generate extra code to implement WGSL-specified behaviour for negative |
| // LHS. |
| out << R"(>>)"; |
| break; |
| |
| case ast::BinaryOp::kAdd: |
| out << "+"; |
| break; |
| case ast::BinaryOp::kSubtract: |
| out << "-"; |
| break; |
| case ast::BinaryOp::kMultiply: |
| out << "*"; |
| break; |
| case ast::BinaryOp::kDivide: |
| out << "/"; |
| |
| if (auto val = program_->Sem().Get(expr->rhs())->ConstantValue()) { |
| // Integer divide by zero is a DXC compile error, and undefined behavior |
| // in WGSL. Replace the 0 with 1. |
| if (val.Type()->Is<sem::I32>() && val.Elements()[0].i32 == 0) { |
| out << " 1"; |
| return true; |
| } |
| if (val.Type()->Is<sem::U32>() && val.Elements()[0].u32 == 0u) { |
| out << " 1u"; |
| return true; |
| } |
| } |
| break; |
| case ast::BinaryOp::kModulo: |
| out << "%"; |
| break; |
| case ast::BinaryOp::kNone: |
| diagnostics_.add_error(diag::System::Writer, |
| "missing binary operation type"); |
| return false; |
| } |
| out << " "; |
| |
| if (!EmitExpression(out, expr->rhs())) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitStatements(const ast::StatementList& stmts) { |
| for (auto* s : stmts) { |
| if (!EmitStatement(s)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitStatementsWithIndent(const ast::StatementList& stmts) { |
| ScopedIndent si(this); |
| return EmitStatements(stmts); |
| } |
| |
| bool GeneratorImpl::EmitBlock(const ast::BlockStatement* stmt) { |
| line() << "{"; |
| if (!EmitStatementsWithIndent(stmt->statements())) { |
| return false; |
| } |
| line() << "}"; |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitBreak(ast::BreakStatement*) { |
| line() << "break;"; |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitCall(std::ostream& out, ast::CallExpression* expr) { |
| const auto& params = expr->params(); |
| auto* ident = expr->func(); |
| auto* call = builder_.Sem().Get(expr); |
| auto* target = call->Target(); |
| |
| if (auto* func = target->As<sem::Function>()) { |
| if (ast::HasDecoration< |
| transform::CalculateArrayLength::BufferSizeIntrinsic>( |
| func->Declaration()->decorations())) { |
| // Special function generated by the CalculateArrayLength transform for |
| // calling X.GetDimensions(Y) |
| if (!EmitExpression(out, params[0])) { |
| return false; |
| } |
| out << ".GetDimensions("; |
| if (!EmitExpression(out, params[1])) { |
| return false; |
| } |
| out << ")"; |
| return true; |
| } |
| |
| if (auto* intrinsic = |
| ast::GetDecoration<transform::DecomposeMemoryAccess::Intrinsic>( |
| func->Declaration()->decorations())) { |
| switch (intrinsic->storage_class) { |
| case ast::StorageClass::kUniform: |
| return EmitUniformBufferAccess(out, expr, intrinsic); |
| case ast::StorageClass::kStorage: |
| return EmitStorageBufferAccess(out, expr, intrinsic); |
| default: |
| TINT_UNREACHABLE(Writer, diagnostics_) |
| << "unsupported DecomposeMemoryAccess::Intrinsic storage class:" |
| << intrinsic->storage_class; |
| return false; |
| } |
| } |
| } |
| |
| if (auto* intrinsic = call->Target()->As<sem::Intrinsic>()) { |
| if (intrinsic->IsTexture()) { |
| return EmitTextureCall(out, expr, intrinsic); |
| } else if (intrinsic->Type() == sem::IntrinsicType::kSelect) { |
| return EmitSelectCall(out, expr); |
| } else if (intrinsic->Type() == sem::IntrinsicType::kModf) { |
| return EmitModfCall(out, expr, intrinsic); |
| } else if (intrinsic->Type() == sem::IntrinsicType::kFrexp) { |
| return EmitFrexpCall(out, expr, intrinsic); |
| } else if (intrinsic->Type() == sem::IntrinsicType::kIsNormal) { |
| return EmitIsNormalCall(out, expr, intrinsic); |
| } else if (intrinsic->Type() == sem::IntrinsicType::kIgnore) { |
| return EmitExpression(out, expr->params()[0]); |
| } else if (intrinsic->IsDataPacking()) { |
| return EmitDataPackingCall(out, expr, intrinsic); |
| } else if (intrinsic->IsDataUnpacking()) { |
| return EmitDataUnpackingCall(out, expr, intrinsic); |
| } else if (intrinsic->IsBarrier()) { |
| return EmitBarrierCall(out, intrinsic); |
| } else if (intrinsic->IsAtomic()) { |
| return EmitWorkgroupAtomicCall(out, expr, intrinsic); |
| } |
| auto name = generate_builtin_name(intrinsic); |
| if (name.empty()) { |
| return false; |
| } |
| |
| out << name << "("; |
| |
| bool first = true; |
| for (auto* param : params) { |
| if (!first) { |
| out << ", "; |
| } |
| first = false; |
| |
| if (!EmitExpression(out, param)) { |
| return false; |
| } |
| } |
| |
| out << ")"; |
| return true; |
| } |
| |
| auto name = builder_.Symbols().NameFor(ident->symbol()); |
| auto caller_sym = ident->symbol(); |
| |
| auto* func = builder_.AST().Functions().Find(ident->symbol()); |
| if (func == nullptr) { |
| diagnostics_.add_error(diag::System::Writer, |
| "Unable to find function: " + |
| builder_.Symbols().NameFor(ident->symbol())); |
| return false; |
| } |
| |
| out << name << "("; |
| |
| bool first = true; |
| for (auto* param : params) { |
| if (!first) { |
| out << ", "; |
| } |
| first = false; |
| |
| if (!EmitExpression(out, param)) { |
| return false; |
| } |
| } |
| |
| out << ")"; |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitUniformBufferAccess( |
| std::ostream& out, |
| ast::CallExpression* expr, |
| const transform::DecomposeMemoryAccess::Intrinsic* intrinsic) { |
| const auto& params = expr->params(); |
| auto* offset_arg = builder_.Sem().Get(params[1]); |
| |
| uint32_t scalar_offset_value = 0; |
| std::string scalar_offset_expr; |
| |
| // If true, use scalar_offset_value, otherwise use scalar_offset_expr |
| bool scalar_offset_constant = false; |
| |
| if (auto val = offset_arg->ConstantValue()) { |
| TINT_ASSERT(Writer, val.Type()->Is<sem::U32>()); |
| scalar_offset_value = val.Elements()[0].u32; |
| scalar_offset_value /= 4; // bytes -> scalar index |
| scalar_offset_constant = true; |
| } |
| |
| if (!scalar_offset_constant) { |
| // UBO offset not compile-time known. |
| // Calculate the scalar offset into a temporary. |
| scalar_offset_expr = UniqueIdentifier("scalar_offset"); |
| auto pre = line(); |
| pre << "const uint " << scalar_offset_expr << " = ("; |
| if (!EmitExpression(pre, params[1])) { // offset |
| return false; |
| } |
| pre << ") / 4;"; |
| } |
| |
| using Op = transform::DecomposeMemoryAccess::Intrinsic::Op; |
| using DataType = transform::DecomposeMemoryAccess::Intrinsic::DataType; |
| switch (intrinsic->op) { |
| case Op::kLoad: { |
| auto cast = [&](const char* to, auto&& load) { |
| out << to << "("; |
| auto result = load(); |
| out << ")"; |
| return result; |
| }; |
| auto load_scalar = [&]() { |
| if (!EmitExpression(out, params[0])) { // buffer |
| return false; |
| } |
| if (scalar_offset_constant) { |
| char swizzle[] = {'x', 'y', 'z', 'w'}; |
| out << "[" << (scalar_offset_value / 4) << "]." |
| << swizzle[scalar_offset_value & 3]; |
| } else { |
| out << "[" << scalar_offset_expr << " / 4][" << scalar_offset_expr |
| << " % 4]"; |
| } |
| return true; |
| }; |
| // Has a minimum alignment of 8 bytes, so is either .xy or .zw |
| auto load_vec2 = [&] { |
| if (scalar_offset_constant) { |
| if (!EmitExpression(out, params[0])) { // buffer |
| return false; |
| } |
| out << "[" << (scalar_offset_value / 4) << "]"; |
| out << ((scalar_offset_value & 2) == 0 ? ".xy" : ".zw"); |
| } else { |
| std::string ubo_load = UniqueIdentifier("ubo_load"); |
| { |
| auto pre = line(); |
| pre << "uint4 " << ubo_load << " = "; |
| if (!EmitExpression(pre, params[0])) { // buffer |
| return false; |
| } |
| pre << "[" << scalar_offset_expr << " / 4];"; |
| } |
| out << "((" << scalar_offset_expr << " & 2) ? " << ubo_load |
| << ".zw : " << ubo_load << ".xy)"; |
| } |
| return true; |
| }; |
| // vec4 has a minimum alignment of 16 bytes, easiest case |
| auto load_vec4 = [&] { |
| if (!EmitExpression(out, params[0])) { // buffer |
| return false; |
| } |
| if (scalar_offset_constant) { |
| out << "[" << (scalar_offset_value / 4) << "]"; |
| } else { |
| out << "[" << scalar_offset_expr << " / 4]"; |
| } |
| return true; |
| }; |
| // vec3 has a minimum alignment of 16 bytes, so is just a .xyz swizzle |
| auto load_vec3 = [&] { |
| if (!load_vec4()) { |
| return false; |
| } |
| out << ".xyz"; |
| return true; |
| }; |
| switch (intrinsic->type) { |
| case DataType::kU32: |
| return load_scalar(); |
| case DataType::kF32: |
| return cast("asfloat", load_scalar); |
| case DataType::kI32: |
| return cast("asint", load_scalar); |
| case DataType::kVec2U32: |
| return load_vec2(); |
| case DataType::kVec2F32: |
| return cast("asfloat", load_vec2); |
| case DataType::kVec2I32: |
| return cast("asint", load_vec2); |
| case DataType::kVec3U32: |
| return load_vec3(); |
| case DataType::kVec3F32: |
| return cast("asfloat", load_vec3); |
| case DataType::kVec3I32: |
| return cast("asint", load_vec3); |
| case DataType::kVec4U32: |
| return load_vec4(); |
| case DataType::kVec4F32: |
| return cast("asfloat", load_vec4); |
| case DataType::kVec4I32: |
| return cast("asint", load_vec4); |
| } |
| TINT_UNREACHABLE(Writer, diagnostics_) |
| << "unsupported DecomposeMemoryAccess::Intrinsic::DataType: " |
| << static_cast<int>(intrinsic->type); |
| return false; |
| } |
| default: |
| break; |
| } |
| TINT_UNREACHABLE(Writer, diagnostics_) |
| << "unsupported DecomposeMemoryAccess::Intrinsic::Op: " |
| << static_cast<int>(intrinsic->op); |
| return false; |
| } |
| |
| bool GeneratorImpl::EmitStorageBufferAccess( |
| std::ostream& out, |
| ast::CallExpression* expr, |
| const transform::DecomposeMemoryAccess::Intrinsic* intrinsic) { |
| const auto& params = expr->params(); |
| |
| using Op = transform::DecomposeMemoryAccess::Intrinsic::Op; |
| using DataType = transform::DecomposeMemoryAccess::Intrinsic::DataType; |
| switch (intrinsic->op) { |
| case Op::kLoad: { |
| auto load = [&](const char* cast, int n) { |
| if (cast) { |
| out << cast << "("; |
| } |
| if (!EmitExpression(out, params[0])) { // buffer |
| return false; |
| } |
| out << ".Load"; |
| if (n > 1) { |
| out << n; |
| } |
| ScopedParen sp(out); |
| if (!EmitExpression(out, params[1])) { // offset |
| return false; |
| } |
| if (cast) { |
| out << ")"; |
| } |
| return true; |
| }; |
| switch (intrinsic->type) { |
| case DataType::kU32: |
| return load(nullptr, 1); |
| case DataType::kF32: |
| return load("asfloat", 1); |
| case DataType::kI32: |
| return load("asint", 1); |
| case DataType::kVec2U32: |
| return load(nullptr, 2); |
| case DataType::kVec2F32: |
| return load("asfloat", 2); |
| case DataType::kVec2I32: |
| return load("asint", 2); |
| case DataType::kVec3U32: |
| return load(nullptr, 3); |
| case DataType::kVec3F32: |
| return load("asfloat", 3); |
| case DataType::kVec3I32: |
| return load("asint", 3); |
| case DataType::kVec4U32: |
| return load(nullptr, 4); |
| case DataType::kVec4F32: |
| return load("asfloat", 4); |
| case DataType::kVec4I32: |
| return load("asint", 4); |
| } |
| TINT_UNREACHABLE(Writer, diagnostics_) |
| << "unsupported DecomposeMemoryAccess::Intrinsic::DataType: " |
| << static_cast<int>(intrinsic->type); |
| return false; |
| } |
| |
| case Op::kStore: { |
| auto store = [&](int n) { |
| if (!EmitExpression(out, params[0])) { // buffer |
| return false; |
| } |
| out << ".Store"; |
| if (n > 1) { |
| out << n; |
| } |
| ScopedParen sp1(out); |
| if (!EmitExpression(out, params[1])) { // offset |
| return false; |
| } |
| out << ", asuint"; |
| ScopedParen sp2(out); |
| if (!EmitExpression(out, params[2])) { // value |
| return false; |
| } |
| return true; |
| }; |
| switch (intrinsic->type) { |
| case DataType::kU32: |
| return store(1); |
| case DataType::kF32: |
| return store(1); |
| case DataType::kI32: |
| return store(1); |
| case DataType::kVec2U32: |
| return store(2); |
| case DataType::kVec2F32: |
| return store(2); |
| case DataType::kVec2I32: |
| return store(2); |
| case DataType::kVec3U32: |
| return store(3); |
| case DataType::kVec3F32: |
| return store(3); |
| case DataType::kVec3I32: |
| return store(3); |
| case DataType::kVec4U32: |
| return store(4); |
| case DataType::kVec4F32: |
| return store(4); |
| case DataType::kVec4I32: |
| return store(4); |
| } |
| TINT_UNREACHABLE(Writer, diagnostics_) |
| << "unsupported DecomposeMemoryAccess::Intrinsic::DataType: " |
| << static_cast<int>(intrinsic->type); |
| return false; |
| } |
| |
| case Op::kAtomicLoad: |
| case Op::kAtomicStore: |
| case Op::kAtomicAdd: |
| case Op::kAtomicSub: |
| case Op::kAtomicMax: |
| case Op::kAtomicMin: |
| case Op::kAtomicAnd: |
| case Op::kAtomicOr: |
| case Op::kAtomicXor: |
| case Op::kAtomicExchange: |
| case Op::kAtomicCompareExchangeWeak: |
| return EmitStorageAtomicCall(out, expr, intrinsic); |
| } |
| |
| TINT_UNREACHABLE(Writer, diagnostics_) |
| << "unsupported DecomposeMemoryAccess::Intrinsic::Op: " |
| << static_cast<int>(intrinsic->op); |
| return false; |
| } |
| |
| bool GeneratorImpl::EmitStorageAtomicCall( |
| std::ostream& out, |
| ast::CallExpression* expr, |
| const transform::DecomposeMemoryAccess::Intrinsic* intrinsic) { |
| using Op = transform::DecomposeMemoryAccess::Intrinsic::Op; |
| |
| auto* result_ty = TypeOf(expr); |
| |
| auto& buf = helpers_; |
| |
| // generate_helper() generates a helper function that translates the |
| // DecomposeMemoryAccess::Intrinsic call into the corresponding HLSL |
| // atomic intrinsic function. |
| auto generate_helper = [&]() -> std::string { |
| auto rmw = [&](const char* wgsl, const char* hlsl) -> std::string { |
| auto name = UniqueIdentifier(wgsl); |
| { |
| auto fn = line(&buf); |
| if (!EmitTypeAndName(fn, result_ty, ast::StorageClass::kNone, |
| ast::Access::kUndefined, name)) { |
| return ""; |
| } |
| fn << "(RWByteAddressBuffer buffer, uint offset, "; |
| if (!EmitTypeAndName(fn, result_ty, ast::StorageClass::kNone, |
| ast::Access::kUndefined, "value")) { |
| return ""; |
| } |
| fn << ") {"; |
| } |
| |
| buf.IncrementIndent(); |
| TINT_DEFER({ |
| buf.DecrementIndent(); |
| line(&buf) << "}"; |
| line(&buf); |
| }); |
| |
| { |
| auto l = line(&buf); |
| if (!EmitTypeAndName(l, result_ty, ast::StorageClass::kNone, |
| ast::Access::kUndefined, "original_value")) { |
| return ""; |
| } |
| l << " = 0;"; |
| } |
| { |
| auto l = line(&buf); |
| l << "buffer." << hlsl << "(offset, "; |
| if (intrinsic->op == Op::kAtomicSub) { |
| l << "-"; |
| } |
| l << "value, original_value);"; |
| } |
| line(&buf) << "return original_value;"; |
| return name; |
| }; |
| |
| switch (intrinsic->op) { |
| case Op::kAtomicAdd: |
| return rmw("atomicAdd", "InterlockedAdd"); |
| |
| case Op::kAtomicSub: |
| // Use add with the operand negated. |
| return rmw("atomicSub", "InterlockedAdd"); |
| |
| case Op::kAtomicMax: |
| return rmw("atomicMax", "InterlockedMax"); |
| |
| case Op::kAtomicMin: |
| return rmw("atomicMin", "InterlockedMin"); |
| |
| case Op::kAtomicAnd: |
| return rmw("atomicAnd", "InterlockedAnd"); |
| |
| case Op::kAtomicOr: |
| return rmw("atomicOr", "InterlockedOr"); |
| |
| case Op::kAtomicXor: |
| return rmw("atomicXor", "InterlockedXor"); |
| |
| case Op::kAtomicExchange: |
| return rmw("atomicExchange", "InterlockedExchange"); |
| |
| case Op::kAtomicLoad: { |
| // HLSL does not have an InterlockedLoad, so we emulate it with |
| // InterlockedOr using 0 as the OR value |
| auto name = UniqueIdentifier("atomicLoad"); |
| { |
| auto fn = line(&buf); |
| if (!EmitTypeAndName(fn, result_ty, ast::StorageClass::kNone, |
| ast::Access::kUndefined, name)) { |
| return ""; |
| } |
| fn << "(RWByteAddressBuffer buffer, uint offset) {"; |
| } |
| |
| buf.IncrementIndent(); |
| TINT_DEFER({ |
| buf.DecrementIndent(); |
| line(&buf) << "}"; |
| line(&buf); |
| }); |
| |
| { |
| auto l = line(&buf); |
| if (!EmitTypeAndName(l, result_ty, ast::StorageClass::kNone, |
| ast::Access::kUndefined, "value")) { |
| return ""; |
| } |
| l << " = 0;"; |
| } |
| |
| line(&buf) << "buffer.InterlockedOr(offset, 0, value);"; |
| line(&buf) << "return value;"; |
| return name; |
| } |
| case Op::kAtomicStore: { |
| // HLSL does not have an InterlockedStore, so we emulate it with |
| // InterlockedExchange and discard the returned value |
| auto* value_ty = TypeOf(expr->params()[2])->UnwrapRef(); |
| auto name = UniqueIdentifier("atomicStore"); |
| { |
| auto fn = line(&buf); |
| fn << "void " << name << "(RWByteAddressBuffer buffer, uint offset, "; |
| if (!EmitTypeAndName(fn, value_ty, ast::StorageClass::kNone, |
| ast::Access::kUndefined, "value")) { |
| return ""; |
| } |
| fn << ") {"; |
| } |
| |
| buf.IncrementIndent(); |
| TINT_DEFER({ |
| buf.DecrementIndent(); |
| line(&buf) << "}"; |
| line(&buf); |
| }); |
| |
| { |
| auto l = line(&buf); |
| if (!EmitTypeAndName(l, value_ty, ast::StorageClass::kNone, |
| ast::Access::kUndefined, "ignored")) { |
| return ""; |
| } |
| l << ";"; |
| } |
| line(&buf) << "buffer.InterlockedExchange(offset, value, ignored);"; |
| return name; |
| } |
| case Op::kAtomicCompareExchangeWeak: { |
| auto* value_ty = TypeOf(expr->params()[2])->UnwrapRef(); |
| |
| auto name = UniqueIdentifier("atomicCompareExchangeWeak"); |
| { |
| auto fn = line(&buf); |
| if (!EmitTypeAndName(fn, result_ty, ast::StorageClass::kNone, |
| ast::Access::kUndefined, name)) { |
| return ""; |
| } |
| fn << "(RWByteAddressBuffer buffer, uint offset, "; |
| if (!EmitTypeAndName(fn, value_ty, ast::StorageClass::kNone, |
| ast::Access::kUndefined, "compare")) { |
| return ""; |
| } |
| fn << ", "; |
| if (!EmitTypeAndName(fn, value_ty, ast::StorageClass::kNone, |
| ast::Access::kUndefined, "value")) { |
| return ""; |
| } |
| fn << ") {"; |
| } |
| |
| buf.IncrementIndent(); |
| TINT_DEFER({ |
| buf.DecrementIndent(); |
| line(&buf) << "}"; |
| line(&buf); |
| }); |
| |
| { // T result = {0, 0}; |
| auto l = line(&buf); |
| if (!EmitTypeAndName(l, result_ty, ast::StorageClass::kNone, |
| ast::Access::kUndefined, "result")) { |
| return ""; |
| } |
| l << " = {0, 0};"; |
| } |
| line(&buf) << "buffer.InterlockedCompareExchange(offset, compare, " |
| "value, result.x);"; |
| line(&buf) << "result.y = result.x == compare;"; |
| line(&buf) << "return result;"; |
| return name; |
| } |
| default: |
| break; |
| } |
| TINT_UNREACHABLE(Writer, diagnostics_) |
| << "unsupported atomic DecomposeMemoryAccess::Intrinsic::Op: " |
| << static_cast<int>(intrinsic->op); |
| return ""; |
| }; |
| |
| auto func = utils::GetOrCreate(dma_intrinsics_, |
| DMAIntrinsic{intrinsic->op, intrinsic->type}, |
| generate_helper); |
| if (func.empty()) { |
| return false; |
| } |
| |
| out << func; |
| { |
| ScopedParen sp(out); |
| bool first = true; |
| for (auto* arg : expr->params()) { |
| if (!first) { |
| out << ", "; |
| } |
| first = false; |
| if (!EmitExpression(out, arg)) { |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitWorkgroupAtomicCall(std::ostream& out, |
| ast::CallExpression* expr, |
| const sem::Intrinsic* intrinsic) { |
| std::string result = UniqueIdentifier("atomic_result"); |
| |
| if (!intrinsic->ReturnType()->Is<sem::Void>()) { |
| auto pre = line(); |
| if (!EmitTypeAndName(pre, intrinsic->ReturnType(), ast::StorageClass::kNone, |
| ast::Access::kUndefined, result)) { |
| return false; |
| } |
| pre << " = "; |
| if (!EmitZeroValue(pre, intrinsic->ReturnType())) { |
| return false; |
| } |
| pre << ";"; |
| } |
| |
| auto call = [&](const char* name) { |
| auto pre = line(); |
| pre << name; |
| |
| { |
| ScopedParen sp(pre); |
| for (size_t i = 0; i < expr->params().size(); i++) { |
| auto* arg = expr->params()[i]; |
| if (i > 0) { |
| pre << ", "; |
| } |
| if (i == 1 && intrinsic->Type() == sem::IntrinsicType::kAtomicSub) { |
| // Sub uses InterlockedAdd with the operand negated. |
| pre << "-"; |
| } |
| if (!EmitExpression(pre, arg)) { |
| return false; |
| } |
| } |
| |
| pre << ", " << result; |
| } |
| |
| pre << ";"; |
| |
| out << result; |
| return true; |
| }; |
| |
| switch (intrinsic->Type()) { |
| case sem::IntrinsicType::kAtomicLoad: { |
| // HLSL does not have an InterlockedLoad, so we emulate it with |
| // InterlockedOr using 0 as the OR value |
| auto pre = line(); |
| pre << "InterlockedOr"; |
| { |
| ScopedParen sp(pre); |
| if (!EmitExpression(pre, expr->params()[0])) { |
| return false; |
| } |
| pre << ", 0, " << result; |
| } |
| pre << ";"; |
| |
| out << result; |
| return true; |
| } |
| case sem::IntrinsicType::kAtomicStore: { |
| // HLSL does not have an InterlockedStore, so we emulate it with |
| // InterlockedExchange and discard the returned value |
| { // T result = 0; |
| auto pre = line(); |
| auto* value_ty = intrinsic->Parameters()[1]->Type()->UnwrapRef(); |
| if (!EmitTypeAndName(pre, value_ty, ast::StorageClass::kNone, |
| ast::Access::kUndefined, result)) { |
| return false; |
| } |
| pre << " = "; |
| if (!EmitZeroValue(pre, value_ty)) { |
| return false; |
| } |
| pre << ";"; |
| } |
| |
| out << "InterlockedExchange"; |
| { |
| ScopedParen sp(out); |
| if (!EmitExpression(out, expr->params()[0])) { |
| return false; |
| } |
| out << ", "; |
| if (!EmitExpression(out, expr->params()[1])) { |
| return false; |
| } |
| out << ", " << result; |
| } |
| return true; |
| } |
| case sem::IntrinsicType::kAtomicCompareExchangeWeak: { |
| auto* dest = expr->params()[0]; |
| auto* compare_value = expr->params()[1]; |
| auto* value = expr->params()[2]; |
| |
| std::string compare = UniqueIdentifier("atomic_compare_value"); |
| |
| { // T compare_value = <compare_value>; |
| auto pre = line(); |
| if (!EmitTypeAndName(pre, TypeOf(compare_value), |
| ast::StorageClass::kNone, ast::Access::kUndefined, |
| compare)) { |
| return false; |
| } |
| pre << " = "; |
| if (!EmitExpression(pre, compare_value)) { |
| return false; |
| } |
| pre << ";"; |
| } |
| |
| { // InterlockedCompareExchange(dst, compare, value, result.x); |
| auto pre = line(); |
| pre << "InterlockedCompareExchange"; |
| { |
| ScopedParen sp(pre); |
| if (!EmitExpression(pre, dest)) { |
| return false; |
| } |
| pre << ", " << compare << ", "; |
| if (!EmitExpression(pre, value)) { |
| return false; |
| } |
| pre << ", " << result << ".x"; |
| } |
| pre << ";"; |
| } |
| |
| { // result.y = result.x == compare; |
| line() << result << ".y = " << result << ".x == " << compare << ";"; |
| } |
| |
| out << result; |
| return true; |
| } |
| |
| case sem::IntrinsicType::kAtomicAdd: |
| case sem::IntrinsicType::kAtomicSub: |
| return call("InterlockedAdd"); |
| |
| case sem::IntrinsicType::kAtomicMax: |
| return call("InterlockedMax"); |
| |
| case sem::IntrinsicType::kAtomicMin: |
| return call("InterlockedMin"); |
| |
| case sem::IntrinsicType::kAtomicAnd: |
| return call("InterlockedAnd"); |
| |
| case sem::IntrinsicType::kAtomicOr: |
| return call("InterlockedOr"); |
| |
| case sem::IntrinsicType::kAtomicXor: |
| return call("InterlockedXor"); |
| |
| case sem::IntrinsicType::kAtomicExchange: |
| return call("InterlockedExchange"); |
| |
| default: |
| break; |
| } |
| |
| TINT_UNREACHABLE(Writer, diagnostics_) |
| << "unsupported atomic intrinsic: " << intrinsic->Type(); |
| return false; |
| } |
| |
| bool GeneratorImpl::EmitSelectCall(std::ostream& out, |
| ast::CallExpression* expr) { |
| auto* expr_false = expr->params()[0]; |
| auto* expr_true = expr->params()[1]; |
| auto* expr_cond = expr->params()[2]; |
| ScopedParen paren(out); |
| if (!EmitExpression(out, expr_cond)) { |
| return false; |
| } |
| |
| out << " ? "; |
| |
| if (!EmitExpression(out, expr_true)) { |
| return false; |
| } |
| |
| out << " : "; |
| |
| if (!EmitExpression(out, expr_false)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitModfCall(std::ostream& out, |
| ast::CallExpression* expr, |
| const sem::Intrinsic* intrinsic) { |
| if (expr->params().size() == 1) { |
| return CallIntrinsicHelper( |
| out, expr, intrinsic, |
| [&](TextBuffer* b, const std::vector<std::string>& params) { |
| auto* ty = intrinsic->Parameters()[0]->Type(); |
| auto in = params[0]; |
| |
| std::string width; |
| if (auto* vec = ty->As<sem::Vector>()) { |
| width = std::to_string(vec->Width()); |
| } |
| |
| // Emit the builtin return type unique to this overload. This does not |
| // exist in the AST, so it will not be generated in Generate(). |
| if (!EmitStructType(&helpers_, |
| intrinsic->ReturnType()->As<sem::Struct>())) { |
| return false; |
| } |
| |
| line(b) << "float" << width << " whole;"; |
| line(b) << "float" << width << " fract = modf(" << in << ", whole);"; |
| { |
| auto l = line(b); |
| if (!EmitType(l, intrinsic->ReturnType(), ast::StorageClass::kNone, |
| ast::Access::kUndefined, "")) { |
| return false; |
| } |
| l << " result = {fract, whole};"; |
| } |
| line(b) << "return result;"; |
| return true; |
| }); |
| } |
| |
| // DEPRECATED |
| out << "modf"; |
| ScopedParen sp(out); |
| if (!EmitExpression(out, expr->params()[0])) { |
| return false; |
| } |
| out << ", "; |
| if (!EmitExpression(out, expr->params()[1])) { |
| return false; |
| } |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitFrexpCall(std::ostream& out, |
| ast::CallExpression* expr, |
| const sem::Intrinsic* intrinsic) { |
| if (expr->params().size() == 1) { |
| return CallIntrinsicHelper( |
| out, expr, intrinsic, |
| [&](TextBuffer* b, const std::vector<std::string>& params) { |
| auto* ty = intrinsic->Parameters()[0]->Type(); |
| auto in = params[0]; |
| |
| std::string width; |
| if (auto* vec = ty->As<sem::Vector>()) { |
| width = std::to_string(vec->Width()); |
| } |
| |
| // Emit the builtin return type unique to this overload. This does not |
| // exist in the AST, so it will not be generated in Generate(). |
| if (!EmitStructType(&helpers_, |
| intrinsic->ReturnType()->As<sem::Struct>())) { |
| return false; |
| } |
| |
| line(b) << "float" << width << " exp;"; |
| line(b) << "float" << width << " sig = frexp(" << in << ", exp);"; |
| { |
| auto l = line(b); |
| if (!EmitType(l, intrinsic->ReturnType(), ast::StorageClass::kNone, |
| ast::Access::kUndefined, "")) { |
| return false; |
| } |
| l << " result = {sig, int" << width << "(exp)};"; |
| } |
| line(b) << "return result;"; |
| return true; |
| }); |
| } |
| // DEPRECATED |
| // Exponent is an integer in WGSL, but HLSL wants a float. |
| // We need to make the call with a temporary float, and then cast. |
| return CallIntrinsicHelper( |
| out, expr, intrinsic, |
| [&](TextBuffer* b, const std::vector<std::string>& params) { |
| auto* significand_ty = intrinsic->Parameters()[0]->Type(); |
| auto significand = params[0]; |
| auto* exponent_ty = intrinsic->Parameters()[1]->Type(); |
| auto exponent = params[1]; |
| |
| std::string width; |
| if (auto* vec = significand_ty->As<sem::Vector>()) { |
| width = std::to_string(vec->Width()); |
| } |
| |
| // Exponent is an integer, which HLSL does not have an overload for. |
| // We need to cast from a float. |
| line(b) << "float" << width << " float_exp;"; |
| line(b) << "float" << width << " significand = frexp(" << significand |
| << ", float_exp);"; |
| { |
| auto l = line(b); |
| l << exponent << " = "; |
| if (!EmitType(l, exponent_ty->UnwrapPtr(), ast::StorageClass::kNone, |
| ast::Access::kUndefined, "")) { |
| return false; |
| } |
| l << "(float_exp);"; |
| } |
| line(b) << "return significand;"; |
| return true; |
| }); |
| } |
| |
| bool GeneratorImpl::EmitIsNormalCall(std::ostream& out, |
| ast::CallExpression* expr, |
| const sem::Intrinsic* intrinsic) { |
| // HLSL doesn't have a isNormal intrinsic, we need to emulate |
| return CallIntrinsicHelper( |
| out, expr, intrinsic, |
| [&](TextBuffer* b, const std::vector<std::string>& params) { |
| auto* input_ty = intrinsic->Parameters()[0]->Type(); |
| |
| std::string width; |
| if (auto* vec = input_ty->As<sem::Vector>()) { |
| width = std::to_string(vec->Width()); |
| } |
| |
| constexpr auto* kExponentMask = "0x7f80000"; |
| constexpr auto* kMinNormalExponent = "0x0080000"; |
| constexpr auto* kMaxNormalExponent = "0x7f00000"; |
| |
| line(b) << "uint" << width << " exponent = asuint(" << params[0] |
| << ") & " << kExponentMask << ";"; |
| line(b) << "uint" << width << " clamped = " |
| << "clamp(exponent, " << kMinNormalExponent << ", " |
| << kMaxNormalExponent << ");"; |
| line(b) << "return clamped == exponent;"; |
| return true; |
| }); |
| } |
| |
| bool GeneratorImpl::EmitDataPackingCall(std::ostream& out, |
| ast::CallExpression* expr, |
| const sem::Intrinsic* intrinsic) { |
| return CallIntrinsicHelper( |
| out, expr, intrinsic, |
| [&](TextBuffer* b, const std::vector<std::string>& params) { |
| uint32_t dims = 2; |
| bool is_signed = false; |
| uint32_t scale = 65535; |
| if (intrinsic->Type() == sem::IntrinsicType::kPack4x8snorm || |
| intrinsic->Type() == sem::IntrinsicType::kPack4x8unorm) { |
| dims = 4; |
| scale = 255; |
| } |
| if (intrinsic->Type() == sem::IntrinsicType::kPack4x8snorm || |
| intrinsic->Type() == sem::IntrinsicType::kPack2x16snorm) { |
| is_signed = true; |
| scale = (scale - 1) / 2; |
| } |
| switch (intrinsic->Type()) { |
| case sem::IntrinsicType::kPack4x8snorm: |
| case sem::IntrinsicType::kPack4x8unorm: |
| case sem::IntrinsicType::kPack2x16snorm: |
| case sem::IntrinsicType::kPack2x16unorm: { |
| { |
| auto l = line(b); |
| l << (is_signed ? "" : "u") << "int" << dims |
| << " i = " << (is_signed ? "" : "u") << "int" << dims |
| << "(round(clamp(" << params[0] << ", " |
| << (is_signed ? "-1.0" : "0.0") << ", 1.0) * " << scale |
| << ".0))"; |
| if (is_signed) { |
| l << " & " << (dims == 4 ? "0xff" : "0xffff"); |
| } |
| l << ";"; |
| } |
| { |
| auto l = line(b); |
| l << "return "; |
| if (is_signed) { |
| l << "asuint"; |
| } |
| l << "(i.x | i.y << " << (32 / dims); |
| if (dims == 4) { |
| l << " | i.z << 16 | i.w << 24"; |
| } |
| l << ");"; |
| } |
| break; |
| } |
| case sem::IntrinsicType::kPack2x16float: { |
| line(b) << "uint2 i = f32tof16(" << params[0] << ");"; |
| line(b) << "return i.x | (i.y << 16);"; |
| break; |
| } |
| default: |
| diagnostics_.add_error( |
| diag::System::Writer, |
| "Internal error: unhandled data packing intrinsic"); |
| return false; |
| } |
| |
| return true; |
| }); |
| } |
| |
| bool GeneratorImpl::EmitDataUnpackingCall(std::ostream& out, |
| ast::CallExpression* expr, |
| const sem::Intrinsic* intrinsic) { |
| return CallIntrinsicHelper( |
| out, expr, intrinsic, |
| [&](TextBuffer* b, const std::vector<std::string>& params) { |
| uint32_t dims = 2; |
| bool is_signed = false; |
| uint32_t scale = 65535; |
| if (intrinsic->Type() == sem::IntrinsicType::kUnpack4x8snorm || |
| intrinsic->Type() == sem::IntrinsicType::kUnpack4x8unorm) { |
| dims = 4; |
| scale = 255; |
| } |
| if (intrinsic->Type() == sem::IntrinsicType::kUnpack4x8snorm || |
| intrinsic->Type() == sem::IntrinsicType::kUnpack2x16snorm) { |
| is_signed = true; |
| scale = (scale - 1) / 2; |
| } |
| switch (intrinsic->Type()) { |
| case sem::IntrinsicType::kUnpack4x8snorm: |
| case sem::IntrinsicType::kUnpack2x16snorm: { |
| line(b) << "int j = int(" << params[0] << ");"; |
| { // Perform sign extension on the converted values. |
| auto l = line(b); |
| l << "int" << dims << " i = int" << dims << "("; |
| if (dims == 2) { |
| l << "j << 16, j) >> 16"; |
| } else { |
| l << "j << 24, j << 16, j << 8, j) >> 24"; |
| } |
| l << ";"; |
| } |
| line(b) << "return clamp(float" << dims << "(i) / " << scale |
| << ".0, " << (is_signed ? "-1.0" : "0.0") << ", 1.0);"; |
| break; |
| } |
| case sem::IntrinsicType::kUnpack4x8unorm: |
| case sem::IntrinsicType::kUnpack2x16unorm: { |
| line(b) << "uint j = " << params[0] << ";"; |
| { |
| auto l = line(b); |
| l << "uint" << dims << " i = uint" << dims << "("; |
| l << "j & " << (dims == 2 ? "0xffff" : "0xff") << ", "; |
| if (dims == 4) { |
| l << "(j >> " << (32 / dims) |
| << ") & 0xff, (j >> 16) & 0xff, j >> 24"; |
| } else { |
| l << "j >> " << (32 / dims); |
| } |
| l << ");"; |
| } |
| line(b) << "return float" << dims << "(i) / " << scale << ".0;"; |
| break; |
| } |
| case sem::IntrinsicType::kUnpack2x16float: |
| line(b) << "uint i = " << params[0] << ";"; |
| line(b) << "return f16tof32(uint2(i & 0xffff, i >> 16));"; |
| break; |
| default: |
| diagnostics_.add_error( |
| diag::System::Writer, |
| "Internal error: unhandled data packing intrinsic"); |
| return false; |
| } |
| |
| return true; |
| }); |
| } |
| |
| bool GeneratorImpl::EmitBarrierCall(std::ostream& out, |
| const sem::Intrinsic* intrinsic) { |
| // TODO(crbug.com/tint/661): Combine sequential barriers to a single |
| // instruction. |
| if (intrinsic->Type() == sem::IntrinsicType::kWorkgroupBarrier) { |
| out << "GroupMemoryBarrierWithGroupSync()"; |
| } else if (intrinsic->Type() == sem::IntrinsicType::kStorageBarrier) { |
| out << "DeviceMemoryBarrierWithGroupSync()"; |
| } else { |
| TINT_UNREACHABLE(Writer, diagnostics_) |
| << "unexpected barrier intrinsic type " << sem::str(intrinsic->Type()); |
| return false; |
| } |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitTextureCall(std::ostream& out, |
| ast::CallExpression* expr, |
| const sem::Intrinsic* intrinsic) { |
| using Usage = sem::ParameterUsage; |
| |
| auto parameters = intrinsic->Parameters(); |
| auto arguments = expr->params(); |
| |
| // Returns the argument with the given usage |
| auto arg = [&](Usage usage) { |
| int idx = sem::IndexOf(parameters, usage); |
| return (idx >= 0) ? arguments[idx] : nullptr; |
| }; |
| |
| auto* texture = arg(Usage::kTexture); |
| if (!texture) { |
| TINT_ICE(Writer, diagnostics_) << "missing texture argument"; |
| return false; |
| } |
| |
| auto* texture_type = TypeOf(texture)->UnwrapRef()->As<sem::Texture>(); |
| |
| switch (intrinsic->Type()) { |
| case sem::IntrinsicType::kTextureDimensions: |
| case sem::IntrinsicType::kTextureNumLayers: |
| case sem::IntrinsicType::kTextureNumLevels: |
| case sem::IntrinsicType::kTextureNumSamples: { |
| // All of these intrinsics use the GetDimensions() method on the texture |
| bool is_ms = texture_type->IsAnyOf<sem::MultisampledTexture, |
| sem::DepthMultisampledTexture>(); |
| int num_dimensions = 0; |
| std::string swizzle; |
| |
| switch (intrinsic->Type()) { |
| case sem::IntrinsicType::kTextureDimensions: |
| switch (texture_type->dim()) { |
| case ast::TextureDimension::kNone: |
| TINT_ICE(Writer, diagnostics_) << "texture dimension is kNone"; |
| return false; |
| case ast::TextureDimension::k1d: |
| num_dimensions = 1; |
| break; |
| case ast::TextureDimension::k2d: |
| num_dimensions = is_ms ? 3 : 2; |
| swizzle = is_ms ? ".xy" : ""; |
| break; |
| case ast::TextureDimension::k2dArray: |
| num_dimensions = is_ms ? 4 : 3; |
| swizzle = ".xy"; |
| break; |
| case ast::TextureDimension::k3d: |
| num_dimensions = 3; |
| break; |
| case ast::TextureDimension::kCube: |
| num_dimensions = 2; |
| break; |
| case ast::TextureDimension::kCubeArray: |
| num_dimensions = 3; |
| swizzle = ".xy"; |
| break; |
| } |
| break; |
| case sem::IntrinsicType::kTextureNumLayers: |
| switch (texture_type->dim()) { |
| default: |
| TINT_ICE(Writer, diagnostics_) |
| << "texture dimension is not arrayed"; |
| return false; |
| case ast::TextureDimension::k2dArray: |
| num_dimensions = is_ms ? 4 : 3; |
| swizzle = ".z"; |
| break; |
| case ast::TextureDimension::kCubeArray: |
| num_dimensions = 3; |
| swizzle = ".z"; |
| break; |
| } |
| break; |
| case sem::IntrinsicType::kTextureNumLevels: |
| switch (texture_type->dim()) { |
| default: |
| TINT_ICE(Writer, diagnostics_) |
| << "texture dimension does not support mips"; |
| return false; |
| case ast::TextureDimension::k1d: |
| num_dimensions = 2; |
| swizzle = ".y"; |
| break; |
| case ast::TextureDimension::k2d: |
| case ast::TextureDimension::kCube: |
| num_dimensions = 3; |
| swizzle = ".z"; |
| break; |
| case ast::TextureDimension::k2dArray: |
| case ast::TextureDimension::k3d: |
| case ast::TextureDimension::kCubeArray: |
| num_dimensions = 4; |
| swizzle = ".w"; |
| break; |
| } |
| break; |
| case sem::IntrinsicType::kTextureNumSamples: |
| switch (texture_type->dim()) { |
| default: |
| TINT_ICE(Writer, diagnostics_) |
| << "texture dimension does not support multisampling"; |
| return false; |
| case ast::TextureDimension::k2d: |
| num_dimensions = 3; |
| swizzle = ".z"; |
| break; |
| case ast::TextureDimension::k2dArray: |
| num_dimensions = 4; |
| swizzle = ".w"; |
| break; |
| } |
| break; |
| default: |
| TINT_ICE(Writer, diagnostics_) << "unexpected intrinsic"; |
| return false; |
| } |
| |
| auto* level_arg = arg(Usage::kLevel); |
| |
| if (level_arg) { |
| // `NumberOfLevels` is a non-optional argument if `MipLevel` was passed. |
| // Increment the number of dimensions for the temporary vector to |
| // accommodate this. |
| num_dimensions++; |
| |
| // If the swizzle was empty, the expression will evaluate to the whole |
| // vector. As we've grown the vector by one element, we now need to |
| // swizzle to keep the result expression equivalent. |
| if (swizzle.empty()) { |
| static constexpr const char* swizzles[] = {"", ".x", ".xy", ".xyz"}; |
| swizzle = swizzles[num_dimensions - 1]; |
| } |
| } |
| |
| if (num_dimensions > 4) { |
| TINT_ICE(Writer, diagnostics_) |
| << "Texture query intrinsic temporary vector has " << num_dimensions |
| << " dimensions"; |
| return false; |
| } |
| |
| // Declare a variable to hold the queried texture info |
| auto dims = UniqueIdentifier(kTempNamePrefix); |
| if (num_dimensions == 1) { |
| line() << "int " << dims << ";"; |
| } else { |
| line() << "int" << num_dimensions << " " << dims << ";"; |
| } |
| |
| { // texture.GetDimensions(...) |
| auto pre = line(); |
| if (!EmitExpression(pre, texture)) { |
| return false; |
| } |
| pre << ".GetDimensions("; |
| |
| if (level_arg) { |
| if (!EmitExpression(pre, level_arg)) { |
| return false; |
| } |
| pre << ", "; |
| } else if (intrinsic->Type() == sem::IntrinsicType::kTextureNumLevels) { |
| pre << "0, "; |
| } |
| |
| if (num_dimensions == 1) { |
| pre << dims; |
| } else { |
| static constexpr char xyzw[] = {'x', 'y', 'z', 'w'}; |
| if (num_dimensions < 0 || num_dimensions > 4) { |
| TINT_ICE(Writer, diagnostics_) |
| << "vector dimensions are " << num_dimensions; |
| return false; |
| } |
| for (int i = 0; i < num_dimensions; i++) { |
| if (i > 0) { |
| pre << ", "; |
| } |
| pre << dims << "." << xyzw[i]; |
| } |
| } |
| |
| pre << ");"; |
| } |
| |
| // The out parameters of the GetDimensions() call is now in temporary |
| // `dims` variable. This may be packed with other data, so the final |
| // expression may require a swizzle. |
| out << dims << swizzle; |
| return true; |
| } |
| default: |
| break; |
| } |
| |
| if (!EmitExpression(out, texture)) |
| return false; |
| |
| // If pack_level_in_coords is true, then the mip level will be appended as the |
| // last value of the coordinates argument. If the WGSL intrinsic overload does |
| // not have a level parameter and pack_level_in_coords is true, then a zero |
| // mip level will be inserted. |
| bool pack_level_in_coords = false; |
| |
| uint32_t hlsl_ret_width = 4u; |
| |
| switch (intrinsic->Type()) { |
| case sem::IntrinsicType::kTextureSample: |
| out << ".Sample("; |
| break; |
| case sem::IntrinsicType::kTextureSampleBias: |
| out << ".SampleBias("; |
| break; |
| case sem::IntrinsicType::kTextureSampleLevel: |
| out << ".SampleLevel("; |
| break; |
| case sem::IntrinsicType::kTextureSampleGrad: |
| out << ".SampleGrad("; |
| break; |
| case sem::IntrinsicType::kTextureSampleCompare: |
| out << ".SampleCmp("; |
| hlsl_ret_width = 1; |
| break; |
| case sem::IntrinsicType::kTextureSampleCompareLevel: |
| out << ".SampleCmpLevelZero("; |
| hlsl_ret_width = 1; |
| break; |
| case sem::IntrinsicType::kTextureLoad: |
| out << ".Load("; |
| // Multisampled textures do not support mip-levels. |
| if (!texture_type->Is<sem::MultisampledTexture>()) { |
| pack_level_in_coords = true; |
| } |
| break; |
| case sem::IntrinsicType::kTextureStore: |
| out << "["; |
| break; |
| default: |
| diagnostics_.add_error( |
| diag::System::Writer, |
| "Internal compiler error: Unhandled texture intrinsic '" + |
| std::string(intrinsic->str()) + "'"); |
| return false; |
| } |
| |
| if (auto* sampler = arg(Usage::kSampler)) { |
| if (!EmitExpression(out, sampler)) |
| return false; |
| out << ", "; |
| } |
| |
| auto* param_coords = arg(Usage::kCoords); |
| if (!param_coords) { |
| TINT_ICE(Writer, diagnostics_) << "missing coords argument"; |
| return false; |
| } |
| |
| auto emit_vector_appended_with_i32_zero = [&](tint::ast::Expression* vector) { |
| auto* i32 = builder_.create<sem::I32>(); |
| auto* zero = builder_.Expr(0); |
| auto* stmt = builder_.Sem().Get(vector)->Stmt(); |
| builder_.Sem().Add(zero, builder_.create<sem::Expression>(zero, i32, stmt, |
| sem::Constant{})); |
| auto* packed = AppendVector(&builder_, vector, zero); |
| return EmitExpression(out, packed); |
| }; |
| |
| auto emit_vector_appended_with_level = [&](tint::ast::Expression* vector) { |
| if (auto* level = arg(Usage::kLevel)) { |
| auto* packed = AppendVector(&builder_, vector, level); |
| return EmitExpression(out, packed); |
| } |
| return emit_vector_appended_with_i32_zero(vector); |
| }; |
| |
| if (auto* array_index = arg(Usage::kArrayIndex)) { |
| // Array index needs to be appended to the coordinates. |
| auto* packed = AppendVector(&builder_, param_coords, array_index); |
| if (pack_level_in_coords) { |
| // Then mip level needs to be appended to the coordinates. |
| if (!emit_vector_appended_with_level(packed)) { |
| return false; |
| } |
| } else { |
| if (!EmitExpression(out, packed)) { |
| return false; |
| } |
| } |
| } else if (pack_level_in_coords) { |
| // Mip level needs to be appended to the coordinates. |
| if (!emit_vector_appended_with_level(param_coords)) { |
| return false; |
| } |
| } else { |
| if (!EmitExpression(out, param_coords)) { |
| return false; |
| } |
| } |
| |
| for (auto usage : {Usage::kDepthRef, Usage::kBias, Usage::kLevel, Usage::kDdx, |
| Usage::kDdy, Usage::kSampleIndex, Usage::kOffset}) { |
| if (usage == Usage::kLevel && pack_level_in_coords) { |
| continue; // mip level already packed in coordinates. |
| } |
| if (auto* e = arg(usage)) { |
| out << ", "; |
| if (!EmitExpression(out, e)) { |
| return false; |
| } |
| } |
| } |
| |
| if (intrinsic->Type() == sem::IntrinsicType::kTextureStore) { |
| out << "] = "; |
| if (!EmitExpression(out, arg(Usage::kValue))) { |
| return false; |
| } |
| } else { |
| out << ")"; |
| |
| // If the intrinsic return type does not match the number of elements of the |
| // HLSL intrinsic, we need to swizzle the expression to generate the correct |
| // number of components. |
| uint32_t wgsl_ret_width = 1; |
| if (auto* vec = intrinsic->ReturnType()->As<sem::Vector>()) { |
| wgsl_ret_width = vec->Width(); |
| } |
| if (wgsl_ret_width < hlsl_ret_width) { |
| out << "."; |
| for (uint32_t i = 0; i < wgsl_ret_width; i++) { |
| out << "xyz"[i]; |
| } |
| } |
| if (wgsl_ret_width > hlsl_ret_width) { |
| TINT_ICE(Writer, diagnostics_) |
| << "WGSL return width (" << wgsl_ret_width |
| << ") is wider than HLSL return width (" << hlsl_ret_width << ") for " |
| << intrinsic->Type(); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| std::string GeneratorImpl::generate_builtin_name( |
| const sem::Intrinsic* intrinsic) { |
| switch (intrinsic->Type()) { |
| case sem::IntrinsicType::kAbs: |
| case sem::IntrinsicType::kAcos: |
| case sem::IntrinsicType::kAll: |
| case sem::IntrinsicType::kAny: |
| case sem::IntrinsicType::kAsin: |
| case sem::IntrinsicType::kAtan: |
| case sem::IntrinsicType::kAtan2: |
| case sem::IntrinsicType::kCeil: |
| case sem::IntrinsicType::kClamp: |
| case sem::IntrinsicType::kCos: |
| case sem::IntrinsicType::kCosh: |
| case sem::IntrinsicType::kCross: |
| case sem::IntrinsicType::kDeterminant: |
| case sem::IntrinsicType::kDistance: |
| case sem::IntrinsicType::kDot: |
| case sem::IntrinsicType::kExp: |
| case sem::IntrinsicType::kExp2: |
| case sem::IntrinsicType::kFloor: |
| case sem::IntrinsicType::kFrexp: |
| case sem::IntrinsicType::kLdexp: |
| case sem::IntrinsicType::kLength: |
| case sem::IntrinsicType::kLog: |
| case sem::IntrinsicType::kLog2: |
| case sem::IntrinsicType::kMax: |
| case sem::IntrinsicType::kMin: |
| case sem::IntrinsicType::kModf: |
| case sem::IntrinsicType::kNormalize: |
| case sem::IntrinsicType::kPow: |
| case sem::IntrinsicType::kReflect: |
| case sem::IntrinsicType::kRefract: |
| case sem::IntrinsicType::kRound: |
| case sem::IntrinsicType::kSign: |
| case sem::IntrinsicType::kSin: |
| case sem::IntrinsicType::kSinh: |
| case sem::IntrinsicType::kSqrt: |
| case sem::IntrinsicType::kStep: |
| case sem::IntrinsicType::kTan: |
| case sem::IntrinsicType::kTanh: |
| case sem::IntrinsicType::kTranspose: |
| case sem::IntrinsicType::kTrunc: |
| return intrinsic->str(); |
| case sem::IntrinsicType::kCountOneBits: |
| return "countbits"; |
| case sem::IntrinsicType::kDpdx: |
| return "ddx"; |
| case sem::IntrinsicType::kDpdxCoarse: |
| return "ddx_coarse"; |
| case sem::IntrinsicType::kDpdxFine: |
| return "ddx_fine"; |
| case sem::IntrinsicType::kDpdy: |
| return "ddy"; |
| case sem::IntrinsicType::kDpdyCoarse: |
| return "ddy_coarse"; |
| case sem::IntrinsicType::kDpdyFine: |
| return "ddy_fine"; |
| case sem::IntrinsicType::kFaceForward: |
| return "faceforward"; |
| case sem::IntrinsicType::kFract: |
| return "frac"; |
| case sem::IntrinsicType::kFma: |
| return "mad"; |
| case sem::IntrinsicType::kFwidth: |
| case sem::IntrinsicType::kFwidthCoarse: |
| case sem::IntrinsicType::kFwidthFine: |
| return "fwidth"; |
| case sem::IntrinsicType::kInverseSqrt: |
| return "rsqrt"; |
| case sem::IntrinsicType::kIsFinite: |
| return "isfinite"; |
| case sem::IntrinsicType::kIsInf: |
| return "isinf"; |
| case sem::IntrinsicType::kIsNan: |
| return "isnan"; |
| case sem::IntrinsicType::kMix: |
| return "lerp"; |
| case sem::IntrinsicType::kReverseBits: |
| return "reversebits"; |
| case sem::IntrinsicType::kSmoothStep: |
| return "smoothstep"; |
| default: |
| diagnostics_.add_error( |
| diag::System::Writer, |
| "Unknown builtin method: " + std::string(intrinsic->str())); |
| } |
| |
| return ""; |
| } |
| |
| bool GeneratorImpl::EmitCase(ast::SwitchStatement* s, size_t case_idx) { |
| auto* stmt = s->body()[case_idx]; |
| if (stmt->IsDefault()) { |
| line() << "default: {"; |
| } else { |
| for (auto* selector : stmt->selectors()) { |
| auto out = line(); |
| out << "case "; |
| if (!EmitLiteral(out, selector)) { |
| return false; |
| } |
| out << ":"; |
| if (selector == stmt->selectors().back()) { |
| out << " {"; |
| } |
| } |
| } |
| |
| increment_indent(); |
| TINT_DEFER({ |
| decrement_indent(); |
| line() << "}"; |
| }); |
| |
| // Emit the case statement |
| if (!EmitStatements(stmt->body()->statements())) { |
| return false; |
| } |
| |
| // Inline all fallthrough case statements. FXC cannot handle fallthroughs. |
| while (tint::Is<ast::FallthroughStatement>(stmt->body()->last())) { |
| case_idx++; |
| stmt = s->body()[case_idx]; |
| // Generate each fallthrough case statement in a new block. This is done to |
| // prevent symbol collision of variables declared in these cases statements. |
| if (!EmitBlock(stmt->body())) { |
| return false; |
| } |
| } |
| |
| if (!tint::IsAnyOf<ast::BreakStatement, ast::FallthroughStatement>( |
| stmt->body()->last())) { |
| line() << "break;"; |
| } |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitConstructor(std::ostream& out, |
| ast::ConstructorExpression* expr) { |
| if (auto* scalar = expr->As<ast::ScalarConstructorExpression>()) { |
| return EmitScalarConstructor(out, scalar); |
| } |
| return EmitTypeConstructor(out, expr->As<ast::TypeConstructorExpression>()); |
| } |
| |
| bool GeneratorImpl::EmitScalarConstructor( |
| std::ostream& out, |
| ast::ScalarConstructorExpression* expr) { |
| return EmitLiteral(out, expr->literal()); |
| } |
| |
| bool GeneratorImpl::EmitTypeConstructor(std::ostream& out, |
| ast::TypeConstructorExpression* expr) { |
| auto* type = TypeOf(expr)->UnwrapRef(); |
| |
| // If the type constructor is empty then we need to construct with the zero |
| // value for all components. |
| if (expr->values().empty()) { |
| return EmitZeroValue(out, type); |
| } |
| |
| bool brackets = type->IsAnyOf<sem::Array, sem::Struct>(); |
| |
| // For single-value vector initializers, swizzle the scalar to the right |
| // vector dimension using .x |
| const bool is_single_value_vector_init = |
| type->is_scalar_vector() && expr->values().size() == 1 && |
| TypeOf(expr->values()[0])->UnwrapRef()->is_scalar(); |
| |
| auto it = structure_builders_.find(As<sem::Struct>(type)); |
| if (it != structure_builders_.end()) { |
| out << it->second << "("; |
| brackets = false; |
| } else if (brackets) { |
| out << "{"; |
| } else { |
| if (!EmitType(out, type, ast::StorageClass::kNone, ast::Access::kReadWrite, |
| "")) { |
| return false; |
| } |
| out << "("; |
| } |
| |
| if (is_single_value_vector_init) { |
| out << "("; |
| } |
| |
| bool first = true; |
| for (auto* e : expr->values()) { |
| if (!first) { |
| out << ", "; |
| } |
| first = false; |
| |
| if (!EmitExpression(out, e)) { |
| return false; |
| } |
| } |
| |
| if (is_single_value_vector_init) { |
| out << ")." << std::string(type->As<sem::Vector>()->Width(), 'x'); |
| } |
| |
| out << (brackets ? "}" : ")"); |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitContinue(ast::ContinueStatement*) { |
| if (!emit_continuing_()) { |
| return false; |
| } |
| line() << "continue;"; |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitDiscard(ast::DiscardStatement*) { |
| // TODO(dsinclair): Verify this is correct when the discard semantics are |
| // defined for WGSL (https://github.com/gpuweb/gpuweb/issues/361) |
| line() << "discard;"; |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitExpression(std::ostream& out, ast::Expression* expr) { |
| if (auto* a = expr->As<ast::ArrayAccessorExpression>()) { |
| return EmitArrayAccessor(out, a); |
| } |
| if (auto* b = expr->As<ast::BinaryExpression>()) { |
| return EmitBinary(out, b); |
| } |
| if (auto* b = expr->As<ast::BitcastExpression>()) { |
| return EmitBitcast(out, b); |
| } |
| if (auto* c = expr->As<ast::CallExpression>()) { |
| return EmitCall(out, c); |
| } |
| if (auto* c = expr->As<ast::ConstructorExpression>()) { |
| return EmitConstructor(out, c); |
| } |
| if (auto* i = expr->As<ast::IdentifierExpression>()) { |
| return EmitIdentifier(out, i); |
| } |
| if (auto* m = expr->As<ast::MemberAccessorExpression>()) { |
| return EmitMemberAccessor(out, m); |
| } |
| if (auto* u = expr->As<ast::UnaryOpExpression>()) { |
| return EmitUnaryOp(out, u); |
| } |
| |
| diagnostics_.add_error(diag::System::Writer, |
| "unknown expression type: " + builder_.str(expr)); |
| return false; |
| } |
| |
| bool GeneratorImpl::EmitIdentifier(std::ostream& out, |
| ast::IdentifierExpression* expr) { |
| out << builder_.Symbols().NameFor(expr->symbol()); |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitIf(ast::IfStatement* stmt) { |
| { |
| auto out = line(); |
| out << "if ("; |
| if (!EmitExpression(out, stmt->condition())) { |
| return false; |
| } |
| out << ") {"; |
| } |
| |
| if (!EmitStatementsWithIndent(stmt->body()->statements())) { |
| return false; |
| } |
| |
| for (auto* e : stmt->else_statements()) { |
| if (e->HasCondition()) { |
| line() << "} else {"; |
| increment_indent(); |
| |
| { |
| auto out = line(); |
| out << "if ("; |
| if (!EmitExpression(out, e->condition())) { |
| return false; |
| } |
| out << ") {"; |
| } |
| } else { |
| line() << "} else {"; |
| } |
| |
| if (!EmitStatementsWithIndent(e->body()->statements())) { |
| return false; |
| } |
| } |
| |
| line() << "}"; |
| |
| for (auto* e : stmt->else_statements()) { |
| if (e->HasCondition()) { |
| decrement_indent(); |
| line() << "}"; |
| } |
| } |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitFunction(ast::Function* func) { |
| auto* sem = builder_.Sem().Get(func); |
| |
| if (ast::HasDecoration<ast::InternalDecoration>(func->decorations())) { |
| // An internal function. Do not emit. |
| return true; |
| } |
| |
| { |
| auto out = line(); |
| auto name = builder_.Symbols().NameFor(func->symbol()); |
| // If the function returns an array, then we need to declare a typedef for |
| // this. |
| if (sem->ReturnType()->Is<sem::Array>()) { |
| auto typedef_name = UniqueIdentifier(name + "_ret"); |
| auto pre = line(); |
| pre << "typedef "; |
| if (!EmitTypeAndName(pre, sem->ReturnType(), ast::StorageClass::kNone, |
| ast::Access::kReadWrite, typedef_name)) { |
| return false; |
| } |
| pre << ";"; |
| out << typedef_name; |
| } else { |
| if (!EmitType(out, sem->ReturnType(), ast::StorageClass::kNone, |
| ast::Access::kReadWrite, "")) { |
| return false; |
| } |
| } |
| |
| out << " " << name << "("; |
| |
| bool first = true; |
| |
| for (auto* v : sem->Parameters()) { |
| if (!first) { |
| out << ", "; |
| } |
| first = false; |
| |
| auto const* type = v->Type(); |
| |
| if (auto* ptr = type->As<sem::Pointer>()) { |
| // Transform pointer parameters in to `inout` parameters. |
| // The WGSL spec is highly restrictive in what can be passed in pointer |
| // parameters, which allows for this transformation. See: |
| // https://gpuweb.github.io/gpuweb/wgsl/#function-restriction |
| out << "inout "; |
| type = ptr->StoreType(); |
| } |
| |
| // Note: WGSL only allows for StorageClass::kNone on parameters, however |
| // the sanitizer transforms generates load / store functions for storage |
| // or uniform buffers. These functions have a buffer parameter with |
| // StorageClass::kStorage or StorageClass::kUniform. This is required to |
| // correctly translate the parameter to a [RW]ByteAddressBuffer for |
| // storage buffers and a uint4[N] for uniform buffers. |
| if (!EmitTypeAndName( |
| out, type, v->StorageClass(), v->Access(), |
| builder_.Symbols().NameFor(v->Declaration()->symbol()))) { |
| return false; |
| } |
| } |
| out << ") {"; |
| } |
| |
| if (!EmitStatementsWithIndent(func->body()->statements())) { |
| return false; |
| } |
| |
| line() << "}"; |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitGlobalVariable(ast::Variable* global) { |
| if (global->is_const()) { |
| return EmitProgramConstVariable(global); |
| } |
| |
| auto* sem = builder_.Sem().Get(global); |
| switch (sem->StorageClass()) { |
| case ast::StorageClass::kUniform: |
| return EmitUniformVariable(sem); |
| case ast::StorageClass::kStorage: |
| return EmitStorageVariable(sem); |
| case ast::StorageClass::kUniformConstant: |
| return EmitHandleVariable(sem); |
| case ast::StorageClass::kPrivate: |
| return EmitPrivateVariable(sem); |
| case ast::StorageClass::kWorkgroup: |
| return EmitWorkgroupVariable(sem); |
| default: |
| break; |
| } |
| |
| TINT_ICE(Writer, diagnostics_) |
| << "unhandled storage class " << sem->StorageClass(); |
| return false; |
| } |
| |
| bool GeneratorImpl::EmitUniformVariable(const sem::Variable* var) { |
| auto* decl = var->Declaration(); |
| auto binding_point = decl->binding_point(); |
| auto* type = var->Type()->UnwrapRef(); |
| |
| auto* str = type->As<sem::Struct>(); |
| if (!str) { |
| // https://www.w3.org/TR/WGSL/#module-scope-variables |
| TINT_ICE(Writer, diagnostics_) |
| << "variables with uniform storage must be structure"; |
| } |
| |
| auto name = builder_.Symbols().NameFor(decl->symbol()); |
| line() << "cbuffer cbuffer_" << name << RegisterAndSpace('b', binding_point) |
| << " {"; |
| |
| { |
| ScopedIndent si(this); |
| auto out = line(); |
| if (!EmitTypeAndName(out, type, ast::StorageClass::kUniform, var->Access(), |
| name)) { |
| return false; |
| } |
| out << ";"; |
| } |
| |
| line() << "};"; |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitStorageVariable(const sem::Variable* var) { |
| auto* decl = var->Declaration(); |
| auto* type = var->Type()->UnwrapRef(); |
| auto out = line(); |
| if (!EmitTypeAndName(out, type, ast::StorageClass::kStorage, var->Access(), |
| builder_.Symbols().NameFor(decl->symbol()))) { |
| return false; |
| } |
| |
| out << RegisterAndSpace(var->Access() == ast::Access::kRead ? 't' : 'u', |
| decl->binding_point()) |
| << ";"; |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitHandleVariable(const sem::Variable* var) { |
| auto* decl = var->Declaration(); |
| auto* unwrapped_type = var->Type()->UnwrapRef(); |
| auto out = line(); |
| |
| auto name = builder_.Symbols().NameFor(decl->symbol()); |
| auto* type = var->Type()->UnwrapRef(); |
| if (!EmitTypeAndName(out, type, var->StorageClass(), var->Access(), name)) { |
| return false; |
| } |
| |
| const char* register_space = nullptr; |
| |
| if (unwrapped_type->Is<sem::Texture>()) { |
| register_space = "t"; |
| if (auto* storage_tex = unwrapped_type->As<sem::StorageTexture>()) { |
| if (storage_tex->access() != ast::Access::kRead) { |
| register_space = "u"; |
| } |
| } |
| } else if (unwrapped_type->Is<sem::Sampler>()) { |
| register_space = "s"; |
| } |
| |
| if (register_space) { |
| auto bp = decl->binding_point(); |
| out << " : register(" << register_space << bp.binding->value() << ", space" |
| << bp.group->value() << ")"; |
| } |
| |
| out << ";"; |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitPrivateVariable(const sem::Variable* var) { |
| auto* decl = var->Declaration(); |
| auto out = line(); |
| |
| out << "static "; |
| |
| auto name = builder_.Symbols().NameFor(decl->symbol()); |
| auto* type = var->Type()->UnwrapRef(); |
| if (!EmitTypeAndName(out, type, var->StorageClass(), var->Access(), name)) { |
| return false; |
| } |
| |
| out << " = "; |
| if (auto* constructor = decl->constructor()) { |
| if (!EmitExpression(out, constructor)) { |
| return false; |
| } |
| } else { |
| if (!EmitZeroValue(out, var->Type()->UnwrapRef())) { |
| return false; |
| } |
| } |
| |
| out << ";"; |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitWorkgroupVariable(const sem::Variable* var) { |
| auto* decl = var->Declaration(); |
| auto out = line(); |
| |
| out << "groupshared "; |
| |
| auto name = builder_.Symbols().NameFor(decl->symbol()); |
| auto* type = var->Type()->UnwrapRef(); |
| if (!EmitTypeAndName(out, type, var->StorageClass(), var->Access(), name)) { |
| return false; |
| } |
| |
| if (auto* constructor = decl->constructor()) { |
| out << " = "; |
| if (!EmitExpression(out, constructor)) { |
| return false; |
| } |
| } |
| |
| out << ";"; |
| return true; |
| } |
| |
| std::string GeneratorImpl::builtin_to_attribute(ast::Builtin builtin) const { |
| switch (builtin) { |
| case ast::Builtin::kPosition: |
| return "SV_Position"; |
| case ast::Builtin::kVertexIndex: |
| return "SV_VertexID"; |
| case ast::Builtin::kInstanceIndex: |
| return "SV_InstanceID"; |
| case ast::Builtin::kFrontFacing: |
| return "SV_IsFrontFace"; |
| case ast::Builtin::kFragDepth: |
| return "SV_Depth"; |
| case ast::Builtin::kLocalInvocationId: |
| return "SV_GroupThreadID"; |
| case ast::Builtin::kLocalInvocationIndex: |
| return "SV_GroupIndex"; |
| case ast::Builtin::kGlobalInvocationId: |
| return "SV_DispatchThreadID"; |
| case ast::Builtin::kWorkgroupId: |
| return "SV_GroupID"; |
| case ast::Builtin::kSampleIndex: |
| return "SV_SampleIndex"; |
| case ast::Builtin::kSampleMask: |
| return "SV_Coverage"; |
| default: |
| break; |
| } |
| return ""; |
| } |
| |
| std::string GeneratorImpl::interpolation_to_modifiers( |
| ast::InterpolationType type, |
| ast::InterpolationSampling sampling) const { |
| std::string modifiers; |
| switch (type) { |
| case ast::InterpolationType::kPerspective: |
| modifiers += "linear "; |
| break; |
| case ast::InterpolationType::kLinear: |
| modifiers += "noperspective "; |
| break; |
| case ast::InterpolationType::kFlat: |
| modifiers += "nointerpolation "; |
| break; |
| } |
| switch (sampling) { |
| case ast::InterpolationSampling::kCentroid: |
| modifiers += "centroid "; |
| break; |
| case ast::InterpolationSampling::kSample: |
| modifiers += "sample "; |
| break; |
| case ast::InterpolationSampling::kCenter: |
| case ast::InterpolationSampling::kNone: |
| break; |
| } |
| return modifiers; |
| } |
| |
| bool GeneratorImpl::EmitEntryPointFunction(ast::Function* func) { |
| auto* func_sem = builder_.Sem().Get(func); |
| |
| { |
| auto out = line(); |
| if (func->pipeline_stage() == ast::PipelineStage::kCompute) { |
| // Emit the workgroup_size attribute. |
| auto wgsize = func_sem->workgroup_size(); |
| out << "[numthreads("; |
| for (int i = 0; i < 3; i++) { |
| if (i > 0) { |
| out << ", "; |
| } |
| |
| if (wgsize[i].overridable_const) { |
| auto* global = builder_.Sem().Get<sem::GlobalVariable>( |
| wgsize[i].overridable_const); |
| if (!global->IsPipelineConstant()) { |
| TINT_ICE(Writer, builder_.Diagnostics()) |
| << "expected a pipeline-overridable constant"; |
| } |
| out << kSpecConstantPrefix << global->ConstantId(); |
| } else { |
| out << std::to_string(wgsize[i].value); |
| } |
| } |
| out << ")]" << std::endl; |
| } |
| |
| out << func->return_type()->FriendlyName(builder_.Symbols()); |
| |
| out << " " << builder_.Symbols().NameFor(func->symbol()) << "("; |
| |
| bool first = true; |
| |
| // Emit entry point parameters. |
| for (auto* var : func->params()) { |
| auto* sem = builder_.Sem().Get(var); |
| auto* type = sem->Type(); |
| if (!type->Is<sem::Struct>()) { |
| // ICE likely indicates that the CanonicalizeEntryPointIO transform was |
| // not run, or a builtin parameter was added after it was run. |
| TINT_ICE(Writer, diagnostics_) |
| << "Unsupported non-struct entry point parameter"; |
| } |
| |
| if (!first) { |
| out << ", "; |
| } |
| first = false; |
| |
| if (!EmitTypeAndName(out, type, sem->StorageClass(), sem->Access(), |
| builder_.Symbols().NameFor(var->symbol()))) { |
| return false; |
| } |
| } |
| |
| out << ") {"; |
| } |
| |
| { |
| ScopedIndent si(this); |
| |
| if (!EmitStatements(func->body()->statements())) { |
| return false; |
| } |
| |
| if (!Is<ast::ReturnStatement>(func->get_last_statement())) { |
| ast::ReturnStatement ret(ProgramID(), Source{}); |
| if (!EmitStatement(&ret)) { |
| return false; |
| } |
| } |
| } |
| |
| line() << "}"; |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitLiteral(std::ostream& out, ast::Literal* lit) { |
| if (auto* l = lit->As<ast::BoolLiteral>()) { |
| out << (l->IsTrue() ? "true" : "false"); |
| } else if (auto* fl = lit->As<ast::FloatLiteral>()) { |
| if (std::isinf(fl->value())) { |
| out << (fl->value() >= 0 ? "asfloat(0x7f800000u)" |
| : "asfloat(0xff800000u)"); |
| } else if (std::isnan(fl->value())) { |
| out << "asfloat(0x7fc00000u)"; |
| } else { |
| out << FloatToString(fl->value()) << "f"; |
| } |
| } else if (auto* sl = lit->As<ast::SintLiteral>()) { |
| out << sl->value(); |
| } else if (auto* ul = lit->As<ast::UintLiteral>()) { |
| out << ul->value() << "u"; |
| } else { |
| diagnostics_.add_error(diag::System::Writer, "unknown literal type"); |
| return false; |
| } |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitZeroValue(std::ostream& out, const sem::Type* type) { |
| if (type->Is<sem::Bool>()) { |
| out << "false"; |
| } else if (type->Is<sem::F32>()) { |
| out << "0.0f"; |
| } else if (type->Is<sem::I32>()) { |
| out << "0"; |
| } else if (type->Is<sem::U32>()) { |
| out << "0u"; |
| } else if (auto* vec = type->As<sem::Vector>()) { |
| if (!EmitType(out, type, ast::StorageClass::kNone, ast::Access::kReadWrite, |
| "")) { |
| return false; |
| } |
| ScopedParen sp(out); |
| for (uint32_t i = 0; i < vec->Width(); i++) { |
| if (i != 0) { |
| out << ", "; |
| } |
| if (!EmitZeroValue(out, vec->type())) { |
| return false; |
| } |
| } |
| } else if (auto* mat = type->As<sem::Matrix>()) { |
| if (!EmitType(out, type, ast::StorageClass::kNone, ast::Access::kReadWrite, |
| "")) { |
| return false; |
| } |
| ScopedParen sp(out); |
| for (uint32_t i = 0; i < (mat->rows() * mat->columns()); i++) { |
| if (i != 0) { |
| out << ", "; |
| } |
| if (!EmitZeroValue(out, mat->type())) { |
| return false; |
| } |
| } |
| } else if (type->IsAnyOf<sem::Struct, sem::Array>()) { |
| out << "("; |
| if (!EmitType(out, type, ast::<
|