blob: 0d50a5e88ec66e93833ad37d5167b79d78cad9ba [file] [log] [blame] [edit]
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/transform/robustness.h"
#include <algorithm>
#include <limits>
#include <utility>
#include "src/program_builder.h"
#include "src/sem/block_statement.h"
#include "src/sem/call.h"
#include "src/sem/expression.h"
#include "src/sem/reference_type.h"
#include "src/sem/statement.h"
TINT_INSTANTIATE_TYPEINFO(tint::transform::Robustness);
TINT_INSTANTIATE_TYPEINFO(tint::transform::Robustness::Config);
namespace tint {
namespace transform {
/// State holds the current transform state
struct Robustness::State {
/// The clone context
CloneContext& ctx;
/// Set of storage classes to not apply the transform to
std::unordered_set<ast::StorageClass> omitted_classes;
/// Applies the transformation state to `ctx`.
void Transform() {
ctx.ReplaceAll([&](const ast::IndexAccessorExpression* expr) {
return Transform(expr);
});
ctx.ReplaceAll(
[&](const ast::CallExpression* expr) { return Transform(expr); });
}
/// Apply bounds clamping to array, vector and matrix indexing
/// @param expr the array, vector or matrix index expression
/// @return the clamped replacement expression, or nullptr if `expr` should be
/// cloned without changes.
const ast::IndexAccessorExpression* Transform(
const ast::IndexAccessorExpression* expr) {
auto* ret_type = ctx.src->Sem().Get(expr->object)->Type();
auto* ref = ret_type->As<sem::Reference>();
if (ref && omitted_classes.count(ref->StorageClass()) != 0) {
return nullptr;
}
auto* ret_unwrapped = ret_type->UnwrapRef();
ProgramBuilder& b = *ctx.dst;
using u32 = ProgramBuilder::u32;
struct Value {
const ast::Expression* expr = nullptr; // If null, then is a constant
union {
uint32_t u32 = 0; // use if is_signed == false
int32_t i32; // use if is_signed == true
};
bool is_signed = false;
};
Value size; // size of the array, vector or matrix
size.is_signed = false; // size is always unsigned
if (auto* vec = ret_unwrapped->As<sem::Vector>()) {
size.u32 = vec->Width();
} else if (auto* arr = ret_unwrapped->As<sem::Array>()) {
size.u32 = arr->Count();
} else if (auto* mat = ret_unwrapped->As<sem::Matrix>()) {
// The row accessor would have been an embedded index accessor and already
// handled, so we just need to do columns here.
size.u32 = mat->columns();
} else {
return nullptr;
}
if (size.u32 == 0) {
if (!ret_unwrapped->Is<sem::Array>()) {
b.Diagnostics().add_error(diag::System::Transform,
"invalid 0 sized non-array", expr->source);
return nullptr;
}
// Runtime sized array
auto* arr = ctx.Clone(expr->object);
size.expr = b.Call("arrayLength", b.AddressOf(arr));
}
// Calculate the maximum possible index value (size-1u)
// Size must be positive (non-zero), so we can safely subtract 1 here
// without underflow.
Value limit;
limit.is_signed = false; // Like size, limit is always unsigned.
if (size.expr) {
// Dynamic size
limit.expr = b.Sub(size.expr, 1u);
} else {
// Constant size
limit.u32 = size.u32 - 1u;
}
Value idx; // index value
auto* idx_sem = ctx.src->Sem().Get(expr->index);
auto* idx_ty = idx_sem->Type()->UnwrapRef();
if (!idx_ty->IsAnyOf<sem::I32, sem::U32>()) {
TINT_ICE(Transform, b.Diagnostics())
<< "index must be u32 or i32, got " << idx_sem->Type()->type_name();
return nullptr;
}
if (auto idx_constant = idx_sem->ConstantValue()) {
// Constant value index
if (idx_constant.Type()->Is<sem::I32>()) {
idx.i32 = idx_constant.Elements()[0].i32;
idx.is_signed = true;
} else if (idx_constant.Type()->Is<sem::U32>()) {
idx.u32 = idx_constant.Elements()[0].u32;
idx.is_signed = false;
} else {
b.Diagnostics().add_error(diag::System::Transform,
"unsupported constant value for accessor: " +
idx_constant.Type()->type_name(),
expr->source);
return nullptr;
}
} else {
// Dynamic value index
idx.expr = ctx.Clone(expr->index);
idx.is_signed = idx_ty->Is<sem::I32>();
}
// Clamp the index so that it cannot exceed limit.
if (idx.expr || limit.expr) {
// One of, or both of idx and limit are non-constant.
// If the index is signed, cast it to a u32 (with clamping if constant).
if (idx.is_signed) {
if (idx.expr) {
// We don't use a max(idx, 0) here, as that incurs a runtime
// performance cost, and if the unsigned value will be clamped by
// limit, resulting in a value between [0..limit)
idx.expr = b.Construct<u32>(idx.expr);
idx.is_signed = false;
} else {
idx.u32 = static_cast<uint32_t>(std::max(idx.i32, 0));
idx.is_signed = false;
}
}
// Convert idx and limit to expressions, so we can emit `min(idx, limit)`.
if (!idx.expr) {
idx.expr = b.Expr(idx.u32);
}
if (!limit.expr) {
limit.expr = b.Expr(limit.u32);
}
// Perform the clamp with `min(idx, limit)`
idx.expr = b.Call("min", idx.expr, limit.expr);
} else {
// Both idx and max are constant.
if (idx.is_signed) {
// The index is signed. Calculate limit as signed.
int32_t signed_limit = static_cast<int32_t>(
std::min<uint32_t>(limit.u32, std::numeric_limits<int32_t>::max()));
idx.i32 = std::max(idx.i32, 0);
idx.i32 = std::min(idx.i32, signed_limit);
} else {
// The index is unsigned.
idx.u32 = std::min(idx.u32, limit.u32);
}
}
// Convert idx to an expression, so we can emit the new accessor.
if (!idx.expr) {
idx.expr = idx.is_signed
? static_cast<const ast::Expression*>(b.Expr(idx.i32))
: static_cast<const ast::Expression*>(b.Expr(idx.u32));
}
// Clone arguments outside of create() call to have deterministic ordering
auto src = ctx.Clone(expr->source);
auto* obj = ctx.Clone(expr->object);
return b.IndexAccessor(src, obj, idx.expr);
}
/// @param type intrinsic type
/// @returns true if the given intrinsic is a texture function that requires
/// argument clamping,
bool TextureIntrinsicNeedsClamping(sem::IntrinsicType type) {
return type == sem::IntrinsicType::kTextureLoad ||
type == sem::IntrinsicType::kTextureStore;
}
/// Apply bounds clamping to the coordinates, array index and level arguments
/// of the `textureLoad()` and `textureStore()` intrinsics.
/// @param expr the intrinsic call expression
/// @return the clamped replacement call expression, or nullptr if `expr`
/// should be cloned without changes.
const ast::CallExpression* Transform(const ast::CallExpression* expr) {
auto* call = ctx.src->Sem().Get(expr);
auto* call_target = call->Target();
auto* intrinsic = call_target->As<sem::Intrinsic>();
if (!intrinsic || !TextureIntrinsicNeedsClamping(intrinsic->Type())) {
return nullptr; // No transform, just clone.
}
ProgramBuilder& b = *ctx.dst;
// Indices of the mandatory texture and coords parameters, and the optional
// array and level parameters.
auto& signature = intrinsic->Signature();
auto texture_idx = signature.IndexOf(sem::ParameterUsage::kTexture);
auto coords_idx = signature.IndexOf(sem::ParameterUsage::kCoords);
auto array_idx = signature.IndexOf(sem::ParameterUsage::kArrayIndex);
auto level_idx = signature.IndexOf(sem::ParameterUsage::kLevel);
auto* texture_arg = expr->args[texture_idx];
auto* coords_arg = expr->args[coords_idx];
auto* coords_ty = intrinsic->Parameters()[coords_idx]->Type();
// If the level is provided, then we need to clamp this. As the level is
// used by textureDimensions() and the texture[Load|Store]() calls, we need
// to clamp both usages.
// TODO(bclayton): We probably want to place this into a let so that the
// calculation can be reused. This is fiddly to get right.
std::function<const ast::Expression*()> level_arg;
if (level_idx >= 0) {
level_arg = [&] {
auto* arg = expr->args[level_idx];
auto* num_levels = b.Call("textureNumLevels", ctx.Clone(texture_arg));
auto* zero = b.Expr(0);
auto* max = ctx.dst->Sub(num_levels, 1);
auto* clamped = b.Call("clamp", ctx.Clone(arg), zero, max);
return clamped;
};
}
// Clamp the coordinates argument
{
auto* texture_dims =
level_arg
? b.Call("textureDimensions", ctx.Clone(texture_arg), level_arg())
: b.Call("textureDimensions", ctx.Clone(texture_arg));
auto* zero = b.Construct(CreateASTTypeFor(ctx, coords_ty));
auto* max = ctx.dst->Sub(
texture_dims, b.Construct(CreateASTTypeFor(ctx, coords_ty), 1));
auto* clamped_coords = b.Call("clamp", ctx.Clone(coords_arg), zero, max);
ctx.Replace(coords_arg, clamped_coords);
}
// Clamp the array_index argument, if provided
if (array_idx >= 0) {
auto* arg = expr->args[array_idx];
auto* num_layers = b.Call("textureNumLayers", ctx.Clone(texture_arg));
auto* zero = b.Expr(0);
auto* max = ctx.dst->Sub(num_layers, 1);
auto* clamped = b.Call("clamp", ctx.Clone(arg), zero, max);
ctx.Replace(arg, clamped);
}
// Clamp the level argument, if provided
if (level_idx >= 0) {
auto* arg = expr->args[level_idx];
ctx.Replace(arg, level_arg ? level_arg() : ctx.dst->Expr(0));
}
return nullptr; // Clone, which will use the argument replacements above.
}
};
Robustness::Config::Config() = default;
Robustness::Config::Config(const Config&) = default;
Robustness::Config::~Config() = default;
Robustness::Config& Robustness::Config::operator=(const Config&) = default;
Robustness::Robustness() = default;
Robustness::~Robustness() = default;
void Robustness::Run(CloneContext& ctx, const DataMap& inputs, DataMap&) {
Config cfg;
if (auto* cfg_data = inputs.Get<Config>()) {
cfg = *cfg_data;
}
std::unordered_set<ast::StorageClass> omitted_classes;
for (auto sc : cfg.omitted_classes) {
switch (sc) {
case StorageClass::kUniform:
omitted_classes.insert(ast::StorageClass::kUniform);
break;
case StorageClass::kStorage:
omitted_classes.insert(ast::StorageClass::kStorage);
break;
}
}
State state{ctx, std::move(omitted_classes)};
state.Transform();
ctx.Clone();
}
} // namespace transform
} // namespace tint