blob: 92f0f36c88526f9df87e1d0fd219efd401174aee [file] [log] [blame] [edit]
// Copyright 2021 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/ast/discard_statement.h"
#include "src/ast/return_statement.h"
#include "src/ast/stage_decoration.h"
#include "src/resolver/resolver.h"
#include "src/resolver/resolver_test_helper.h"
#include "gmock/gmock.h"
namespace tint {
namespace {
class ResolverFunctionValidationTest : public resolver::TestHelper,
public testing::Test {};
TEST_F(ResolverFunctionValidationTest, DuplicateParameterName) {
// fn func_a(common_name : f32) { }
// fn func_b(common_name : f32) { }
Func("func_a", {Param("common_name", ty.f32())}, ty.void_(), {});
Func("func_b", {Param("common_name", ty.f32())}, ty.void_(), {});
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverFunctionValidationTest, ParameterMayShadowGlobal) {
// var<private> common_name : f32;
// fn func(common_name : f32) { }
Global("common_name", ty.f32(), ast::StorageClass::kPrivate);
Func("func", {Param("common_name", ty.f32())}, ty.void_(), {});
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverFunctionValidationTest, LocalConflictsWithParameter) {
// fn func(common_name : f32) {
// let common_name = 1;
// }
Func("func", {Param(Source{{12, 34}}, "common_name", ty.f32())}, ty.void_(),
{Decl(Const(Source{{56, 78}}, "common_name", nullptr, Expr(1)))});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), R"(56:78 error: redeclaration of 'common_name'
12:34 note: 'common_name' previously declared here)");
}
TEST_F(ResolverFunctionValidationTest, NestedLocalMayShadowParameter) {
// fn func(common_name : f32) {
// {
// let common_name = 1;
// }
// }
Func("func", {Param(Source{{12, 34}}, "common_name", ty.f32())}, ty.void_(),
{Block(Decl(Const(Source{{56, 78}}, "common_name", nullptr, Expr(1))))});
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverFunctionValidationTest,
VoidFunctionEndWithoutReturnStatement_Pass) {
// fn func { var a:i32 = 2; }
auto* var = Var("a", ty.i32(), Expr(2));
Func(Source{{12, 34}}, "func", ast::VariableList{}, ty.void_(),
ast::StatementList{
Decl(var),
});
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverFunctionValidationTest, FunctionUsingSameVariableName_Pass) {
// fn func() -> i32 {
// var func:i32 = 0;
// return func;
// }
auto* var = Var("func", ty.i32(), Expr(0));
Func("func", ast::VariableList{}, ty.i32(),
ast::StatementList{
Decl(var),
Return(Source{{12, 34}}, Expr("func")),
},
ast::DecorationList{});
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverFunctionValidationTest,
FunctionNameSameAsFunctionScopeVariableName_Pass) {
// fn a() -> void { var b:i32 = 0; }
// fn b() -> i32 { return 2; }
auto* var = Var("b", ty.i32(), Expr(0));
Func("a", ast::VariableList{}, ty.void_(),
ast::StatementList{
Decl(var),
},
ast::DecorationList{});
Func(Source{{12, 34}}, "b", ast::VariableList{}, ty.i32(),
ast::StatementList{
Return(2),
},
ast::DecorationList{});
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverFunctionValidationTest, UnreachableCode_return) {
// fn func() -> {
// var a : i32;
// return;
// a = 2;
//}
auto* decl_a = Decl(Var("a", ty.i32()));
auto* ret = Return();
auto* assign_a = Assign(Source{{12, 34}}, "a", 2);
Func("func", ast::VariableList{}, ty.void_(), {decl_a, ret, assign_a});
ASSERT_TRUE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 warning: code is unreachable");
EXPECT_TRUE(Sem().Get(decl_a)->IsReachable());
EXPECT_TRUE(Sem().Get(ret)->IsReachable());
EXPECT_FALSE(Sem().Get(assign_a)->IsReachable());
}
TEST_F(ResolverFunctionValidationTest, UnreachableCode_return_InBlocks) {
// fn func() -> {
// var a : i32;
// {{{return;}}}
// a = 2;
//}
auto* decl_a = Decl(Var("a", ty.i32()));
auto* ret = Return();
auto* assign_a = Assign(Source{{12, 34}}, "a", 2);
Func("func", ast::VariableList{}, ty.void_(),
{decl_a, Block(Block(Block(ret))), assign_a});
ASSERT_TRUE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 warning: code is unreachable");
EXPECT_TRUE(Sem().Get(decl_a)->IsReachable());
EXPECT_TRUE(Sem().Get(ret)->IsReachable());
EXPECT_FALSE(Sem().Get(assign_a)->IsReachable());
}
TEST_F(ResolverFunctionValidationTest, UnreachableCode_discard) {
// fn func() -> {
// var a : i32;
// discard;
// a = 2;
//}
auto* decl_a = Decl(Var("a", ty.i32()));
auto* discard = Discard();
auto* assign_a = Assign(Source{{12, 34}}, "a", 2);
Func("func", ast::VariableList{}, ty.void_(), {decl_a, discard, assign_a});
ASSERT_TRUE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 warning: code is unreachable");
EXPECT_TRUE(Sem().Get(decl_a)->IsReachable());
EXPECT_TRUE(Sem().Get(discard)->IsReachable());
EXPECT_FALSE(Sem().Get(assign_a)->IsReachable());
}
TEST_F(ResolverFunctionValidationTest, UnreachableCode_discard_InBlocks) {
// fn func() -> {
// var a : i32;
// {{{discard;}}}
// a = 2;
//}
auto* decl_a = Decl(Var("a", ty.i32()));
auto* discard = Discard();
auto* assign_a = Assign(Source{{12, 34}}, "a", 2);
Func("func", ast::VariableList{}, ty.void_(),
{decl_a, Block(Block(Block(discard))), assign_a});
ASSERT_TRUE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 warning: code is unreachable");
EXPECT_TRUE(Sem().Get(decl_a)->IsReachable());
EXPECT_TRUE(Sem().Get(discard)->IsReachable());
EXPECT_FALSE(Sem().Get(assign_a)->IsReachable());
}
TEST_F(ResolverFunctionValidationTest, FunctionEndWithoutReturnStatement_Fail) {
// fn func() -> int { var a:i32 = 2; }
auto* var = Var("a", ty.i32(), Expr(2));
Func(Source{{12, 34}}, "func", ast::VariableList{}, ty.i32(),
ast::StatementList{
Decl(var),
},
ast::DecorationList{});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: missing return at end of function");
}
TEST_F(ResolverFunctionValidationTest,
VoidFunctionEndWithoutReturnStatementEmptyBody_Pass) {
// fn func {}
Func(Source{{12, 34}}, "func", ast::VariableList{}, ty.void_(),
ast::StatementList{});
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverFunctionValidationTest,
FunctionEndWithoutReturnStatementEmptyBody_Fail) {
// fn func() -> int {}
Func(Source{{12, 34}}, "func", ast::VariableList{}, ty.i32(),
ast::StatementList{}, ast::DecorationList{});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: missing return at end of function");
}
TEST_F(ResolverFunctionValidationTest,
FunctionTypeMustMatchReturnStatementType_Pass) {
// fn func { return; }
Func("func", ast::VariableList{}, ty.void_(),
ast::StatementList{
Return(),
});
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverFunctionValidationTest,
FunctionTypeMustMatchReturnStatementType_fail) {
// fn func { return 2; }
Func("func", ast::VariableList{}, ty.void_(),
ast::StatementList{
Return(Source{{12, 34}}, Expr(2)),
},
ast::DecorationList{});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: return statement type must match its function return "
"type, returned 'i32', expected 'void'");
}
TEST_F(ResolverFunctionValidationTest,
FunctionTypeMustMatchReturnStatementType_void_fail) {
// fn v { return; }
// fn func { return v(); }
Func("v", {}, ty.void_(), {Return()});
Func("func", {}, ty.void_(),
{
Return(Call(Source{{12, 34}}, "v")),
});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: function 'v' does not return a value");
}
TEST_F(ResolverFunctionValidationTest,
FunctionTypeMustMatchReturnStatementTypeMissing_fail) {
// fn func() -> f32 { return; }
Func("func", ast::VariableList{}, ty.f32(),
ast::StatementList{
Return(Source{{12, 34}}, nullptr),
},
ast::DecorationList{});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: return statement type must match its function return "
"type, returned 'void', expected 'f32'");
}
TEST_F(ResolverFunctionValidationTest,
FunctionTypeMustMatchReturnStatementTypeF32_pass) {
// fn func() -> f32 { return 2.0; }
Func("func", ast::VariableList{}, ty.f32(),
ast::StatementList{
Return(Source{{12, 34}}, Expr(2.f)),
},
ast::DecorationList{});
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverFunctionValidationTest,
FunctionTypeMustMatchReturnStatementTypeF32_fail) {
// fn func() -> f32 { return 2; }
Func("func", ast::VariableList{}, ty.f32(),
ast::StatementList{
Return(Source{{12, 34}}, Expr(2)),
},
ast::DecorationList{});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: return statement type must match its function return "
"type, returned 'i32', expected 'f32'");
}
TEST_F(ResolverFunctionValidationTest,
FunctionTypeMustMatchReturnStatementTypeF32Alias_pass) {
// type myf32 = f32;
// fn func() -> myf32 { return 2.0; }
auto* myf32 = Alias("myf32", ty.f32());
Func("func", ast::VariableList{}, ty.Of(myf32),
ast::StatementList{
Return(Source{{12, 34}}, Expr(2.f)),
},
ast::DecorationList{});
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverFunctionValidationTest,
FunctionTypeMustMatchReturnStatementTypeF32Alias_fail) {
// type myf32 = f32;
// fn func() -> myf32 { return 2; }
auto* myf32 = Alias("myf32", ty.f32());
Func("func", ast::VariableList{}, ty.Of(myf32),
ast::StatementList{
Return(Source{{12, 34}}, Expr(2u)),
},
ast::DecorationList{});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: return statement type must match its function return "
"type, returned 'u32', expected 'f32'");
}
TEST_F(ResolverFunctionValidationTest, CannotCallEntryPoint) {
// @stage(compute) @workgroup_size(1) fn entrypoint() {}
// fn func() { return entrypoint(); }
Func("entrypoint", ast::VariableList{}, ty.void_(), {},
{Stage(ast::PipelineStage::kCompute), WorkgroupSize(1)});
Func("func", ast::VariableList{}, ty.void_(),
{
CallStmt(Call(Source{{12, 34}}, "entrypoint")),
});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(
r()->error(),
R"(12:34 error: entry point functions cannot be the target of a function call)");
}
TEST_F(ResolverFunctionValidationTest, PipelineStage_MustBeUnique_Fail) {
// @stage(fragment)
// @stage(vertex)
// fn main() { return; }
Func(Source{{12, 34}}, "main", ast::VariableList{}, ty.void_(),
ast::StatementList{
Return(),
},
ast::DecorationList{
Stage(Source{{12, 34}}, ast::PipelineStage::kVertex),
Stage(Source{{56, 78}}, ast::PipelineStage::kFragment),
});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
R"(56:78 error: duplicate stage decoration
12:34 note: first decoration declared here)");
}
TEST_F(ResolverFunctionValidationTest, NoPipelineEntryPoints) {
Func("vtx_func", ast::VariableList{}, ty.void_(),
ast::StatementList{
Return(),
},
ast::DecorationList{});
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverFunctionValidationTest, FunctionVarInitWithParam) {
// fn foo(bar : f32){
// var baz : f32 = bar;
// }
auto* bar = Param("bar", ty.f32());
auto* baz = Var("baz", ty.f32(), Expr("bar"));
Func("foo", ast::VariableList{bar}, ty.void_(), ast::StatementList{Decl(baz)},
ast::DecorationList{});
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverFunctionValidationTest, FunctionConstInitWithParam) {
// fn foo(bar : f32){
// let baz : f32 = bar;
// }
auto* bar = Param("bar", ty.f32());
auto* baz = Const("baz", ty.f32(), Expr("bar"));
Func("foo", ast::VariableList{bar}, ty.void_(), ast::StatementList{Decl(baz)},
ast::DecorationList{});
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverFunctionValidationTest, FunctionParamsConst) {
Func("foo", {Param(Sym("arg"), ty.i32())}, ty.void_(),
{Assign(Expr(Source{{12, 34}}, "arg"), Expr(1)), Return()});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: cannot assign to function parameter\nnote: 'arg' is "
"declared here:");
}
TEST_F(ResolverFunctionValidationTest, WorkgroupSize_GoodType_ConstU32) {
// let x = 4u;
// let x = 8u;
// @stage(compute) @workgroup_size(x, y, 16u)
// fn main() {}
auto* x = GlobalConst("x", ty.u32(), Expr(4u));
auto* y = GlobalConst("y", ty.u32(), Expr(8u));
auto* func = Func("main", {}, ty.void_(), {},
{Stage(ast::PipelineStage::kCompute),
WorkgroupSize(Expr("x"), Expr("y"), Expr(16u))});
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* sem_func = Sem().Get(func);
auto* sem_x = Sem().Get<sem::GlobalVariable>(x);
auto* sem_y = Sem().Get<sem::GlobalVariable>(y);
ASSERT_NE(sem_func, nullptr);
ASSERT_NE(sem_x, nullptr);
ASSERT_NE(sem_y, nullptr);
EXPECT_TRUE(sem_func->DirectlyReferencedGlobals().contains(sem_x));
EXPECT_TRUE(sem_func->DirectlyReferencedGlobals().contains(sem_y));
}
TEST_F(ResolverFunctionValidationTest, WorkgroupSize_GoodType_U32) {
// [[stage(compute), workgroup_size(1u, 2u, 3u)]
// fn main() {}
Func("main", {}, ty.void_(), {},
{Stage(ast::PipelineStage::kCompute),
WorkgroupSize(Source{{12, 34}}, Expr(1u), Expr(2u), Expr(3u))});
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverFunctionValidationTest, WorkgroupSize_MismatchTypeU32) {
// [[stage(compute), workgroup_size(1u, 2u, 3)]
// fn main() {}
Func("main", {}, ty.void_(), {},
{Stage(ast::PipelineStage::kCompute),
WorkgroupSize(Expr(1u), Expr(2u), Expr(Source{{12, 34}}, 3))});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: workgroup_size arguments must be of the same type, "
"either i32 or u32");
}
TEST_F(ResolverFunctionValidationTest, WorkgroupSize_MismatchTypeI32) {
// [[stage(compute), workgroup_size(1, 2u, 3)]
// fn main() {}
Func("main", {}, ty.void_(), {},
{Stage(ast::PipelineStage::kCompute),
WorkgroupSize(Expr(1), Expr(Source{{12, 34}}, 2u), Expr(3))});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: workgroup_size arguments must be of the same type, "
"either i32 or u32");
}
TEST_F(ResolverFunctionValidationTest, WorkgroupSize_Const_TypeMismatch) {
// let x = 64u;
// [[stage(compute), workgroup_size(1, x)]
// fn main() {}
GlobalConst("x", ty.u32(), Expr(64u));
Func("main", {}, ty.void_(), {},
{Stage(ast::PipelineStage::kCompute),
WorkgroupSize(Expr(1), Expr(Source{{12, 34}}, "x"))});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: workgroup_size arguments must be of the same type, "
"either i32 or u32");
}
TEST_F(ResolverFunctionValidationTest, WorkgroupSize_Const_TypeMismatch2) {
// let x = 64u;
// let y = 32;
// [[stage(compute), workgroup_size(x, y)]
// fn main() {}
GlobalConst("x", ty.u32(), Expr(64u));
GlobalConst("y", ty.i32(), Expr(32));
Func("main", {}, ty.void_(), {},
{Stage(ast::PipelineStage::kCompute),
WorkgroupSize(Expr("x"), Expr(Source{{12, 34}}, "y"))});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: workgroup_size arguments must be of the same type, "
"either i32 or u32");
}
TEST_F(ResolverFunctionValidationTest, WorkgroupSize_Mismatch_ConstU32) {
// let x = 4u;
// let x = 8u;
// [[stage(compute), workgroup_size(x, y, 16]
// fn main() {}
GlobalConst("x", ty.u32(), Expr(4u));
GlobalConst("y", ty.u32(), Expr(8u));
Func("main", {}, ty.void_(), {},
{Stage(ast::PipelineStage::kCompute),
WorkgroupSize(Expr("x"), Expr("y"), Expr(Source{{12, 34}}, 16))});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: workgroup_size arguments must be of the same type, "
"either i32 or u32");
}
TEST_F(ResolverFunctionValidationTest, WorkgroupSize_Literal_BadType) {
// [[stage(compute), workgroup_size(64.0)]
// fn main() {}
Func("main", {}, ty.void_(), {},
{Stage(ast::PipelineStage::kCompute),
WorkgroupSize(Expr(Source{{12, 34}}, 64.f))});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: workgroup_size argument must be either literal or "
"module-scope constant of type i32 or u32");
}
TEST_F(ResolverFunctionValidationTest, WorkgroupSize_Literal_Negative) {
// [[stage(compute), workgroup_size(-2)]
// fn main() {}
Func("main", {}, ty.void_(), {},
{Stage(ast::PipelineStage::kCompute),
WorkgroupSize(Expr(Source{{12, 34}}, -2))});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: workgroup_size argument must be at least 1");
}
TEST_F(ResolverFunctionValidationTest, WorkgroupSize_Literal_Zero) {
// [[stage(compute), workgroup_size(0)]
// fn main() {}
Func("main", {}, ty.void_(), {},
{Stage(ast::PipelineStage::kCompute),
WorkgroupSize(Expr(Source{{12, 34}}, 0))});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: workgroup_size argument must be at least 1");
}
TEST_F(ResolverFunctionValidationTest, WorkgroupSize_Const_BadType) {
// let x = 64.0;
// [[stage(compute), workgroup_size(x)]
// fn main() {}
GlobalConst("x", ty.f32(), Expr(64.f));
Func("main", {}, ty.void_(), {},
{Stage(ast::PipelineStage::kCompute),
WorkgroupSize(Expr(Source{{12, 34}}, "x"))});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: workgroup_size argument must be either literal or "
"module-scope constant of type i32 or u32");
}
TEST_F(ResolverFunctionValidationTest, WorkgroupSize_Const_Negative) {
// let x = -2;
// [[stage(compute), workgroup_size(x)]
// fn main() {}
GlobalConst("x", ty.i32(), Expr(-2));
Func("main", {}, ty.void_(), {},
{Stage(ast::PipelineStage::kCompute),
WorkgroupSize(Expr(Source{{12, 34}}, "x"))});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: workgroup_size argument must be at least 1");
}
TEST_F(ResolverFunctionValidationTest, WorkgroupSize_Const_Zero) {
// let x = 0;
// [[stage(compute), workgroup_size(x)]
// fn main() {}
GlobalConst("x", ty.i32(), Expr(0));
Func("main", {}, ty.void_(), {},
{Stage(ast::PipelineStage::kCompute),
WorkgroupSize(Expr(Source{{12, 34}}, "x"))});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: workgroup_size argument must be at least 1");
}
TEST_F(ResolverFunctionValidationTest,
WorkgroupSize_Const_NestedZeroValueConstructor) {
// let x = i32(i32(i32()));
// [[stage(compute), workgroup_size(x)]
// fn main() {}
GlobalConst("x", ty.i32(),
Construct(ty.i32(), Construct(ty.i32(), Construct(ty.i32()))));
Func("main", {}, ty.void_(), {},
{Stage(ast::PipelineStage::kCompute),
WorkgroupSize(Expr(Source{{12, 34}}, "x"))});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: workgroup_size argument must be at least 1");
}
TEST_F(ResolverFunctionValidationTest, WorkgroupSize_NonConst) {
// var<private> x = 0;
// [[stage(compute), workgroup_size(x)]
// fn main() {}
Global("x", ty.i32(), ast::StorageClass::kPrivate, Expr(64));
Func("main", {}, ty.void_(), {},
{Stage(ast::PipelineStage::kCompute),
WorkgroupSize(Expr(Source{{12, 34}}, "x"))});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: workgroup_size argument must be either literal or "
"module-scope constant of type i32 or u32");
}
TEST_F(ResolverFunctionValidationTest, WorkgroupSize_InvalidExpr) {
// [[stage(compute), workgroup_size(i32(1))]
// fn main() {}
Func("main", {}, ty.void_(), {},
{Stage(ast::PipelineStage::kCompute),
WorkgroupSize(Construct(Source{{12, 34}}, ty.i32(), 1))});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: workgroup_size argument must be either a literal or "
"a module-scope constant");
}
TEST_F(ResolverFunctionValidationTest, ReturnIsConstructible_NonPlain) {
auto* ret_type =
ty.pointer(Source{{12, 34}}, ty.i32(), ast::StorageClass::kFunction);
Func("f", {}, ret_type, {});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: function return type must be a constructible type");
}
TEST_F(ResolverFunctionValidationTest, ReturnIsConstructible_AtomicInt) {
auto* ret_type = ty.atomic(Source{{12, 34}}, ty.i32());
Func("f", {}, ret_type, {});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: function return type must be a constructible type");
}
TEST_F(ResolverFunctionValidationTest, ReturnIsConstructible_ArrayOfAtomic) {
auto* ret_type = ty.array(Source{{12, 34}}, ty.atomic(ty.i32()), 10);
Func("f", {}, ret_type, {});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: function return type must be a constructible type");
}
TEST_F(ResolverFunctionValidationTest, ReturnIsConstructible_StructOfAtomic) {
Structure("S", {Member("m", ty.atomic(ty.i32()))});
auto* ret_type = ty.type_name(Source{{12, 34}}, "S");
Func("f", {}, ret_type, {});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: function return type must be a constructible type");
}
TEST_F(ResolverFunctionValidationTest, ReturnIsConstructible_RuntimeArray) {
auto* ret_type = ty.array(Source{{12, 34}}, ty.i32());
Func("f", {}, ret_type, {});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: function return type must be a constructible type");
}
TEST_F(ResolverFunctionValidationTest, ParameterStoreType_NonAtomicFree) {
Structure("S", {Member("m", ty.atomic(ty.i32()))});
auto* ret_type = ty.type_name(Source{{12, 34}}, "S");
auto* bar = Param(Source{{12, 34}}, "bar", ret_type);
Func("f", ast::VariableList{bar}, ty.void_(), {});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: store type of function parameter must be a "
"constructible type");
}
TEST_F(ResolverFunctionValidationTest, ParameterSotreType_AtomicFree) {
Structure("S", {Member("m", ty.i32())});
auto* ret_type = ty.type_name(Source{{12, 34}}, "S");
auto* bar = Param(Source{{12, 34}}, "bar", ret_type);
Func("f", ast::VariableList{bar}, ty.void_(), {});
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverFunctionValidationTest, ParametersAtLimit) {
ast::VariableList params;
for (int i = 0; i < 255; i++) {
params.emplace_back(Param("param_" + std::to_string(i), ty.i32()));
}
Func(Source{{12, 34}}, "f", params, ty.void_(), {});
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverFunctionValidationTest, ParametersOverLimit) {
ast::VariableList params;
for (int i = 0; i < 256; i++) {
params.emplace_back(Param("param_" + std::to_string(i), ty.i32()));
}
Func(Source{{12, 34}}, "f", params, ty.void_(), {});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: functions may declare at most 255 parameters");
}
TEST_F(ResolverFunctionValidationTest, ParameterVectorNoType) {
// fn f(p : vec3) {}
Func(Source{{12, 34}}, "f",
{Param("p", create<ast::Vector>(Source{{12, 34}}, nullptr, 3))},
ty.void_(), {});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: missing vector element type");
}
TEST_F(ResolverFunctionValidationTest, ParameterMatrixNoType) {
// fn f(p : vec3) {}
Func(Source{{12, 34}}, "f",
{Param("p", create<ast::Matrix>(Source{{12, 34}}, nullptr, 3, 3))},
ty.void_(), {});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: missing matrix element type");
}
struct TestParams {
ast::StorageClass storage_class;
bool should_pass;
};
struct TestWithParams : resolver::ResolverTestWithParam<TestParams> {};
using ResolverFunctionParameterValidationTest = TestWithParams;
TEST_P(ResolverFunctionParameterValidationTest, StorageClass) {
auto& param = GetParam();
auto* ptr_type = ty.pointer(Source{{12, 34}}, ty.i32(), param.storage_class);
auto* arg = Param(Source{{12, 34}}, "p", ptr_type);
Func("f", ast::VariableList{arg}, ty.void_(), {});
if (param.should_pass) {
ASSERT_TRUE(r()->Resolve()) << r()->error();
} else {
std::stringstream ss;
ss << param.storage_class;
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: function parameter of pointer type cannot be in '" +
ss.str() + "' storage class");
}
}
INSTANTIATE_TEST_SUITE_P(
ResolverTest,
ResolverFunctionParameterValidationTest,
testing::Values(TestParams{ast::StorageClass::kNone, false},
TestParams{ast::StorageClass::kInput, false},
TestParams{ast::StorageClass::kOutput, false},
TestParams{ast::StorageClass::kUniform, false},
TestParams{ast::StorageClass::kWorkgroup, true},
TestParams{ast::StorageClass::kUniformConstant, false},
TestParams{ast::StorageClass::kStorage, false},
TestParams{ast::StorageClass::kPrivate, true},
TestParams{ast::StorageClass::kFunction, true}));
} // namespace
} // namespace tint