blob: 54548efdad4ed15b39a335386087281902e5819d [file] [log] [blame]
// Copyright 2020 The Dawn & Tint Authors
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "gmock/gmock.h"
#include "src/tint/lang/spirv/reader/ast_parser/helper_test.h"
#include "src/tint/lang/spirv/reader/ast_parser/parse.h"
#include "src/tint/lang/spirv/reader/ast_parser/spirv_tools_helpers_test.h"
#include "src/tint/lang/wgsl/writer/writer.h"
namespace tint::spirv::reader::ast_parser {
namespace {
using ::testing::HasSubstr;
TEST_F(SpirvASTParserTest, Impl_Uint32VecEmpty) {
std::vector<uint32_t> data;
auto p = parser(data);
EXPECT_FALSE(p->Parse());
// TODO(dneto): What message?
}
TEST_F(SpirvASTParserTest, Impl_InvalidModuleFails) {
auto invalid_spv = test::Assemble("%ty = OpTypeInt 3 0");
auto p = parser(invalid_spv);
EXPECT_FALSE(p->Parse());
EXPECT_THAT(p->error(), HasSubstr("TypeInt cannot appear before the memory model instruction"));
EXPECT_THAT(p->error(), HasSubstr("OpTypeInt 3 0"));
}
TEST_F(SpirvASTParserTest, Impl_GenericVulkanShader_SimpleMemoryModel) {
auto spv = test::Assemble(R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint GLCompute %main "main"
OpExecutionMode %main LocalSize 1 1 1
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%main = OpFunction %void None %voidfn
%entry = OpLabel
OpReturn
OpFunctionEnd
)");
auto p = parser(spv);
EXPECT_TRUE(p->Parse());
EXPECT_TRUE(p->error().empty());
}
TEST_F(SpirvASTParserTest, Impl_GenericVulkanShader_GLSL450MemoryModel) {
auto spv = test::Assemble(R"(
OpCapability Shader
OpMemoryModel Logical GLSL450
OpEntryPoint GLCompute %main "main"
OpExecutionMode %main LocalSize 1 1 1
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%main = OpFunction %void None %voidfn
%entry = OpLabel
OpReturn
OpFunctionEnd
)");
auto p = parser(spv);
EXPECT_TRUE(p->Parse());
EXPECT_TRUE(p->error().empty());
}
TEST_F(SpirvASTParserTest, Impl_GenericVulkanShader_VulkanMemoryModel) {
auto spv = test::Assemble(R"(
OpCapability Shader
OpCapability VulkanMemoryModelKHR
OpExtension "SPV_KHR_vulkan_memory_model"
OpMemoryModel Logical VulkanKHR
OpEntryPoint GLCompute %main "main"
OpExecutionMode %main LocalSize 1 1 1
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%main = OpFunction %void None %voidfn
%entry = OpLabel
OpReturn
OpFunctionEnd
)");
auto p = parser(spv);
EXPECT_TRUE(p->Parse());
EXPECT_TRUE(p->error().empty());
}
TEST_F(SpirvASTParserTest, Impl_OpenCLKernel_Fails) {
auto spv = test::Assemble(R"(
OpCapability Kernel
OpCapability Addresses
OpMemoryModel Physical32 OpenCL
OpEntryPoint Kernel %main "main"
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%main = OpFunction %void None %voidfn
%entry = OpLabel
OpReturn
OpFunctionEnd
)");
auto p = parser(spv);
EXPECT_FALSE(p->Parse());
EXPECT_THAT(p->error(), HasSubstr("Capability Kernel is not allowed"));
}
TEST_F(SpirvASTParserTest, Impl_Source_NoOpLine) {
auto spv = test::Assemble(R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint GLCompute %main "main"
OpExecutionMode %main LocalSize 1 1 1
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%5 = OpTypeInt 32 0
%60 = OpConstantNull %5
%main = OpFunction %void None %voidfn
%1 = OpLabel
OpReturn
OpFunctionEnd
)");
auto p = parser(spv);
EXPECT_TRUE(p->Parse());
EXPECT_TRUE(p->error().empty());
// Use instruction counting.
auto s5 = p->GetSourceForResultIdForTest(5);
EXPECT_EQ(7u, s5.range.begin.line);
EXPECT_EQ(0u, s5.range.begin.column);
auto s60 = p->GetSourceForResultIdForTest(60);
EXPECT_EQ(8u, s60.range.begin.line);
EXPECT_EQ(0u, s60.range.begin.column);
auto s1 = p->GetSourceForResultIdForTest(1);
EXPECT_EQ(10u, s1.range.begin.line);
EXPECT_EQ(0u, s1.range.begin.column);
}
TEST_F(SpirvASTParserTest, Impl_Source_WithOpLine_WithOpNoLine) {
auto spv = test::Assemble(R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint GLCompute %main "main"
OpExecutionMode %main LocalSize 1 1 1
%15 = OpString "myfile"
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
OpLine %15 42 53
%5 = OpTypeInt 32 0
%60 = OpConstantNull %5
OpNoLine
%main = OpFunction %void None %voidfn
%1 = OpLabel
OpReturn
OpFunctionEnd
)");
auto p = parser(spv);
EXPECT_TRUE(p->Parse());
EXPECT_TRUE(p->error().empty());
// Use the information from the OpLine that is still in scope.
auto s5 = p->GetSourceForResultIdForTest(5);
EXPECT_EQ(42u, s5.range.begin.line);
EXPECT_EQ(53u, s5.range.begin.column);
auto s60 = p->GetSourceForResultIdForTest(60);
EXPECT_EQ(42u, s60.range.begin.line);
EXPECT_EQ(53u, s60.range.begin.column);
// After OpNoLine, revert back to instruction counting.
auto s1 = p->GetSourceForResultIdForTest(1);
EXPECT_EQ(14u, s1.range.begin.line);
EXPECT_EQ(0u, s1.range.begin.column);
}
TEST_F(SpirvASTParserTest, Impl_Source_InvalidId) {
auto spv = test::Assemble(R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint GLCompute %main "main"
OpExecutionMode %main LocalSize 1 1 1
%15 = OpString "myfile"
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%main = OpFunction %void None %voidfn
%1 = OpLabel
OpReturn
OpFunctionEnd
)");
auto p = parser(spv);
EXPECT_TRUE(p->Parse());
EXPECT_TRUE(p->error().empty());
auto s99 = p->GetSourceForResultIdForTest(99);
EXPECT_EQ(0u, s99.range.begin.line);
EXPECT_EQ(0u, s99.range.begin.column);
}
TEST_F(SpirvASTParserTest, Impl_IsValidIdentifier) {
EXPECT_FALSE(ASTParser::IsValidIdentifier("")); // empty
EXPECT_FALSE(ASTParser::IsValidIdentifier("_"));
EXPECT_FALSE(ASTParser::IsValidIdentifier("__"));
EXPECT_TRUE(ASTParser::IsValidIdentifier("_x"));
EXPECT_FALSE(ASTParser::IsValidIdentifier("9")); // leading digit, but ok later
EXPECT_FALSE(ASTParser::IsValidIdentifier(" ")); // leading space
EXPECT_FALSE(ASTParser::IsValidIdentifier("a ")); // trailing space
EXPECT_FALSE(ASTParser::IsValidIdentifier("a 1")); // space in the middle
EXPECT_FALSE(ASTParser::IsValidIdentifier(".")); // weird character
// a simple identifier
EXPECT_TRUE(ASTParser::IsValidIdentifier("A"));
// each upper case letter
EXPECT_TRUE(ASTParser::IsValidIdentifier("ABCDEFGHIJKLMNOPQRSTUVWXYZ"));
// each lower case letter
EXPECT_TRUE(ASTParser::IsValidIdentifier("abcdefghijklmnopqrstuvwxyz"));
EXPECT_TRUE(ASTParser::IsValidIdentifier("a0123456789")); // each digit
EXPECT_TRUE(ASTParser::IsValidIdentifier("x_")); // has underscore
}
TEST_F(SpirvASTParserTest, Impl_FailOnNonFiniteLiteral) {
auto spv = test::Assemble(R"(
OpCapability Shader
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main" %out_var_SV_TARGET
OpExecutionMode %main OriginUpperLeft
OpSource HLSL 600
OpName %out_var_SV_TARGET "out.var.SV_TARGET"
OpName %main "main"
OpDecorate %out_var_SV_TARGET Location 0
%float = OpTypeFloat 32
%float_0x1p_128 = OpConstant %float -0x1p+128
%v4float = OpTypeVector %float 4
%_ptr_Output_v4float = OpTypePointer Output %v4float
%void = OpTypeVoid
%9 = OpTypeFunction %void
%out_var_SV_TARGET = OpVariable %_ptr_Output_v4float Output
%main = OpFunction %void None %9
%10 = OpLabel
%12 = OpCompositeConstruct %v4float %float_0x1p_128 %float_0x1p_128 %float_0x1p_128 %float_0x1p_128
OpStore %out_var_SV_TARGET %12
OpReturn
OpFunctionEnd
)");
auto p = parser(spv);
EXPECT_FALSE(p->Parse());
EXPECT_THAT(p->error(), HasSubstr("value cannot be represented as 'f32': -inf"));
}
TEST_F(SpirvASTParserTest, BlendSrc) {
auto spv = test::Assemble(R"(
OpCapability Shader
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %frag_main "frag_main" %frag_main_loc0_idx0_Output %frag_main_loc0_idx1_Output
OpExecutionMode %frag_main OriginUpperLeft
OpName %frag_main_loc0_idx0_Output "frag_main_loc0_idx0_Output"
OpName %frag_main_loc0_idx1_Output "frag_main_loc0_idx1_Output"
OpName %frag_main_inner "frag_main_inner"
OpMemberName %FragOutput 0 "color"
OpMemberName %FragOutput 1 "blend"
OpName %FragOutput "FragOutput"
OpName %output "output"
OpName %frag_main "frag_main"
OpDecorate %frag_main_loc0_idx0_Output Location 0
OpDecorate %frag_main_loc0_idx0_Output Index 0
OpDecorate %frag_main_loc0_idx1_Output Location 0
OpDecorate %frag_main_loc0_idx1_Output Index 1
OpMemberDecorate %FragOutput 0 Offset 0
OpMemberDecorate %FragOutput 1 Offset 16
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%_ptr_Output_v4float = OpTypePointer Output %v4float
%frag_main_loc0_idx0_Output = OpVariable %_ptr_Output_v4float Output
%frag_main_loc0_idx1_Output = OpVariable %_ptr_Output_v4float Output
%FragOutput = OpTypeStruct %v4float %v4float
%8 = OpTypeFunction %FragOutput
%_ptr_Function_FragOutput = OpTypePointer Function %FragOutput
%12 = OpConstantNull %FragOutput
%_ptr_Function_v4float = OpTypePointer Function %v4float
%uint = OpTypeInt 32 0
%uint_0 = OpConstant %uint 0
%float_0_5 = OpConstant %float 0.5
%float_1 = OpConstant %float 1
%17 = OpConstantComposite %v4float %float_0_5 %float_0_5 %float_0_5 %float_1
%uint_1 = OpConstant %uint 1
%void = OpTypeVoid
%25 = OpTypeFunction %void
%frag_main_inner = OpFunction %FragOutput None %8
%9 = OpLabel
%output = OpVariable %_ptr_Function_FragOutput Function %12
%13 = OpAccessChain %_ptr_Function_v4float %output %uint_0
OpStore %13 %17 None
%20 = OpAccessChain %_ptr_Function_v4float %output %uint_1
OpStore %20 %17 None
%22 = OpLoad %FragOutput %output None
OpReturnValue %22
OpFunctionEnd
%frag_main = OpFunction %void None %25
%26 = OpLabel
%27 = OpFunctionCall %FragOutput %frag_main_inner
%28 = OpCompositeExtract %v4float %27 0
OpStore %frag_main_loc0_idx0_Output %28 None
%29 = OpCompositeExtract %v4float %27 1
OpStore %frag_main_loc0_idx1_Output %29 None
OpReturn
OpFunctionEnd
)");
auto program = Parse(spv, {});
auto errs = program.Diagnostics().Str();
EXPECT_TRUE(program.IsValid()) << errs;
EXPECT_EQ(program.Diagnostics().Count(), 0u) << errs;
auto result = wgsl::writer::Generate(program, {});
EXPECT_EQ(result, Success);
EXPECT_EQ("\n" + result->wgsl, R"(
enable dual_source_blending;
struct FragOutput {
/* @offset(0) */
color : vec4f,
/* @offset(16) */
blend : vec4f,
}
var<private> frag_main_loc0_idx0_Output : vec4f;
var<private> frag_main_loc0_idx1_Output : vec4f;
const x_17 = vec4f(0.5f, 0.5f, 0.5f, 1.0f);
fn frag_main_inner() -> FragOutput {
var output = FragOutput(vec4f(), vec4f());
output.color = x_17;
output.blend = x_17;
let x_22 = output;
return x_22;
}
fn frag_main_1() {
let x_27 = frag_main_inner();
frag_main_loc0_idx0_Output = x_27.color;
frag_main_loc0_idx1_Output = x_27.blend;
return;
}
struct frag_main_out {
@location(0) @blend_src(0)
frag_main_loc0_idx0_Output_1 : vec4f,
@location(0) @blend_src(1)
frag_main_loc0_idx1_Output_1 : vec4f,
}
@fragment
fn frag_main() -> frag_main_out {
frag_main_1();
return frag_main_out(frag_main_loc0_idx0_Output, frag_main_loc0_idx1_Output);
}
)");
}
TEST_F(SpirvASTParserTest, ClipDistances_ArraySize_1) {
auto spv = test::Assemble(R"(
OpCapability Shader
OpCapability ClipDistance
OpMemoryModel Logical GLSL450
OpEntryPoint Vertex %main "main" %main_position_Output %main_clip_distances_Output %main___point_size_Output
OpName %main_position_Output "main_position_Output"
OpName %main_clip_distances_Output "main_clip_distances_Output"
OpName %main___point_size_Output "main___point_size_Output"
OpName %main_inner "main_inner"
OpMemberName %VertexOutputs 0 "position"
OpMemberName %VertexOutputs 1 "clipDistance"
OpName %VertexOutputs "VertexOutputs"
OpName %main "main"
OpDecorate %main_position_Output BuiltIn Position
OpDecorate %_arr_float_uint_1 ArrayStride 4
OpDecorate %main_clip_distances_Output BuiltIn ClipDistance
OpDecorate %main___point_size_Output BuiltIn PointSize
OpMemberDecorate %VertexOutputs 0 Offset 0
OpMemberDecorate %VertexOutputs 1 Offset 16
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%_ptr_Output_v4float = OpTypePointer Output %v4float
%main_position_Output = OpVariable %_ptr_Output_v4float Output
%uint = OpTypeInt 32 0
%uint_1 = OpConstant %uint 1
%_arr_float_uint_1 = OpTypeArray %float %uint_1
%_ptr_Output__arr_float_uint_1 = OpTypePointer Output %_arr_float_uint_1
%main_clip_distances_Output = OpVariable %_ptr_Output__arr_float_uint_1 Output
%_ptr_Output_float = OpTypePointer Output %float
%main___point_size_Output = OpVariable %_ptr_Output_float Output
%VertexOutputs = OpTypeStruct %v4float %_arr_float_uint_1
%14 = OpTypeFunction %VertexOutputs
%16 = OpConstantNull %VertexOutputs
%void = OpTypeVoid
%19 = OpTypeFunction %void
%float_1 = OpConstant %float 1
%main_inner = OpFunction %VertexOutputs None %14
%15 = OpLabel
OpReturnValue %16
OpFunctionEnd
%main = OpFunction %void None %19
%20 = OpLabel
%21 = OpFunctionCall %VertexOutputs %main_inner
%22 = OpCompositeExtract %v4float %21 0
OpStore %main_position_Output %22 None
%23 = OpCompositeExtract %_arr_float_uint_1 %21 1
OpStore %main_clip_distances_Output %23 None
OpStore %main___point_size_Output %float_1 None
OpReturn
OpFunctionEnd
)");
auto program = Parse(spv, {});
auto errs = program.Diagnostics().Str();
EXPECT_TRUE(program.IsValid()) << errs;
EXPECT_EQ(program.Diagnostics().Count(), 0u) << errs;
auto result = wgsl::writer::Generate(program, {});
EXPECT_EQ(result, Success);
EXPECT_EQ("\n" + result->wgsl, R"(
enable clip_distances;
alias Arr = array<f32, 1u>;
struct VertexOutputs {
/* @offset(0) */
position : vec4f,
/* @offset(16) */
clipDistance : Arr,
}
var<private> main_position_Output : vec4f;
var<private> main_clip_distances_Output : Arr;
fn main_inner() -> VertexOutputs {
return VertexOutputs(vec4f(), array<f32, 1u>());
}
fn main_1() {
let x_21 = main_inner();
main_position_Output = x_21.position;
main_clip_distances_Output = x_21.clipDistance;
return;
}
struct main_out {
@builtin(position)
main_position_Output_1 : vec4f,
@builtin(clip_distances)
main_clip_distances_Output_1 : Arr,
}
@vertex
fn main() -> main_out {
main_1();
return main_out(main_position_Output, main_clip_distances_Output);
}
)");
}
TEST_F(SpirvASTParserTest, ClipDistances_ArraySize_4) {
auto spv = test::Assemble(R"(
OpCapability Shader
OpCapability ClipDistance
OpMemoryModel Logical GLSL450
OpEntryPoint Vertex %main "main" %main_position_Output %main_clip_distances_Output %main___point_size_Output
OpName %main_position_Output "main_position_Output"
OpName %main_clip_distances_Output "main_clip_distances_Output"
OpName %main___point_size_Output "main___point_size_Output"
OpName %main_inner "main_inner"
OpMemberName %VertexOutputs 0 "position"
OpMemberName %VertexOutputs 1 "clipDistance"
OpName %VertexOutputs "VertexOutputs"
OpName %main "main"
OpDecorate %main_position_Output BuiltIn Position
OpDecorate %_arr_float_uint_1 ArrayStride 4
OpDecorate %main_clip_distances_Output BuiltIn ClipDistance
OpDecorate %main___point_size_Output BuiltIn PointSize
OpMemberDecorate %VertexOutputs 0 Offset 0
OpMemberDecorate %VertexOutputs 1 Offset 16
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%_ptr_Output_v4float = OpTypePointer Output %v4float
%main_position_Output = OpVariable %_ptr_Output_v4float Output
%uint = OpTypeInt 32 0
%uint_1 = OpConstant %uint 4
%_arr_float_uint_1 = OpTypeArray %float %uint_1
%_ptr_Output__arr_float_uint_1 = OpTypePointer Output %_arr_float_uint_1
%main_clip_distances_Output = OpVariable %_ptr_Output__arr_float_uint_1 Output
%_ptr_Output_float = OpTypePointer Output %float
%main___point_size_Output = OpVariable %_ptr_Output_float Output
%VertexOutputs = OpTypeStruct %v4float %_arr_float_uint_1
%14 = OpTypeFunction %VertexOutputs
%16 = OpConstantNull %VertexOutputs
%void = OpTypeVoid
%19 = OpTypeFunction %void
%float_1 = OpConstant %float 1
%main_inner = OpFunction %VertexOutputs None %14
%15 = OpLabel
OpReturnValue %16
OpFunctionEnd
%main = OpFunction %void None %19
%20 = OpLabel
%21 = OpFunctionCall %VertexOutputs %main_inner
%22 = OpCompositeExtract %v4float %21 0
OpStore %main_position_Output %22 None
%23 = OpCompositeExtract %_arr_float_uint_1 %21 1
OpStore %main_clip_distances_Output %23 None
OpStore %main___point_size_Output %float_1 None
OpReturn
OpFunctionEnd
)");
auto program = Parse(spv, {});
auto errs = program.Diagnostics().Str();
EXPECT_TRUE(program.IsValid()) << errs;
EXPECT_EQ(program.Diagnostics().Count(), 0u) << errs;
auto result = wgsl::writer::Generate(program, {});
EXPECT_EQ(result, Success);
EXPECT_EQ("\n" + result->wgsl, R"(
enable clip_distances;
alias Arr = array<f32, 4u>;
struct VertexOutputs {
/* @offset(0) */
position : vec4f,
/* @offset(16) */
clipDistance : Arr,
}
var<private> main_position_Output : vec4f;
var<private> main_clip_distances_Output : Arr;
fn main_inner() -> VertexOutputs {
return VertexOutputs(vec4f(), array<f32, 4u>());
}
fn main_1() {
let x_21 = main_inner();
main_position_Output = x_21.position;
main_clip_distances_Output = x_21.clipDistance;
return;
}
struct main_out {
@builtin(position)
main_position_Output_1 : vec4f,
@builtin(clip_distances)
main_clip_distances_Output_1 : Arr,
}
@vertex
fn main() -> main_out {
main_1();
return main_out(main_position_Output, main_clip_distances_Output);
}
)");
}
} // namespace
} // namespace tint::spirv::reader::ast_parser