blob: af6c708918c3614306b0f3aae7e1bf051317971e [file] [log] [blame] [edit]
SKIP: FAILED
benchmark/skinned-shadowed-pbr-fragment.wgsl:51:13 warning: use of deprecated language feature: the @stride attribute is deprecated; use a larger type if necessary
lights : @stride(32) array<Light>;
^^^^^^
#version 310 es
precision mediump float;
layout(location = 0) in vec3 worldPos_1;
layout(location = 1) in vec3 view_1;
layout(location = 2) in vec2 texcoord_1;
layout(location = 3) in vec2 texcoord2_1;
layout(location = 4) in vec4 color_1;
layout(location = 5) in vec4 instanceColor_1;
layout(location = 6) in vec3 normal_1;
layout(location = 7) in vec3 tangent_1;
layout(location = 8) in vec3 bitangent_1;
layout(location = 0) out vec4 color_2;
layout(location = 1) out vec4 emissive_1;
const float GAMMA = 2.200000048f;
vec3 linearTosRGB(vec3 linear) {
float INV_GAMMA = (1.0f / GAMMA);
return pow(linear, vec3(INV_GAMMA));
}
struct Camera {
mat4 projection;
mat4 inverseProjection;
mat4 view;
vec3 position;
float time;
vec2 outputSize;
float zNear;
float zFar;
};
layout(binding = 0) uniform Camera_1 {
mat4 projection;
mat4 inverseProjection;
mat4 view;
vec3 position;
float time;
vec2 outputSize;
float zNear;
float zFar;
} camera;
struct ClusterLights {
uint offset;
uint count;
};
struct ClusterLightGroup {
uint offset;
ClusterLights lights[27648];
uint indices[1769472];
};
layout(binding = 1, std430) buffer ClusterLightGroup_1 {
uint offset;
ClusterLights lights[27648];
uint indices[1769472];
} clusterLights;
struct Light {
vec3 position;
float range;
vec3 color;
float intensity;
};
layout(binding = 2, std430) buffer GlobalLights_1 {
vec3 ambient;
vec3 dirColor;
float dirIntensity;
vec3 dirDirection;
uint lightCount;
Light lights[];
} globalLights;
const uvec3 tileCount = uvec3(32u, 18u, 48u);
float linearDepth(float depthSample) {
return ((camera.zFar * camera.zNear) / mad(depthSample, (camera.zNear - camera.zFar), camera.zFar));
}
uvec3 getTile(vec4 fragCoord) {
float sliceScale = (float(tileCount.z) / log2((camera.zFar / camera.zNear)));
float sliceBias = -(((float(tileCount.z) * log2(camera.zNear)) / log2((camera.zFar / camera.zNear))));
uint zTile = uint(max(((log2(linearDepth(fragCoord.z)) * sliceScale) + sliceBias), 0.0f));
return uvec3(uint((fragCoord.x / (camera.outputSize.x / float(tileCount.x)))), uint((fragCoord.y / (camera.outputSize.y / float(tileCount.y)))), zTile);
}
uint getClusterIndex(vec4 fragCoord) {
uvec3 tile = getTile(fragCoord);
return ((tile.x + (tile.y * tileCount.x)) + ((tile.z * tileCount.x) * tileCount.y));
}
layout(binding = 6, std430) buffer LightShadowTable_1 {
int light[];
} lightShadowTable;
vec2 shadowSampleOffsets[16] = vec2[16](vec2(-1.5f, -1.5f), vec2(-1.5f, -0.5f), vec2(-1.5f, 0.5f), vec2(-1.5f, 1.5f), vec2(-0.5f, -1.5f), vec2(-0.5f, -0.5f), vec2(-0.5f, 0.5f), vec2(-0.5f, 1.5f), vec2(0.5f, -1.5f), vec2(0.5f, -0.5f), vec2(0.5f, 0.5f), vec2(0.5f, 1.5f), vec2(1.5f, -1.5f), vec2(1.5f, -0.5f), vec2(1.5f, 0.5f), vec2(1.5f, 1.5f));
const uint shadowSampleCount = 16u;
struct ShadowProperties {
vec4 viewport;
mat4 viewProj;
};
layout(binding = 7, std430) buffer LightShadows_1 {
ShadowProperties properties[];
} shadow;
uniform highp sampler2D shadowTexture_1;
uniform highp sampler2DShadow shadowTexture_shadowSampler;
float dirLightVisibility(vec3 worldPos) {
int shadowIndex = lightShadowTable.light[0u];
if ((shadowIndex == -1)) {
return 1.0f;
}
vec4 viewport = shadow.properties[shadowIndex].viewport;
vec4 lightPos = (shadow.properties[shadowIndex].viewProj * vec4(worldPos, 1.0f));
vec3 shadowPos = vec3((((lightPos.xy / lightPos.w) * vec2(0.5f, -0.5f)) + vec2(0.5f, 0.5f)), (lightPos.z / lightPos.w));
vec2 viewportPos = vec2((viewport.xy + (shadowPos.xy * viewport.zw)));
vec2 texelSize = (1.0f / vec2(textureSize(shadowTexture_1, 0)));
vec4 clampRect = vec4((viewport.xy - texelSize), ((viewport.xy + viewport.zw) + texelSize));
float visibility = 0.0f;
{
for(uint i = 0u; (i < shadowSampleCount); i = (i + 1u)) {
visibility = (visibility + texture(shadowTexture_shadowSampler, vec3(clamp((viewportPos + (shadowSampleOffsets[i] * texelSize)), clampRect.xy, clampRect.zw), (shadowPos.z - 0.003f))));
}
}
return (visibility / float(shadowSampleCount));
}
int getCubeFace(vec3 v) {
vec3 vAbs = abs(v);
bool tint_tmp = (vAbs.z >= vAbs.x);
if (tint_tmp) {
tint_tmp = (vAbs.z >= vAbs.y);
}
if ((tint_tmp)) {
if ((v.z < 0.0f)) {
return 5;
}
return 4;
}
if ((vAbs.y >= vAbs.x)) {
if ((v.y < 0.0f)) {
return 3;
}
return 2;
}
if ((v.x < 0.0f)) {
return 1;
}
return 0;
}
float pointLightVisibility(uint lightIndex, vec3 worldPos, vec3 pointToLight) {
int shadowIndex = lightShadowTable.light[(lightIndex + 1u)];
if ((shadowIndex == -1)) {
return 1.0f;
}
shadowIndex = (shadowIndex + getCubeFace((pointToLight * -1.0f)));
vec4 viewport = shadow.properties[shadowIndex].viewport;
vec4 lightPos = (shadow.properties[shadowIndex].viewProj * vec4(worldPos, 1.0f));
vec3 shadowPos = vec3((((lightPos.xy / lightPos.w) * vec2(0.5f, -0.5f)) + vec2(0.5f, 0.5f)), (lightPos.z / lightPos.w));
vec2 viewportPos = vec2((viewport.xy + (shadowPos.xy * viewport.zw)));
vec2 texelSize = (1.0f / vec2(textureSize(shadowTexture_1, 0)));
vec4 clampRect = vec4(viewport.xy, (viewport.xy + viewport.zw));
float visibility = 0.0f;
{
for(uint i = 0u; (i < shadowSampleCount); i = (i + 1u)) {
visibility = (visibility + texture(shadowTexture_shadowSampler, vec3(clamp((viewportPos + (shadowSampleOffsets[i] * texelSize)), clampRect.xy, clampRect.zw), (shadowPos.z - 0.01f))));
}
}
return (visibility / float(shadowSampleCount));
}
struct VertexOutput {
vec4 position;
vec3 worldPos;
vec3 view;
vec2 texcoord;
vec2 texcoord2;
vec4 color;
vec4 instanceColor;
vec3 normal;
vec3 tangent;
vec3 bitangent;
};
struct Material {
vec4 baseColorFactor;
vec3 emissiveFactor;
float occlusionStrength;
vec2 metallicRoughnessFactor;
float alphaCutoff;
};
layout(binding = 8) uniform Material_1 {
vec4 baseColorFactor;
vec3 emissiveFactor;
float occlusionStrength;
vec2 metallicRoughnessFactor;
float alphaCutoff;
} material;
struct SurfaceInfo {
vec4 baseColor;
vec3 albedo;
float metallic;
float roughness;
vec3 normal;
vec3 f0;
float ao;
vec3 emissive;
vec3 v;
};
uniform highp sampler2D normalTexture_normalSampler;
uniform highp sampler2D baseColorTexture_baseColorSampler;
uniform highp sampler2D metallicRoughnessTexture_metallicRoughnessSampler;
uniform highp sampler2D occlusionTexture_occlusionSampler;
uniform highp sampler2D emissiveTexture_emissiveSampler;
SurfaceInfo GetSurfaceInfo(VertexOutput tint_symbol) {
SurfaceInfo surface = SurfaceInfo(vec4(0.0f, 0.0f, 0.0f, 0.0f), vec3(0.0f, 0.0f, 0.0f), 0.0f, 0.0f, vec3(0.0f, 0.0f, 0.0f), vec3(0.0f, 0.0f, 0.0f), 0.0f, vec3(0.0f, 0.0f, 0.0f), vec3(0.0f, 0.0f, 0.0f));
surface.v = normalize(tint_symbol.view);
mat3 tbn = mat3(tint_symbol.tangent, tint_symbol.bitangent, tint_symbol.normal);
vec3 normalMap = texture(normalTexture_normalSampler, tint_symbol.texcoord).rgb;
surface.normal = normalize((tbn * ((2.0f * normalMap) - vec3(1.0f))));
vec4 baseColorMap = texture(baseColorTexture_baseColorSampler, tint_symbol.texcoord);
surface.baseColor = ((tint_symbol.color * material.baseColorFactor) * baseColorMap);
if ((surface.baseColor.a < material.alphaCutoff)) {
discard;
}
surface.albedo = surface.baseColor.rgb;
vec4 metallicRoughnessMap = texture(metallicRoughnessTexture_metallicRoughnessSampler, tint_symbol.texcoord);
surface.metallic = (material.metallicRoughnessFactor.x * metallicRoughnessMap.b);
surface.roughness = (material.metallicRoughnessFactor.y * metallicRoughnessMap.g);
vec3 dielectricSpec = vec3(0.039999999f);
surface.f0 = mix(dielectricSpec, surface.albedo, vec3(surface.metallic));
vec4 occlusionMap = texture(occlusionTexture_occlusionSampler, tint_symbol.texcoord);
surface.ao = (material.occlusionStrength * occlusionMap.r);
vec4 emissiveMap = texture(emissiveTexture_emissiveSampler, tint_symbol.texcoord);
surface.emissive = (material.emissiveFactor * emissiveMap.rgb);
if ((tint_symbol.instanceColor.a == 0.0f)) {
surface.albedo = (surface.albedo + tint_symbol.instanceColor.rgb);
} else {
surface.albedo = (surface.albedo * tint_symbol.instanceColor.rgb);
}
return surface;
}
const float PI = 3.141592741f;
const uint LightType_Point = 0u;
const uint LightType_Directional = 2u;
struct PuctualLight {
uint lightType;
vec3 pointToLight;
float range;
vec3 color;
float intensity;
};
vec3 FresnelSchlick(float cosTheta, vec3 F0) {
return (F0 + ((vec3(1.0f) - F0) * pow((1.0f - cosTheta), 5.0f)));
}
float DistributionGGX(vec3 N, vec3 H, float roughness) {
float a_1 = (roughness * roughness);
float a2 = (a_1 * a_1);
float NdotH = max(dot(N, H), 0.0f);
float NdotH2 = (NdotH * NdotH);
float num = a2;
float denom = ((NdotH2 * (a2 - 1.0f)) + 1.0f);
return (num / ((PI * denom) * denom));
}
float GeometrySchlickGGX(float NdotV, float roughness) {
float r_1 = (roughness + 1.0f);
float k = ((r_1 * r_1) / 8.0f);
float num = NdotV;
float denom = ((NdotV * (1.0f - k)) + k);
return (num / denom);
}
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness) {
float NdotV = max(dot(N, V), 0.0f);
float NdotL = max(dot(N, L), 0.0f);
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
return (ggx1 * ggx2);
}
float lightAttenuation(PuctualLight light) {
if ((light.lightType == LightType_Directional)) {
return 1.0f;
}
float tint_symbol_1 = length(light.pointToLight);
if ((light.range <= 0.0f)) {
return (1.0f / pow(tint_symbol_1, 2.0f));
}
return (clamp((1.0f - pow((tint_symbol_1 / light.range), 4.0f)), 0.0f, 1.0f) / pow(tint_symbol_1, 2.0f));
}
vec3 lightRadiance(PuctualLight light, SurfaceInfo surface) {
vec3 L = normalize(light.pointToLight);
vec3 H = normalize((surface.v + L));
float NDF = DistributionGGX(surface.normal, H, surface.roughness);
float G = GeometrySmith(surface.normal, surface.v, L, surface.roughness);
vec3 F = FresnelSchlick(max(dot(H, surface.v), 0.0f), surface.f0);
vec3 kD = ((vec3(1.0f) - F) * (1.0f - surface.metallic));
float NdotL = max(dot(surface.normal, L), 0.0f);
vec3 numerator = ((NDF * G) * F);
float denominator = max(((4.0f * max(dot(surface.normal, surface.v), 0.0f)) * NdotL), 0.001f);
vec3 specular = (numerator / vec3(denominator));
vec3 radiance = ((light.color * light.intensity) * lightAttenuation(light));
return (((((kD * surface.albedo) / vec3(PI)) + specular) * radiance) * NdotL);
}
struct FragmentOutput {
vec4 color;
vec4 emissive;
};
uniform highp sampler2D ssaoTexture_1;
uniform highp sampler2D ssaoTexture_defaultSampler;
FragmentOutput fragmentMain(VertexOutput tint_symbol) {
SurfaceInfo surface = GetSurfaceInfo(tint_symbol);
vec3 Lo = vec3(0.0f, 0.0f, 0.0f);
if ((globalLights.dirIntensity > 0.0f)) {
PuctualLight light = PuctualLight(0u, vec3(0.0f, 0.0f, 0.0f), 0.0f, vec3(0.0f, 0.0f, 0.0f), 0.0f);
light.lightType = LightType_Directional;
light.pointToLight = globalLights.dirDirection;
light.color = globalLights.dirColor;
light.intensity = globalLights.dirIntensity;
float lightVis = dirLightVisibility(tint_symbol.worldPos);
Lo = (Lo + (lightRadiance(light, surface) * lightVis));
}
uint clusterIndex = getClusterIndex(tint_symbol.position);
uint lightOffset = clusterLights.lights[clusterIndex].offset;
uint lightCount = clusterLights.lights[clusterIndex].count;
{
for(uint lightIndex = 0u; (lightIndex < lightCount); lightIndex = (lightIndex + 1u)) {
uint i = clusterLights.indices[(lightOffset + lightIndex)];
PuctualLight light = PuctualLight(0u, vec3(0.0f, 0.0f, 0.0f), 0.0f, vec3(0.0f, 0.0f, 0.0f), 0.0f);
light.lightType = LightType_Point;
light.pointToLight = (globalLights.lights[i].position.xyz - tint_symbol.worldPos);
light.range = globalLights.lights[i].range;
light.color = globalLights.lights[i].color;
light.intensity = globalLights.lights[i].intensity;
float lightVis = pointLightVisibility(i, tint_symbol.worldPos, light.pointToLight);
Lo = (Lo + (lightRadiance(light, surface) * lightVis));
}
}
vec2 ssaoCoord = (tint_symbol.position.xy / vec2(textureSize(ssaoTexture_1, 0).xy));
float ssaoFactor = texture(ssaoTexture_defaultSampler, ssaoCoord).r;
vec3 ambient = (((globalLights.ambient * surface.albedo) * surface.ao) * ssaoFactor);
vec3 color = linearTosRGB(((Lo + ambient) + surface.emissive));
FragmentOutput tint_symbol_2 = FragmentOutput(vec4(0.0f, 0.0f, 0.0f, 0.0f), vec4(0.0f, 0.0f, 0.0f, 0.0f));
tint_symbol_2.color = vec4(color, surface.baseColor.a);
tint_symbol_2.emissive = vec4(surface.emissive, surface.baseColor.a);
return tint_symbol_2;
}
void main() {
VertexOutput tint_symbol_3 = VertexOutput(gl_FragCoord, worldPos_1, view_1, texcoord_1, texcoord2_1, color_1, instanceColor_1, normal_1, tangent_1, bitangent_1);
FragmentOutput inner_result = fragmentMain(tint_symbol_3);
color_2 = inner_result.color;
emissive_1 = inner_result.emissive;
return;
}
Error parsing GLSL shader:
ERROR: 0:76: 'mad' : no matching overloaded function found
ERROR: 0:76: '' : compilation terminated
ERROR: 2 compilation errors. No code generated.