| // Copyright 2023 The Tint Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "src/tint/ir/from_program.h" |
| |
| #include <iostream> |
| #include <unordered_map> |
| #include <utility> |
| |
| #include "src/tint/ast/alias.h" |
| #include "src/tint/ast/assignment_statement.h" |
| #include "src/tint/ast/binary_expression.h" |
| #include "src/tint/ast/bitcast_expression.h" |
| #include "src/tint/ast/block_statement.h" |
| #include "src/tint/ast/bool_literal_expression.h" |
| #include "src/tint/ast/break_if_statement.h" |
| #include "src/tint/ast/break_statement.h" |
| #include "src/tint/ast/call_expression.h" |
| #include "src/tint/ast/call_statement.h" |
| #include "src/tint/ast/compound_assignment_statement.h" |
| #include "src/tint/ast/const.h" |
| #include "src/tint/ast/const_assert.h" |
| #include "src/tint/ast/continue_statement.h" |
| #include "src/tint/ast/discard_statement.h" |
| #include "src/tint/ast/enable.h" |
| #include "src/tint/ast/float_literal_expression.h" |
| #include "src/tint/ast/for_loop_statement.h" |
| #include "src/tint/ast/function.h" |
| #include "src/tint/ast/id_attribute.h" |
| #include "src/tint/ast/identifier.h" |
| #include "src/tint/ast/identifier_expression.h" |
| #include "src/tint/ast/if_statement.h" |
| #include "src/tint/ast/increment_decrement_statement.h" |
| #include "src/tint/ast/int_literal_expression.h" |
| #include "src/tint/ast/invariant_attribute.h" |
| #include "src/tint/ast/let.h" |
| #include "src/tint/ast/literal_expression.h" |
| #include "src/tint/ast/loop_statement.h" |
| #include "src/tint/ast/override.h" |
| #include "src/tint/ast/return_statement.h" |
| #include "src/tint/ast/statement.h" |
| #include "src/tint/ast/struct.h" |
| #include "src/tint/ast/struct_member_align_attribute.h" |
| #include "src/tint/ast/struct_member_size_attribute.h" |
| #include "src/tint/ast/switch_statement.h" |
| #include "src/tint/ast/templated_identifier.h" |
| #include "src/tint/ast/unary_op_expression.h" |
| #include "src/tint/ast/var.h" |
| #include "src/tint/ast/variable_decl_statement.h" |
| #include "src/tint/ast/while_statement.h" |
| #include "src/tint/ir/block_param.h" |
| #include "src/tint/ir/builder.h" |
| #include "src/tint/ir/function.h" |
| #include "src/tint/ir/if.h" |
| #include "src/tint/ir/loop.h" |
| #include "src/tint/ir/module.h" |
| #include "src/tint/ir/store.h" |
| #include "src/tint/ir/switch.h" |
| #include "src/tint/ir/value.h" |
| #include "src/tint/program.h" |
| #include "src/tint/scope_stack.h" |
| #include "src/tint/sem/builtin.h" |
| #include "src/tint/sem/call.h" |
| #include "src/tint/sem/function.h" |
| #include "src/tint/sem/materialize.h" |
| #include "src/tint/sem/module.h" |
| #include "src/tint/sem/switch_statement.h" |
| #include "src/tint/sem/value_constructor.h" |
| #include "src/tint/sem/value_conversion.h" |
| #include "src/tint/sem/value_expression.h" |
| #include "src/tint/sem/variable.h" |
| #include "src/tint/switch.h" |
| #include "src/tint/type/reference.h" |
| #include "src/tint/type/void.h" |
| #include "src/tint/utils/defer.h" |
| #include "src/tint/utils/result.h" |
| #include "src/tint/utils/scoped_assignment.h" |
| |
| using namespace tint::number_suffixes; // NOLINT |
| |
| namespace tint::ir { |
| |
| namespace { |
| |
| using ResultType = utils::Result<Module, diag::List>; |
| |
| bool IsBranched(const Block* b) { |
| return b->branch.target != nullptr; |
| } |
| |
| bool IsConnected(const FlowNode* b) { |
| // Function is always connected as it's the start. |
| if (b->Is<ir::Function>()) { |
| return true; |
| } |
| |
| for (auto* parent : b->inbound_branches) { |
| if (IsConnected(parent)) { |
| return true; |
| } |
| } |
| // Getting here means all the incoming branches are disconnected. |
| return false; |
| } |
| |
| /// Impl is the private-implementation of FromProgram(). |
| class Impl { |
| public: |
| /// Constructor |
| /// @param program the program to convert to IR |
| explicit Impl(const Program* program) : program_(program) {} |
| |
| /// Builds an IR module from the program passed to the constructor. |
| /// @return the IR module or an error. |
| ResultType Build() { return EmitModule(); } |
| |
| private: |
| enum class ControlFlags { kNone, kExcludeSwitch }; |
| |
| // The input Program |
| const Program* program_ = nullptr; |
| |
| /// The IR module being built |
| Module mod; |
| |
| /// The IR builder being used by the impl. |
| Builder builder_{mod}; |
| |
| // The clone context used to clone data from #program_ |
| constant::CloneContext clone_ctx_{ |
| /* type_ctx */ type::CloneContext{ |
| /* src */ {&program_->Symbols()}, |
| /* dst */ {&builder_.ir.symbols, &builder_.ir.types}, |
| }, |
| /* dst */ {&builder_.ir.constants}, |
| }; |
| |
| /// The stack of flow control blocks. |
| utils::Vector<FlowNode*, 8> flow_stack_; |
| |
| /// The current flow block for expressions. |
| Block* current_flow_block_ = nullptr; |
| |
| /// The current function being processed. |
| Function* current_function_ = nullptr; |
| |
| /// The current stack of scopes being processed. |
| ScopeStack<Symbol, Value*> scopes_; |
| |
| /// The diagnostic that have been raised. |
| diag::List diagnostics_; |
| |
| /// Map from ast nodes to flow nodes, used to retrieve the flow node for a given AST node. |
| /// Used for testing purposes. |
| std::unordered_map<const ast::Node*, const FlowNode*> ast_to_flow_; |
| |
| class FlowStackScope { |
| public: |
| FlowStackScope(Impl* impl, FlowNode* node) : impl_(impl) { impl_->flow_stack_.Push(node); } |
| |
| ~FlowStackScope() { impl_->flow_stack_.Pop(); } |
| |
| private: |
| Impl* impl_; |
| }; |
| |
| void add_error(const Source& s, const std::string& err) { |
| diagnostics_.add_error(tint::diag::System::IR, err, s); |
| } |
| |
| void BranchTo(FlowNode* node, utils::VectorRef<Value*> args = {}) { |
| TINT_ASSERT(IR, current_flow_block_); |
| TINT_ASSERT(IR, !IsBranched(current_flow_block_)); |
| |
| builder_.Branch(current_flow_block_, node, args); |
| current_flow_block_ = nullptr; |
| } |
| |
| void BranchToIfNeeded(FlowNode* node) { |
| if (!current_flow_block_ || IsBranched(current_flow_block_)) { |
| return; |
| } |
| BranchTo(node); |
| } |
| |
| FlowNode* FindEnclosingControl(ControlFlags flags) { |
| for (auto it = flow_stack_.rbegin(); it != flow_stack_.rend(); ++it) { |
| if ((*it)->Is<Loop>()) { |
| return *it; |
| } |
| if (flags == ControlFlags::kExcludeSwitch) { |
| continue; |
| } |
| if ((*it)->Is<Switch>()) { |
| return *it; |
| } |
| } |
| return nullptr; |
| } |
| |
| Symbol CloneSymbol(Symbol sym) const { |
| return clone_ctx_.type_ctx.dst.st->Register(sym.Name()); |
| } |
| |
| ResultType EmitModule() { |
| auto* sem = program_->Sem().Module(); |
| |
| for (auto* decl : sem->DependencyOrderedDeclarations()) { |
| tint::Switch( |
| decl, // |
| [&](const ast::Struct*) { |
| // Will be encoded into the `type::Struct` when used. We will then hoist all |
| // used structs up to module scope when converting IR. |
| }, |
| [&](const ast::Alias*) { |
| // Folded away and doesn't appear in the IR. |
| }, |
| [&](const ast::Variable* var) { |
| // Setup the current flow node to be the root block for the module. The builder |
| // will handle creating it if it doesn't exist already. |
| TINT_SCOPED_ASSIGNMENT(current_flow_block_, builder_.CreateRootBlockIfNeeded()); |
| EmitVariable(var); |
| }, |
| [&](const ast::Function* func) { EmitFunction(func); }, |
| [&](const ast::Enable*) { |
| // TODO(dsinclair): Implement? I think these need to be passed along so further |
| // stages know what is enabled. |
| }, |
| [&](const ast::ConstAssert*) { |
| // Evaluated by the resolver, drop from the IR. |
| }, |
| [&](Default) { |
| add_error(decl->source, "unknown type: " + std::string(decl->TypeInfo().name)); |
| }); |
| } |
| |
| if (diagnostics_.contains_errors()) { |
| return ResultType(std::move(diagnostics_)); |
| } |
| |
| return ResultType{std::move(mod)}; |
| } |
| |
| void EmitFunction(const ast::Function* ast_func) { |
| // The flow stack should have been emptied when the previous function finished building. |
| TINT_ASSERT(IR, flow_stack_.IsEmpty()); |
| |
| const auto* sem = program_->Sem().Get(ast_func); |
| |
| auto* ir_func = builder_.CreateFunction(CloneSymbol(ast_func->name->symbol), |
| sem->ReturnType()->Clone(clone_ctx_.type_ctx)); |
| current_function_ = ir_func; |
| builder_.ir.functions.Push(ir_func); |
| |
| ast_to_flow_[ast_func] = ir_func; |
| |
| if (ast_func->IsEntryPoint()) { |
| switch (ast_func->PipelineStage()) { |
| case ast::PipelineStage::kVertex: |
| ir_func->pipeline_stage = Function::PipelineStage::kVertex; |
| break; |
| case ast::PipelineStage::kFragment: |
| ir_func->pipeline_stage = Function::PipelineStage::kFragment; |
| break; |
| case ast::PipelineStage::kCompute: { |
| ir_func->pipeline_stage = Function::PipelineStage::kCompute; |
| |
| auto wg_size = sem->WorkgroupSize(); |
| ir_func->workgroup_size = { |
| wg_size[0].value(), |
| wg_size[1].value_or(1), |
| wg_size[2].value_or(1), |
| }; |
| break; |
| } |
| default: { |
| TINT_ICE(IR, diagnostics_) << "Invalid pipeline stage"; |
| return; |
| } |
| } |
| |
| for (auto* attr : ast_func->return_type_attributes) { |
| tint::Switch( |
| attr, // |
| [&](const ast::LocationAttribute*) { |
| ir_func->return_attributes.Push(Function::ReturnAttribute::kLocation); |
| }, |
| [&](const ast::InvariantAttribute*) { |
| ir_func->return_attributes.Push(Function::ReturnAttribute::kInvariant); |
| }, |
| [&](const ast::BuiltinAttribute* b) { |
| if (auto* ident_sem = |
| program_->Sem() |
| .Get(b) |
| ->As<sem::BuiltinEnumExpression<builtin::BuiltinValue>>()) { |
| switch (ident_sem->Value()) { |
| case builtin::BuiltinValue::kPosition: |
| ir_func->return_attributes.Push( |
| Function::ReturnAttribute::kPosition); |
| break; |
| case builtin::BuiltinValue::kFragDepth: |
| ir_func->return_attributes.Push( |
| Function::ReturnAttribute::kFragDepth); |
| break; |
| case builtin::BuiltinValue::kSampleMask: |
| ir_func->return_attributes.Push( |
| Function::ReturnAttribute::kSampleMask); |
| break; |
| default: |
| TINT_ICE(IR, diagnostics_) |
| << "Unknown builtin value in return attributes " |
| << ident_sem->Value(); |
| return; |
| } |
| } else { |
| TINT_ICE(IR, diagnostics_) << "Builtin attribute sem invalid"; |
| return; |
| } |
| }); |
| } |
| } |
| ir_func->return_location = sem->ReturnLocation(); |
| |
| { |
| FlowStackScope scope(this, ir_func); |
| |
| current_flow_block_ = ir_func->start_target; |
| EmitBlock(ast_func->body); |
| |
| // TODO(dsinclair): Store return type and attributes |
| // TODO(dsinclair): Store parameters |
| |
| // If the branch target has already been set then a `return` was called. Only set in the |
| // case where `return` wasn't called. |
| BranchToIfNeeded(current_function_->end_target); |
| } |
| |
| TINT_ASSERT(IR, flow_stack_.IsEmpty()); |
| current_flow_block_ = nullptr; |
| current_function_ = nullptr; |
| } |
| |
| void EmitStatements(utils::VectorRef<const ast::Statement*> stmts) { |
| for (auto* s : stmts) { |
| EmitStatement(s); |
| |
| // If the current flow block has a branch target then the rest of the statements in this |
| // block are dead code. Skip them. |
| if (!current_flow_block_ || IsBranched(current_flow_block_)) { |
| break; |
| } |
| } |
| } |
| |
| void EmitStatement(const ast::Statement* stmt) { |
| tint::Switch( |
| stmt, // |
| [&](const ast::AssignmentStatement* a) { EmitAssignment(a); }, |
| [&](const ast::BlockStatement* b) { EmitBlock(b); }, |
| [&](const ast::BreakStatement* b) { EmitBreak(b); }, |
| [&](const ast::BreakIfStatement* b) { EmitBreakIf(b); }, |
| [&](const ast::CallStatement* c) { EmitCall(c); }, |
| [&](const ast::CompoundAssignmentStatement* c) { EmitCompoundAssignment(c); }, |
| [&](const ast::ContinueStatement* c) { EmitContinue(c); }, |
| [&](const ast::DiscardStatement* d) { EmitDiscard(d); }, |
| [&](const ast::IfStatement* i) { EmitIf(i); }, |
| [&](const ast::LoopStatement* l) { EmitLoop(l); }, |
| [&](const ast::ForLoopStatement* l) { EmitForLoop(l); }, |
| [&](const ast::WhileStatement* l) { EmitWhile(l); }, |
| [&](const ast::ReturnStatement* r) { EmitReturn(r); }, |
| [&](const ast::SwitchStatement* s) { EmitSwitch(s); }, |
| [&](const ast::VariableDeclStatement* v) { EmitVariable(v->variable); }, |
| [&](const ast::IncrementDecrementStatement* i) { EmitIncrementDecrement(i); }, |
| [&](const ast::ConstAssert*) { |
| // Not emitted |
| }, |
| [&](Default) { |
| add_error(stmt->source, |
| "unknown statement type: " + std::string(stmt->TypeInfo().name)); |
| }); |
| } |
| |
| void EmitAssignment(const ast::AssignmentStatement* stmt) { |
| auto lhs = EmitExpression(stmt->lhs); |
| if (!lhs) { |
| return; |
| } |
| |
| auto rhs = EmitExpression(stmt->rhs); |
| if (!rhs) { |
| return; |
| } |
| auto store = builder_.Store(lhs.Get(), rhs.Get()); |
| current_flow_block_->instructions.Push(store); |
| } |
| |
| void EmitIncrementDecrement(const ast::IncrementDecrementStatement* stmt) { |
| auto lhs = EmitExpression(stmt->lhs); |
| if (!lhs) { |
| return; |
| } |
| |
| auto* ty = lhs.Get()->Type(); |
| auto* rhs = ty->UnwrapRef()->is_signed_integer_scalar() ? builder_.Constant(1_i) |
| : builder_.Constant(1_u); |
| |
| Binary* inst = nullptr; |
| if (stmt->increment) { |
| inst = builder_.Add(ty, lhs.Get(), rhs); |
| } else { |
| inst = builder_.Subtract(ty, lhs.Get(), rhs); |
| } |
| current_flow_block_->instructions.Push(inst); |
| |
| auto store = builder_.Store(lhs.Get(), inst); |
| current_flow_block_->instructions.Push(store); |
| } |
| |
| void EmitCompoundAssignment(const ast::CompoundAssignmentStatement* stmt) { |
| auto lhs = EmitExpression(stmt->lhs); |
| if (!lhs) { |
| return; |
| } |
| |
| auto rhs = EmitExpression(stmt->rhs); |
| if (!rhs) { |
| return; |
| } |
| auto* ty = lhs.Get()->Type(); |
| Binary* inst = nullptr; |
| switch (stmt->op) { |
| case ast::BinaryOp::kAnd: |
| inst = builder_.And(ty, lhs.Get(), rhs.Get()); |
| break; |
| case ast::BinaryOp::kOr: |
| inst = builder_.Or(ty, lhs.Get(), rhs.Get()); |
| break; |
| case ast::BinaryOp::kXor: |
| inst = builder_.Xor(ty, lhs.Get(), rhs.Get()); |
| break; |
| case ast::BinaryOp::kShiftLeft: |
| inst = builder_.ShiftLeft(ty, lhs.Get(), rhs.Get()); |
| break; |
| case ast::BinaryOp::kShiftRight: |
| inst = builder_.ShiftRight(ty, lhs.Get(), rhs.Get()); |
| break; |
| case ast::BinaryOp::kAdd: |
| inst = builder_.Add(ty, lhs.Get(), rhs.Get()); |
| break; |
| case ast::BinaryOp::kSubtract: |
| inst = builder_.Subtract(ty, lhs.Get(), rhs.Get()); |
| break; |
| case ast::BinaryOp::kMultiply: |
| inst = builder_.Multiply(ty, lhs.Get(), rhs.Get()); |
| break; |
| case ast::BinaryOp::kDivide: |
| inst = builder_.Divide(ty, lhs.Get(), rhs.Get()); |
| break; |
| case ast::BinaryOp::kModulo: |
| inst = builder_.Modulo(ty, lhs.Get(), rhs.Get()); |
| break; |
| case ast::BinaryOp::kLessThanEqual: |
| case ast::BinaryOp::kGreaterThanEqual: |
| case ast::BinaryOp::kGreaterThan: |
| case ast::BinaryOp::kLessThan: |
| case ast::BinaryOp::kNotEqual: |
| case ast::BinaryOp::kEqual: |
| case ast::BinaryOp::kLogicalAnd: |
| case ast::BinaryOp::kLogicalOr: |
| TINT_ICE(IR, diagnostics_) << "invalid compound assignment"; |
| return; |
| case ast::BinaryOp::kNone: |
| TINT_ICE(IR, diagnostics_) << "missing binary operand type"; |
| return; |
| } |
| current_flow_block_->instructions.Push(inst); |
| |
| auto store = builder_.Store(lhs.Get(), inst); |
| current_flow_block_->instructions.Push(store); |
| } |
| |
| void EmitBlock(const ast::BlockStatement* block) { |
| scopes_.Push(); |
| TINT_DEFER(scopes_.Pop()); |
| |
| // Note, this doesn't need to emit a Block as the current block flow node should be |
| // sufficient as the blocks all get flattened. Each flow control node will inject the basic |
| // blocks it requires. |
| EmitStatements(block->statements); |
| } |
| |
| void EmitIf(const ast::IfStatement* stmt) { |
| // Emit the if condition into the end of the preceding block |
| auto reg = EmitExpression(stmt->condition); |
| if (!reg) { |
| return; |
| } |
| auto* if_node = builder_.CreateIf(reg.Get()); |
| |
| BranchTo(if_node); |
| |
| ast_to_flow_[stmt] = if_node; |
| |
| { |
| FlowStackScope scope(this, if_node); |
| |
| current_flow_block_ = if_node->true_.target->As<Block>(); |
| EmitBlock(stmt->body); |
| |
| // If the true branch did not execute control flow, then go to the merge target |
| BranchToIfNeeded(if_node->merge.target); |
| |
| current_flow_block_ = if_node->false_.target->As<Block>(); |
| if (stmt->else_statement) { |
| EmitStatement(stmt->else_statement); |
| } |
| |
| // If the false branch did not execute control flow, then go to the merge target |
| BranchToIfNeeded(if_node->merge.target); |
| } |
| current_flow_block_ = nullptr; |
| |
| // If both branches went somewhere, then they both returned, continued or broke. So, there |
| // is no need for the if merge-block and there is nothing to branch to the merge block |
| // anyway. |
| if (IsConnected(if_node->merge.target)) { |
| current_flow_block_ = if_node->merge.target->As<Block>(); |
| } |
| } |
| |
| void EmitLoop(const ast::LoopStatement* stmt) { |
| auto* loop_node = builder_.CreateLoop(); |
| |
| BranchTo(loop_node); |
| |
| ast_to_flow_[stmt] = loop_node; |
| |
| { |
| FlowStackScope scope(this, loop_node); |
| |
| current_flow_block_ = loop_node->start.target->As<Block>(); |
| |
| // The loop doesn't use EmitBlock because it needs the scope stack to not get popped |
| // until after the continuing block. |
| scopes_.Push(); |
| TINT_DEFER(scopes_.Pop()); |
| EmitStatements(stmt->body->statements); |
| |
| // The current block didn't `break`, `return` or `continue`, go to the continuing block. |
| BranchToIfNeeded(loop_node->continuing.target); |
| |
| current_flow_block_ = loop_node->continuing.target->As<Block>(); |
| if (stmt->continuing) { |
| EmitBlock(stmt->continuing); |
| } |
| |
| // Branch back to the start node if the continue target didn't branch out already |
| BranchToIfNeeded(loop_node->start.target); |
| } |
| |
| // The loop merge can get disconnected if the loop returns directly, or the continuing |
| // target branches, eventually, to the merge, but nothing branched to the continuing target. |
| current_flow_block_ = loop_node->merge.target->As<Block>(); |
| if (!IsConnected(loop_node->merge.target)) { |
| current_flow_block_ = nullptr; |
| } |
| } |
| |
| void EmitWhile(const ast::WhileStatement* stmt) { |
| auto* loop_node = builder_.CreateLoop(); |
| // Continue is always empty, just go back to the start |
| TINT_ASSERT(IR, loop_node->continuing.target->Is<Block>()); |
| builder_.Branch(loop_node->continuing.target->As<Block>(), loop_node->start.target, |
| utils::Empty); |
| |
| BranchTo(loop_node); |
| |
| ast_to_flow_[stmt] = loop_node; |
| |
| { |
| FlowStackScope scope(this, loop_node); |
| |
| current_flow_block_ = loop_node->start.target->As<Block>(); |
| |
| // Emit the while condition into the start target of the loop |
| auto reg = EmitExpression(stmt->condition); |
| if (!reg) { |
| return; |
| } |
| |
| // Create an `if (cond) {} else {break;}` control flow |
| auto* if_node = builder_.CreateIf(reg.Get()); |
| TINT_ASSERT(IR, if_node->true_.target->Is<Block>()); |
| builder_.Branch(if_node->true_.target->As<Block>(), if_node->merge.target, |
| utils::Empty); |
| |
| TINT_ASSERT(IR, if_node->false_.target->Is<Block>()); |
| builder_.Branch(if_node->false_.target->As<Block>(), loop_node->merge.target, |
| utils::Empty); |
| |
| BranchTo(if_node); |
| |
| current_flow_block_ = if_node->merge.target->As<Block>(); |
| EmitBlock(stmt->body); |
| |
| BranchToIfNeeded(loop_node->continuing.target); |
| } |
| // The while loop always has a path to the merge target as the break statement comes before |
| // anything inside the loop. |
| current_flow_block_ = loop_node->merge.target->As<Block>(); |
| } |
| |
| void EmitForLoop(const ast::ForLoopStatement* stmt) { |
| auto* loop_node = builder_.CreateLoop(); |
| TINT_ASSERT(IR, loop_node->continuing.target->Is<Block>()); |
| builder_.Branch(loop_node->continuing.target->As<Block>(), loop_node->start.target, |
| utils::Empty); |
| |
| // Make sure the initializer ends up in a contained scope |
| scopes_.Push(); |
| TINT_DEFER(scopes_.Pop()); |
| |
| if (stmt->initializer) { |
| // Emit the for initializer before branching to the loop |
| EmitStatement(stmt->initializer); |
| } |
| |
| BranchTo(loop_node); |
| |
| ast_to_flow_[stmt] = loop_node; |
| |
| { |
| FlowStackScope scope(this, loop_node); |
| |
| current_flow_block_ = loop_node->start.target->As<Block>(); |
| |
| if (stmt->condition) { |
| // Emit the condition into the target target of the loop |
| auto reg = EmitExpression(stmt->condition); |
| if (!reg) { |
| return; |
| } |
| |
| // Create an `if (cond) {} else {break;}` control flow |
| auto* if_node = builder_.CreateIf(reg.Get()); |
| TINT_ASSERT(IR, if_node->true_.target->Is<Block>()); |
| builder_.Branch(if_node->true_.target->As<Block>(), if_node->merge.target, |
| utils::Empty); |
| |
| TINT_ASSERT(IR, if_node->false_.target->Is<Block>()); |
| builder_.Branch(if_node->false_.target->As<Block>(), loop_node->merge.target, |
| utils::Empty); |
| |
| BranchTo(if_node); |
| current_flow_block_ = if_node->merge.target->As<Block>(); |
| } |
| |
| EmitBlock(stmt->body); |
| BranchToIfNeeded(loop_node->continuing.target); |
| |
| if (stmt->continuing) { |
| current_flow_block_ = loop_node->continuing.target->As<Block>(); |
| EmitStatement(stmt->continuing); |
| } |
| } |
| |
| // The while loop always has a path to the merge target as the break statement comes before |
| // anything inside the loop. |
| current_flow_block_ = loop_node->merge.target->As<Block>(); |
| } |
| |
| void EmitSwitch(const ast::SwitchStatement* stmt) { |
| // Emit the condition into the preceding block |
| auto reg = EmitExpression(stmt->condition); |
| if (!reg) { |
| return; |
| } |
| auto* switch_node = builder_.CreateSwitch(reg.Get()); |
| |
| BranchTo(switch_node); |
| |
| ast_to_flow_[stmt] = switch_node; |
| |
| { |
| FlowStackScope scope(this, switch_node); |
| |
| const auto* sem = program_->Sem().Get(stmt); |
| for (const auto* c : sem->Cases()) { |
| utils::Vector<Switch::CaseSelector, 4> selectors; |
| for (const auto* selector : c->Selectors()) { |
| if (selector->IsDefault()) { |
| selectors.Push({nullptr}); |
| } else { |
| selectors.Push({builder_.Constant(selector->Value()->Clone(clone_ctx_))}); |
| } |
| } |
| |
| current_flow_block_ = builder_.CreateCase(switch_node, selectors); |
| EmitBlock(c->Body()->Declaration()); |
| |
| BranchToIfNeeded(switch_node->merge.target); |
| } |
| } |
| current_flow_block_ = nullptr; |
| |
| if (IsConnected(switch_node->merge.target)) { |
| current_flow_block_ = switch_node->merge.target->As<Block>(); |
| } |
| } |
| |
| void EmitReturn(const ast::ReturnStatement* stmt) { |
| utils::Vector<Value*, 1> ret_value; |
| if (stmt->value) { |
| auto ret = EmitExpression(stmt->value); |
| if (!ret) { |
| return; |
| } |
| ret_value.Push(ret.Get()); |
| } |
| |
| BranchTo(current_function_->end_target, std::move(ret_value)); |
| } |
| |
| void EmitBreak(const ast::BreakStatement*) { |
| auto* current_control = FindEnclosingControl(ControlFlags::kNone); |
| TINT_ASSERT(IR, current_control); |
| |
| if (auto* c = current_control->As<Loop>()) { |
| BranchTo(c->merge.target); |
| } else if (auto* s = current_control->As<Switch>()) { |
| BranchTo(s->merge.target); |
| } else { |
| TINT_UNREACHABLE(IR, diagnostics_); |
| } |
| } |
| |
| void EmitContinue(const ast::ContinueStatement*) { |
| auto* current_control = FindEnclosingControl(ControlFlags::kExcludeSwitch); |
| TINT_ASSERT(IR, current_control); |
| |
| if (auto* c = current_control->As<Loop>()) { |
| BranchTo(c->continuing.target); |
| } else { |
| TINT_UNREACHABLE(IR, diagnostics_); |
| } |
| } |
| |
| // Discard is being treated as an instruction. The semantics in WGSL is demote_to_helper, so the |
| // code has to continue as before it just predicates writes. If WGSL grows some kind of |
| // terminating discard that would probably make sense as a FlowNode but would then require |
| // figuring out the multi-level exit that is triggered. |
| void EmitDiscard(const ast::DiscardStatement*) { |
| auto* inst = builder_.Discard(); |
| current_flow_block_->instructions.Push(inst); |
| } |
| |
| void EmitBreakIf(const ast::BreakIfStatement* stmt) { |
| // Emit the break-if condition into the end of the preceding block |
| auto reg = EmitExpression(stmt->condition); |
| if (!reg) { |
| return; |
| } |
| auto* if_node = builder_.CreateIf(reg.Get()); |
| |
| BranchTo(if_node); |
| |
| ast_to_flow_[stmt] = if_node; |
| |
| auto* current_control = FindEnclosingControl(ControlFlags::kExcludeSwitch); |
| TINT_ASSERT(IR, current_control); |
| TINT_ASSERT(IR, current_control->Is<Loop>()); |
| |
| auto* loop = current_control->As<Loop>(); |
| |
| current_flow_block_ = if_node->true_.target->As<Block>(); |
| BranchTo(loop->merge.target); |
| |
| current_flow_block_ = if_node->false_.target->As<Block>(); |
| BranchTo(if_node->merge.target); |
| |
| current_flow_block_ = if_node->merge.target->As<Block>(); |
| |
| // The `break-if` has to be the last item in the continuing block. The false branch of the |
| // `break-if` will always take us back to the start of the loop. |
| BranchTo(loop->start.target); |
| } |
| |
| utils::Result<Value*> EmitExpression(const ast::Expression* expr) { |
| // If this is a value that has been const-eval'd return the result. |
| if (auto* sem = program_->Sem().Get(expr)->As<sem::ValueExpression>()) { |
| if (auto* v = sem->ConstantValue()) { |
| if (auto* cv = v->Clone(clone_ctx_)) { |
| return builder_.Constant(cv); |
| } |
| } |
| } |
| |
| return tint::Switch( |
| expr, |
| // [&](const ast::IndexAccessorExpression* a) { |
| // TODO(dsinclair): Implement |
| // }, |
| [&](const ast::BinaryExpression* b) { return EmitBinary(b); }, |
| [&](const ast::BitcastExpression* b) { return EmitBitcast(b); }, |
| [&](const ast::CallExpression* c) { return EmitCall(c); }, |
| [&](const ast::IdentifierExpression* i) -> utils::Result<Value*> { |
| auto* v = scopes_.Get(i->identifier->symbol); |
| if (TINT_UNLIKELY(!v)) { |
| add_error(expr->source, |
| "unable to find identifier " + i->identifier->symbol.Name()); |
| return utils::Failure; |
| } |
| return {v}; |
| }, |
| [&](const ast::LiteralExpression* l) { return EmitLiteral(l); }, |
| // [&](const ast::MemberAccessorExpression* m) { |
| // TODO(dsinclair): Implement |
| // }, |
| // [&](const ast::PhonyExpression*) { |
| // TODO(dsinclair): Implement. The call may have side effects so has to be made. |
| // }, |
| [&](const ast::UnaryOpExpression* u) { return EmitUnary(u); }, |
| [&](Default) { |
| add_error(expr->source, |
| "unknown expression type: " + std::string(expr->TypeInfo().name)); |
| return utils::Failure; |
| }); |
| } |
| |
| void EmitVariable(const ast::Variable* var) { |
| auto* sem = program_->Sem().Get(var); |
| |
| return tint::Switch( // |
| var, |
| [&](const ast::Var* v) { |
| auto* ty = sem->Type()->Clone(clone_ctx_.type_ctx); |
| auto* val = builder_.Declare(ty); |
| current_flow_block_->instructions.Push(val); |
| |
| if (v->initializer) { |
| auto init = EmitExpression(v->initializer); |
| if (!init) { |
| return; |
| } |
| val->initializer = init.Get(); |
| } |
| // Store the declaration so we can get the instruction to store too |
| scopes_.Set(v->name->symbol, val); |
| |
| // Record the original name of the var |
| builder_.ir.SetName(val, v->name->symbol.Name()); |
| }, |
| [&](const ast::Let* l) { |
| // A `let` doesn't exist as a standalone item in the IR, it's just the result of the |
| // initializer. |
| auto init = EmitExpression(l->initializer); |
| if (!init) { |
| return; |
| } |
| |
| // Store the results of the initialization |
| scopes_.Set(l->name->symbol, init.Get()); |
| |
| // Record the original name of the let |
| builder_.ir.SetName(init.Get(), l->name->symbol.Name()); |
| }, |
| [&](const ast::Override*) { |
| add_error(var->source, |
| "found an `Override` variable. The SubstituteOverrides " |
| "transform must be run before converting to IR"); |
| }, |
| [&](const ast::Const*) { |
| // Skip. This should be handled by const-eval already, so the const will be a |
| // `constant::` value at the usage sites. Can just ignore the `const` variable as it |
| // should never be used. |
| // |
| // TODO(dsinclair): Probably want to store the const variable somewhere and then in |
| // identifier expression log an error if we ever see a const identifier. Add this |
| // when identifiers and variables are supported. |
| }, |
| [&](Default) { |
| add_error(var->source, "unknown variable: " + std::string(var->TypeInfo().name)); |
| }); |
| } |
| |
| utils::Result<Value*> EmitUnary(const ast::UnaryOpExpression* expr) { |
| auto val = EmitExpression(expr->expr); |
| if (!val) { |
| return utils::Failure; |
| } |
| |
| auto* sem = program_->Sem().Get(expr); |
| auto* ty = sem->Type()->Clone(clone_ctx_.type_ctx); |
| |
| Instruction* inst = nullptr; |
| switch (expr->op) { |
| case ast::UnaryOp::kAddressOf: |
| inst = builder_.AddressOf(ty, val.Get()); |
| break; |
| case ast::UnaryOp::kComplement: |
| inst = builder_.Complement(ty, val.Get()); |
| break; |
| case ast::UnaryOp::kIndirection: |
| inst = builder_.Indirection(ty, val.Get()); |
| break; |
| case ast::UnaryOp::kNegation: |
| inst = builder_.Negation(ty, val.Get()); |
| break; |
| case ast::UnaryOp::kNot: |
| inst = builder_.Not(ty, val.Get()); |
| break; |
| } |
| |
| current_flow_block_->instructions.Push(inst); |
| return inst; |
| } |
| |
| // A short-circut needs special treatment. The short-circuit is decomposed into the relevant if |
| // statements and declarations. |
| utils::Result<Value*> EmitShortCircuit(const ast::BinaryExpression* expr) { |
| switch (expr->op) { |
| case ast::BinaryOp::kLogicalAnd: |
| case ast::BinaryOp::kLogicalOr: |
| break; |
| default: |
| TINT_ICE(IR, diagnostics_) |
| << "invalid operation type for short-circut decomposition"; |
| return utils::Failure; |
| } |
| |
| // Evaluate the LHS of the short-circuit |
| auto lhs = EmitExpression(expr->lhs); |
| if (!lhs) { |
| return utils::Failure; |
| } |
| |
| auto* if_node = builder_.CreateIf(lhs.Get()); |
| BranchTo(if_node); |
| |
| auto* result = builder_.BlockParam(builder_.ir.types.Get<type::Bool>()); |
| if_node->merge.target->As<Block>()->params.Push(result); |
| |
| utils::Result<Value*> rhs; |
| { |
| FlowStackScope scope(this, if_node); |
| |
| utils::Vector<Value*, 1> alt_args; |
| alt_args.Push(lhs.Get()); |
| |
| // If this is an `&&` then we only evaluate the RHS expression in the true block. |
| // If this is an `||` then we only evaluate the RHS expression in the false block. |
| if (expr->op == ast::BinaryOp::kLogicalAnd) { |
| // If the lhs is false, then that is the result we want to pass to the merge block |
| // as our argument |
| current_flow_block_ = if_node->false_.target->As<Block>(); |
| BranchTo(if_node->merge.target, std::move(alt_args)); |
| |
| current_flow_block_ = if_node->true_.target->As<Block>(); |
| } else { |
| // If the lhs is true, then that is the result we want to pass to the merge block |
| // as our argument |
| current_flow_block_ = if_node->true_.target->As<Block>(); |
| BranchTo(if_node->merge.target, std::move(alt_args)); |
| |
| current_flow_block_ = if_node->false_.target->As<Block>(); |
| } |
| |
| rhs = EmitExpression(expr->rhs); |
| if (!rhs) { |
| return utils::Failure; |
| } |
| utils::Vector<Value*, 1> args; |
| args.Push(rhs.Get()); |
| |
| BranchTo(if_node->merge.target, std::move(args)); |
| } |
| current_flow_block_ = if_node->merge.target->As<Block>(); |
| |
| return result; |
| } |
| |
| utils::Result<Value*> EmitBinary(const ast::BinaryExpression* expr) { |
| if (expr->op == ast::BinaryOp::kLogicalAnd || expr->op == ast::BinaryOp::kLogicalOr) { |
| return EmitShortCircuit(expr); |
| } |
| |
| auto lhs = EmitExpression(expr->lhs); |
| if (!lhs) { |
| return utils::Failure; |
| } |
| |
| auto rhs = EmitExpression(expr->rhs); |
| if (!rhs) { |
| return utils::Failure; |
| } |
| |
| auto* sem = program_->Sem().Get(expr); |
| auto* ty = sem->Type()->Clone(clone_ctx_.type_ctx); |
| |
| Binary* inst = nullptr; |
| switch (expr->op) { |
| case ast::BinaryOp::kAnd: |
| inst = builder_.And(ty, lhs.Get(), rhs.Get()); |
| break; |
| case ast::BinaryOp::kOr: |
| inst = builder_.Or(ty, lhs.Get(), rhs.Get()); |
| break; |
| case ast::BinaryOp::kXor: |
| inst = builder_.Xor(ty, lhs.Get(), rhs.Get()); |
| break; |
| case ast::BinaryOp::kEqual: |
| inst = builder_.Equal(ty, lhs.Get(), rhs.Get()); |
| break; |
| case ast::BinaryOp::kNotEqual: |
| inst = builder_.NotEqual(ty, lhs.Get(), rhs.Get()); |
| break; |
| case ast::BinaryOp::kLessThan: |
| inst = builder_.LessThan(ty, lhs.Get(), rhs.Get()); |
| break; |
| case ast::BinaryOp::kGreaterThan: |
| inst = builder_.GreaterThan(ty, lhs.Get(), rhs.Get()); |
| break; |
| case ast::BinaryOp::kLessThanEqual: |
| inst = builder_.LessThanEqual(ty, lhs.Get(), rhs.Get()); |
| break; |
| case ast::BinaryOp::kGreaterThanEqual: |
| inst = builder_.GreaterThanEqual(ty, lhs.Get(), rhs.Get()); |
| break; |
| case ast::BinaryOp::kShiftLeft: |
| inst = builder_.ShiftLeft(ty, lhs.Get(), rhs.Get()); |
| break; |
| case ast::BinaryOp::kShiftRight: |
| inst = builder_.ShiftRight(ty, lhs.Get(), rhs.Get()); |
| break; |
| case ast::BinaryOp::kAdd: |
| inst = builder_.Add(ty, lhs.Get(), rhs.Get()); |
| break; |
| case ast::BinaryOp::kSubtract: |
| inst = builder_.Subtract(ty, lhs.Get(), rhs.Get()); |
| break; |
| case ast::BinaryOp::kMultiply: |
| inst = builder_.Multiply(ty, lhs.Get(), rhs.Get()); |
| break; |
| case ast::BinaryOp::kDivide: |
| inst = builder_.Divide(ty, lhs.Get(), rhs.Get()); |
| break; |
| case ast::BinaryOp::kModulo: |
| inst = builder_.Modulo(ty, lhs.Get(), rhs.Get()); |
| break; |
| case ast::BinaryOp::kLogicalAnd: |
| case ast::BinaryOp::kLogicalOr: |
| TINT_ICE(IR, diagnostics_) << "short circuit op should have already been handled"; |
| return utils::Failure; |
| case ast::BinaryOp::kNone: |
| TINT_ICE(IR, diagnostics_) << "missing binary operand type"; |
| return utils::Failure; |
| } |
| |
| current_flow_block_->instructions.Push(inst); |
| return inst; |
| } |
| |
| utils::Result<Value*> EmitBitcast(const ast::BitcastExpression* expr) { |
| auto val = EmitExpression(expr->expr); |
| if (!val) { |
| return utils::Failure; |
| } |
| |
| auto* sem = program_->Sem().Get(expr); |
| auto* ty = sem->Type()->Clone(clone_ctx_.type_ctx); |
| auto* inst = builder_.Bitcast(ty, val.Get()); |
| |
| current_flow_block_->instructions.Push(inst); |
| return inst; |
| } |
| |
| void EmitCall(const ast::CallStatement* stmt) { (void)EmitCall(stmt->expr); } |
| |
| utils::Result<Value*> EmitCall(const ast::CallExpression* expr) { |
| // If this is a materialized semantic node, just use the constant value. |
| if (auto* mat = program_->Sem().Get(expr)) { |
| if (mat->ConstantValue()) { |
| auto* cv = mat->ConstantValue()->Clone(clone_ctx_); |
| if (!cv) { |
| add_error(expr->source, "failed to get constant value for call " + |
| std::string(expr->TypeInfo().name)); |
| return utils::Failure; |
| } |
| return builder_.Constant(cv); |
| } |
| } |
| |
| utils::Vector<Value*, 8> args; |
| args.Reserve(expr->args.Length()); |
| |
| // Emit the arguments |
| for (const auto* arg : expr->args) { |
| auto value = EmitExpression(arg); |
| if (!value) { |
| add_error(arg->source, "failed to convert arguments"); |
| return utils::Failure; |
| } |
| args.Push(value.Get()); |
| } |
| |
| auto* sem = program_->Sem().Get<sem::Call>(expr); |
| if (!sem) { |
| add_error(expr->source, "failed to get semantic information for call " + |
| std::string(expr->TypeInfo().name)); |
| return utils::Failure; |
| } |
| |
| auto* ty = sem->Target()->ReturnType()->Clone(clone_ctx_.type_ctx); |
| |
| Instruction* inst = nullptr; |
| |
| // If this is a builtin function, emit the specific builtin value |
| if (auto* b = sem->Target()->As<sem::Builtin>()) { |
| inst = builder_.Builtin(ty, b->Type(), args); |
| } else if (sem->Target()->As<sem::ValueConstructor>()) { |
| inst = builder_.Construct(ty, std::move(args)); |
| } else if (auto* conv = sem->Target()->As<sem::ValueConversion>()) { |
| auto* from = conv->Source()->Clone(clone_ctx_.type_ctx); |
| inst = builder_.Convert(ty, from, std::move(args)); |
| } else if (expr->target->identifier->Is<ast::TemplatedIdentifier>()) { |
| TINT_UNIMPLEMENTED(IR, diagnostics_) << "missing templated ident support"; |
| return utils::Failure; |
| } else { |
| // Not a builtin and not a templated call, so this is a user function. |
| auto name = CloneSymbol(expr->target->identifier->symbol); |
| inst = builder_.UserCall(ty, name, std::move(args)); |
| } |
| if (inst == nullptr) { |
| return utils::Failure; |
| } |
| current_flow_block_->instructions.Push(inst); |
| return inst; |
| } |
| |
| utils::Result<Value*> EmitLiteral(const ast::LiteralExpression* lit) { |
| auto* sem = program_->Sem().Get(lit); |
| if (!sem) { |
| add_error(lit->source, "failed to get semantic information for node " + |
| std::string(lit->TypeInfo().name)); |
| return utils::Failure; |
| } |
| |
| auto* cv = sem->ConstantValue()->Clone(clone_ctx_); |
| if (!cv) { |
| add_error(lit->source, |
| "failed to get constant value for node " + std::string(lit->TypeInfo().name)); |
| return utils::Failure; |
| } |
| return builder_.Constant(cv); |
| } |
| |
| // void EmitAttributes(utils::VectorRef<const ast::Attribute*> attrs) { |
| // for (auto* attr : attrs) { |
| // EmitAttribute(attr); |
| // } |
| // } |
| // |
| // void EmitAttribute(const ast::Attribute* attr) { |
| // tint::Switch( // |
| // attr, |
| // [&](const ast::WorkgroupAttribute* wg) { |
| // // TODO(dsinclair): Implement |
| // }, |
| // [&](const ast::StageAttribute* s) { |
| // // TODO(dsinclair): Implement |
| // }, |
| // [&](const ast::BindingAttribute* b) { |
| // // TODO(dsinclair): Implement |
| // }, |
| // [&](const ast::GroupAttribute* g) { |
| // // TODO(dsinclair): Implement |
| // }, |
| // [&](const ast::LocationAttribute* l) { |
| // // TODO(dsinclair): Implement |
| // }, |
| // [&](const ast::BuiltinAttribute* b) { |
| // // TODO(dsinclair): Implement |
| // }, |
| // [&](const ast::InterpolateAttribute* i) { |
| // // TODO(dsinclair): Implement |
| // }, |
| // [&](const ast::InvariantAttribute* i) { |
| // // TODO(dsinclair): Implement |
| // }, |
| // [&](const ast::MustUseAttribute* i) { |
| // // TODO(dsinclair): Implement |
| // }, |
| // [&](const ast::IdAttribute*) { |
| // add_error(attr->source, |
| // "found an `Id` attribute. The SubstituteOverrides transform " |
| // "must be run before converting to IR"); |
| // }, |
| // [&](const ast::StructMemberSizeAttribute*) { |
| // TINT_ICE(IR, diagnostics_) |
| // << "StructMemberSizeAttribute encountered during IR conversion"; |
| // }, |
| // [&](const ast::StructMemberAlignAttribute*) { |
| // TINT_ICE(IR, diagnostics_) |
| // << "StructMemberAlignAttribute encountered during IR conversion"; |
| // }, |
| // [&](const ast::StrideAttribute* s) { |
| // // TODO(dsinclair): Implement |
| // }, |
| // [&](const ast::InternalAttribute *i) { |
| // // TODO(dsinclair): Implement |
| // }, |
| // [&](Default) { |
| // add_error(attr->source, "unknown attribute: " + |
| // std::string(attr->TypeInfo().name)); |
| // }); |
| // } |
| }; |
| |
| } // namespace |
| |
| utils::Result<Module, std::string> FromProgram(const Program* program) { |
| if (!program->IsValid()) { |
| return std::string("input program is not valid"); |
| } |
| |
| Impl b(program); |
| auto r = b.Build(); |
| if (!r) { |
| return r.Failure().str(); |
| } |
| |
| return r.Move(); |
| } |
| |
| } // namespace tint::ir |