blob: e8e562c344948a724e02d5ab560d81f0ce062b4a [file] [log] [blame]
// Copyright 2020 The Dawn & Tint Authors
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "gmock/gmock.h"
#include "src/tint/lang/spirv/reader/ast_parser/function.h"
#include "src/tint/lang/spirv/reader/ast_parser/helper_test.h"
#include "src/tint/lang/spirv/reader/ast_parser/spirv_tools_helpers_test.h"
#include "src/tint/utils/text/string_stream.h"
namespace tint::spirv::reader::ast_parser {
namespace {
using ::testing::Eq;
using ::testing::HasSubstr;
/// @returns a SPIR-V assembly segment which assigns debug names
/// to particular IDs.
std::string Names(std::vector<std::string> ids) {
StringStream outs;
for (auto& id : ids) {
outs << " OpName %" << id << " \"" << id << "\"\n";
}
return outs.str();
}
std::string CommonTypes() {
return
R"(
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%bool = OpTypeBool
%float = OpTypeFloat 32
%uint = OpTypeInt 32 0
%int = OpTypeInt 32 1
%ptr_bool = OpTypePointer Function %bool
%ptr_float = OpTypePointer Function %float
%ptr_uint = OpTypePointer Function %uint
%ptr_int = OpTypePointer Function %int
%true = OpConstantTrue %bool
%false = OpConstantFalse %bool
%float_0 = OpConstant %float 0.0
%float_1p5 = OpConstant %float 1.5
%uint_0 = OpConstant %uint 0
%uint_1 = OpConstant %uint 1
%int_m1 = OpConstant %int -1
%int_0 = OpConstant %int 0
%int_1 = OpConstant %int 1
%int_3 = OpConstant %int 3
%uint_2 = OpConstant %uint 2
%uint_3 = OpConstant %uint 3
%uint_4 = OpConstant %uint 4
%uint_5 = OpConstant %uint 5
%v2int = OpTypeVector %int 2
%v2float = OpTypeVector %float 2
%m3v2float = OpTypeMatrix %v2float 3
%v2int_null = OpConstantNull %v2int
%arr2uint = OpTypeArray %uint %uint_2
%strct = OpTypeStruct %uint %float %arr2uint
)";
}
// Returns the SPIR-V assembly for capabilities, the memory model,
// a vertex shader entry point declaration, and name declarations
// for specified IDs.
std::string Caps(std::vector<std::string> ids = {}) {
return R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint Fragment %100 "main"
OpExecutionMode %100 OriginUpperLeft
)" + Names(ids);
}
// Returns the SPIR-V assembly for a vertex shader, optionally
// with OpName decorations for certain SPIR-V IDs
std::string PreambleNames(std::vector<std::string> ids) {
return Caps(ids) + CommonTypes();
}
std::string Preamble() {
return PreambleNames({});
}
using SpvParserFunctionVarTest = SpirvASTParserTest;
TEST_F(SpvParserFunctionVarTest, EmitFunctionVariables_AnonymousVars) {
auto p = parser(test::Assemble(Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpVariable %ptr_uint Function
%2 = OpVariable %ptr_uint Function
%3 = OpVariable %ptr_uint Function
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitFunctionVariables());
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body), HasSubstr(R"(var x_1 : u32;
var x_2 : u32;
var x_3 : u32;
)"));
}
TEST_F(SpvParserFunctionVarTest, EmitFunctionVariables_NamedVars) {
auto p = parser(test::Assemble(PreambleNames({"a", "b", "c"}) + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%a = OpVariable %ptr_uint Function
%b = OpVariable %ptr_uint Function
%c = OpVariable %ptr_uint Function
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitFunctionVariables());
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body), HasSubstr(R"(var a : u32;
var b : u32;
var c : u32;
)"));
}
TEST_F(SpvParserFunctionVarTest, EmitFunctionVariables_MixedTypes) {
auto p = parser(test::Assemble(PreambleNames({"a", "b", "c"}) + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%a = OpVariable %ptr_uint Function
%b = OpVariable %ptr_int Function
%c = OpVariable %ptr_float Function
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitFunctionVariables());
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body), HasSubstr(R"(var a : u32;
var b : i32;
var c : f32;
)"));
}
TEST_F(SpvParserFunctionVarTest, EmitFunctionVariables_ScalarInitializers) {
auto p = parser(test::Assemble(PreambleNames({"a", "b", "c", "d", "e"}) + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%a = OpVariable %ptr_bool Function %true
%b = OpVariable %ptr_bool Function %false
%c = OpVariable %ptr_int Function %int_m1
%d = OpVariable %ptr_uint Function %uint_1
%e = OpVariable %ptr_float Function %float_1p5
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitFunctionVariables());
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body), HasSubstr(R"(var a = true;
var b = false;
var c = -1i;
var d = 1u;
var e = 1.5f;
)"));
}
TEST_F(SpvParserFunctionVarTest, EmitFunctionVariables_ScalarNullInitializers) {
auto p = parser(test::Assemble(PreambleNames({"a", "b", "c", "d"}) + R"(
%null_bool = OpConstantNull %bool
%null_int = OpConstantNull %int
%null_uint = OpConstantNull %uint
%null_float = OpConstantNull %float
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%a = OpVariable %ptr_bool Function %null_bool
%b = OpVariable %ptr_int Function %null_int
%c = OpVariable %ptr_uint Function %null_uint
%d = OpVariable %ptr_float Function %null_float
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitFunctionVariables());
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body), HasSubstr(R"(var a = false;
var b = 0i;
var c = 0u;
var d = 0.0f;
)"));
}
TEST_F(SpvParserFunctionVarTest, EmitFunctionVariables_VectorInitializer) {
auto p = parser(test::Assemble(Preamble() + R"(
%ptr = OpTypePointer Function %v2float
%two = OpConstant %float 2.0
%const = OpConstantComposite %v2float %float_1p5 %two
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%200 = OpVariable %ptr Function %const
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitFunctionVariables());
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body),
HasSubstr("var x_200 = vec2f(1.5f, 2.0f);"));
}
TEST_F(SpvParserFunctionVarTest, EmitFunctionVariables_MatrixInitializer) {
auto p = parser(test::Assemble(Preamble() + R"(
%ptr = OpTypePointer Function %m3v2float
%two = OpConstant %float 2.0
%three = OpConstant %float 3.0
%four = OpConstant %float 4.0
%v0 = OpConstantComposite %v2float %float_1p5 %two
%v1 = OpConstantComposite %v2float %two %three
%v2 = OpConstantComposite %v2float %three %four
%const = OpConstantComposite %m3v2float %v0 %v1 %v2
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%200 = OpVariable %ptr Function %const
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitFunctionVariables());
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body), HasSubstr("var x_200 = mat3x2f("
"vec2f(1.5f, 2.0f), "
"vec2f(2.0f, 3.0f), "
"vec2f(3.0f, 4.0f));"));
}
TEST_F(SpvParserFunctionVarTest, EmitFunctionVariables_ArrayInitializer) {
auto p = parser(test::Assemble(Preamble() + R"(
%ptr = OpTypePointer Function %arr2uint
%two = OpConstant %uint 2
%const = OpConstantComposite %arr2uint %uint_1 %two
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%200 = OpVariable %ptr Function %const
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitFunctionVariables());
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body),
HasSubstr("var x_200 = array<u32, 2u>(1u, 2u);"));
}
TEST_F(SpvParserFunctionVarTest, EmitFunctionVariables_ArrayInitializer_Alias) {
auto p = parser(test::Assemble(R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint Fragment %100 "main"
OpExecutionMode %100 OriginUpperLeft
OpDecorate %arr2uint ArrayStride 16
)" + CommonTypes() + R"(
%ptr = OpTypePointer Function %arr2uint
%two = OpConstant %uint 2
%const = OpConstantComposite %arr2uint %uint_1 %two
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%200 = OpVariable %ptr Function %const
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitFunctionVariables());
auto ast_body = fe.ast_body();
auto got = test::ToString(p->program(), ast_body);
const char* expect = "var x_200 = Arr(1u, 2u);\n";
EXPECT_EQ(expect, got);
}
TEST_F(SpvParserFunctionVarTest, EmitFunctionVariables_ArrayInitializer_Null) {
auto p = parser(test::Assemble(Preamble() + R"(
%ptr = OpTypePointer Function %arr2uint
%two = OpConstant %uint 2
%const = OpConstantNull %arr2uint
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%200 = OpVariable %ptr Function %const
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitFunctionVariables());
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body), HasSubstr("var x_200 = array<u32, 2u>();"));
}
TEST_F(SpvParserFunctionVarTest, EmitFunctionVariables_ArrayInitializer_Alias_Null) {
auto p = parser(test::Assemble(R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint Fragment %100 "main"
OpExecutionMode %100 OriginUpperLeft
OpDecorate %arr2uint ArrayStride 16
)" + CommonTypes() + R"(
%ptr = OpTypePointer Function %arr2uint
%two = OpConstant %uint 2
%const = OpConstantNull %arr2uint
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%200 = OpVariable %ptr Function %const
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitFunctionVariables());
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body),
HasSubstr("var x_200 = @stride(16) array<u32, 2u>();"));
}
TEST_F(SpvParserFunctionVarTest, EmitFunctionVariables_StructInitializer) {
auto p = parser(test::Assemble(Preamble() + R"(
%ptr = OpTypePointer Function %strct
%two = OpConstant %uint 2
%arrconst = OpConstantComposite %arr2uint %uint_1 %two
%const = OpConstantComposite %strct %uint_1 %float_1p5 %arrconst
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%200 = OpVariable %ptr Function %const
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitFunctionVariables());
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body),
HasSubstr("var x_200 = S(1u, 1.5f, array<u32, 2u>(1u, 2u));"));
}
TEST_F(SpvParserFunctionVarTest, EmitFunctionVariables_StructInitializer_Null) {
auto p = parser(test::Assemble(Preamble() + R"(
%ptr = OpTypePointer Function %strct
%two = OpConstant %uint 2
%arrconst = OpConstantComposite %arr2uint %uint_1 %two
%const = OpConstantNull %strct
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%200 = OpVariable %ptr Function %const
OpReturn
OpFunctionEnd
)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitFunctionVariables());
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body),
HasSubstr("var x_200 = S(0u, 0.0f, array<u32, 2u>());"));
}
TEST_F(SpvParserFunctionVarTest, EmitFunctionVariables_Decorate_RelaxedPrecision) {
// RelaxedPrecisionis dropped
const auto assembly = Caps({"myvar"}) + R"(
OpDecorate %myvar RelaxedPrecision
%float = OpTypeFloat 32
%ptr = OpTypePointer Function %float
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%myvar = OpVariable %ptr Function
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitFunctionVariables());
auto ast_body = fe.ast_body();
const auto got = test::ToString(p->program(), ast_body);
EXPECT_EQ(got, "var myvar : f32;\n") << got;
}
TEST_F(SpvParserFunctionVarTest, EmitFunctionVariables_MemberDecorate_RelaxedPrecision) {
// RelaxedPrecisionis dropped
const auto assembly = Caps({"myvar", "strct"}) + R"(
OpMemberDecorate %strct 0 RelaxedPrecision
%float = OpTypeFloat 32
%strct = OpTypeStruct %float
%ptr = OpTypePointer Function %strct
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%myvar = OpVariable %ptr Function
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly << p->error() << "\n";
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitFunctionVariables());
auto ast_body = fe.ast_body();
const auto got = test::ToString(p->program(), ast_body);
EXPECT_EQ(got, "var myvar : strct;\n") << got;
}
TEST_F(SpvParserFunctionVarTest, EmitFunctionVariables_StructDifferOnlyInMemberName) {
auto p = parser(test::Assemble(R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint Fragment %100 "main"
OpExecutionMode %100 OriginUpperLeft
OpName %_struct_5 "S"
OpName %_struct_6 "S"
OpMemberName %_struct_5 0 "algo"
OpMemberName %_struct_6 0 "rithm"
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%uint = OpTypeInt 32 0
%_struct_5 = OpTypeStruct %uint
%_struct_6 = OpTypeStruct %uint
%_ptr_Function__struct_5 = OpTypePointer Function %_struct_5
%_ptr_Function__struct_6 = OpTypePointer Function %_struct_6
%100 = OpFunction %void None %voidfn
%39 = OpLabel
%40 = OpVariable %_ptr_Function__struct_5 Function
%41 = OpVariable %_ptr_Function__struct_6 Function
OpReturn
OpFunctionEnd)"));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions());
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitFunctionVariables());
auto ast_body = fe.ast_body();
const auto got = test::ToString(p->program(), ast_body);
EXPECT_THAT(got, HasSubstr(R"(var x_40 : S;
var x_41 : S_1;
)"));
}
TEST_F(SpvParserFunctionVarTest, EmitStatement_CombinatorialValue_Defer_UsedOnceSameConstruct) {
auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
%25 = OpVariable %ptr_uint Function
%2 = OpIAdd %uint %uint_1 %uint_1
OpStore %25 %uint_1 ; Do initial store to mark source location
OpBranch %20
%20 = OpLabel
OpStore %25 %2 ; defer emission of the addition until here.
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto got = test::ToString(p->program(), ast_body);
auto* expect =
R"(var x_25 : u32;
x_25 = 1u;
x_25 = (1u + 1u);
return;
)";
EXPECT_EQ(expect, got);
}
TEST_F(SpvParserFunctionVarTest, EmitStatement_CombinatorialValue_Immediate_UsedTwice) {
auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
%25 = OpVariable %ptr_uint Function
%2 = OpIAdd %uint %uint_1 %uint_1
OpStore %25 %uint_1 ; Do initial store to mark source location
OpBranch %20
%20 = OpLabel
OpStore %25 %2
OpStore %25 %2
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto got = test::ToString(p->program(), ast_body);
auto* expect = R"(var x_25 : u32;
let x_2 = (1u + 1u);
x_25 = 1u;
x_25 = x_2;
x_25 = x_2;
return;
)";
EXPECT_EQ(expect, got);
}
TEST_F(SpvParserFunctionVarTest,
EmitStatement_CombinatorialValue_Immediate_UsedOnceDifferentConstruct) {
// Translation should not sink expensive operations into or out of control
// flow. As a simple heuristic, don't move *any* combinatorial operation
// across any control flow.
auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
%25 = OpVariable %ptr_uint Function
%2 = OpIAdd %uint %uint_1 %uint_1
OpStore %25 %uint_1 ; Do initial store to mark source location
OpBranch %20
%20 = OpLabel ; Introduce a new construct
OpLoopMerge %99 %80 None
OpBranch %80
%80 = OpLabel
OpStore %25 %2 ; store combinatorial value %2, inside the loop
OpBranch %20
%99 = OpLabel ; merge block
OpStore %25 %uint_2
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto got = test::ToString(p->program(), ast_body);
auto* expect = R"(var x_25 : u32;
let x_2 = (1u + 1u);
x_25 = 1u;
loop {
continuing {
x_25 = x_2;
}
}
x_25 = 2u;
return;
)";
EXPECT_EQ(expect, got);
}
TEST_F(SpvParserFunctionVarTest,
EmitStatement_CombinatorialNonPointer_DefConstruct_DoesNotEncloseAllUses) {
// Compensate for the difference between dominance and scoping.
// Exercise hoisting of the constant definition to before its natural
// location.
//
// The definition of %2 should be hoisted
auto assembly = Preamble() + R"(
%pty = OpTypePointer Private %uint
%1 = OpVariable %pty Private
%100 = OpFunction %void None %voidfn
%3 = OpLabel
OpStore %1 %uint_0
OpBranch %5
%5 = OpLabel
OpStore %1 %uint_1
OpLoopMerge %99 %80 None
OpBranchConditional %false %99 %20
%20 = OpLabel
OpStore %1 %uint_3
OpSelectionMerge %50 None
OpBranchConditional %true %30 %40
%30 = OpLabel
; This combinatorial definition in nested control flow dominates
; the use in the merge block in %50
%2 = OpIAdd %uint %uint_1 %uint_1
OpBranch %50
%40 = OpLabel
OpReturn
%50 = OpLabel ; merge block for if-selection
OpStore %1 %2
OpBranch %80
%80 = OpLabel ; merge block
OpStore %1 %uint_4
OpBranchConditional %false %99 %5 ; loop backedge
%99 = OpLabel
OpStore %1 %uint_5
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto got = test::ToString(p->program(), ast_body);
auto* expect = R"(x_1 = 0u;
loop {
var x_2 : u32;
x_1 = 1u;
if (false) {
break;
}
x_1 = 3u;
if (true) {
x_2 = (1u + 1u);
} else {
return;
}
x_1 = x_2;
continuing {
x_1 = 4u;
break if false;
}
}
x_1 = 5u;
return;
)";
EXPECT_EQ(expect, got);
}
TEST_F(SpvParserFunctionVarTest,
EmitStatement_CombinatorialNonPointer_Hoisting_DefFirstBlockIf_InFunction) {
// This is a hoisting case, where the definition is in the first block
// of an if selection construct. In this case the definition should count
// as being in the parent (enclosing) construct.
//
// The definition of %1 is in an IfSelection construct and also the enclosing
// Function construct, both of which start at block %10. For the purpose of
// determining the construct containing %10, go to the parent construct of
// the IfSelection.
auto assembly = Preamble() + R"(
%pty = OpTypePointer Private %uint
%200 = OpVariable %pty Private
%cond = OpConstantTrue %bool
%100 = OpFunction %void None %voidfn
; in IfSelection construct, nested in Function construct
%10 = OpLabel
%1 = OpCopyObject %uint %uint_1
OpSelectionMerge %99 None
OpBranchConditional %cond %20 %99
%20 = OpLabel ; in IfSelection construct
OpBranch %99
%99 = OpLabel
%3 = OpCopyObject %uint %1; in Function construct
OpStore %200 %3
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
// We don't hoist x_1 into its own mutable variable. It is emitted as
// a const definition.
auto ast_body = fe.ast_body();
auto got = test::ToString(p->program(), ast_body);
auto* expect = R"(let x_1 = 1u;
if (true) {
}
let x_3 = x_1;
x_200 = x_3;
return;
)";
EXPECT_EQ(expect, got);
}
TEST_F(SpvParserFunctionVarTest,
EmitStatement_CombinatorialNonPointer_Hoisting_DefFirstBlockIf_InIf) {
// This is like the previous case, but the IfSelection is nested inside
// another IfSelection.
// This tests that the hoisting algorithm goes to only one parent of
// the definining if-selection block, and doesn't jump all the way out
// to the Function construct that encloses everything.
//
// We should not hoist %1 because its definition should count as being
// in the outer IfSelection, not the inner IfSelection.
auto assembly = Preamble() + R"(
%pty = OpTypePointer Private %uint
%200 = OpVariable %pty Private
%cond = OpConstantTrue %bool
%100 = OpFunction %void None %voidfn
; outer IfSelection
%10 = OpLabel
OpSelectionMerge %99 None
OpBranchConditional %cond %20 %99
; inner IfSelection
%20 = OpLabel
%1 = OpCopyObject %uint %uint_1
OpSelectionMerge %89 None
OpBranchConditional %cond %30 %89
%30 = OpLabel ; last block of inner IfSelection
OpBranch %89
; in outer IfSelection
%89 = OpLabel
%3 = OpCopyObject %uint %1; Last use of %1, in outer IfSelection
OpStore %200 %3
OpBranch %99
%99 = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto got = test::ToString(p->program(), ast_body);
auto* expect = R"(if (true) {
let x_1 = 1u;
if (true) {
}
let x_3 = x_1;
x_200 = x_3;
}
return;
)";
EXPECT_EQ(expect, got);
}
TEST_F(SpvParserFunctionVarTest,
EmitStatement_CombinatorialNonPointer_Hoisting_DefFirstBlockSwitch_InIf) {
// This is like the previous case, but the definition is in a SwitchSelection
// inside another IfSelection.
// Tests that definitions in the first block of a switch count as being
// in the parent of the switch construct.
auto assembly = Preamble() + R"(
%pty = OpTypePointer Private %uint
%200 = OpVariable %pty Private
%cond = OpConstantTrue %bool
%100 = OpFunction %void None %voidfn
; outer IfSelection
%10 = OpLabel
OpSelectionMerge %99 None
OpBranchConditional %cond %20 %99
; inner SwitchSelection
%20 = OpLabel
%1 = OpCopyObject %uint %uint_1
OpSelectionMerge %89 None
OpSwitch %uint_1 %89 0 %30
%30 = OpLabel ; last block of inner SwitchSelection
OpBranch %89
; in outer IfSelection
%89 = OpLabel
%3 = OpCopyObject %uint %1; Last use of %1, in outer IfSelection
OpStore %200 %3
OpBranch %99
%99 = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto got = test::ToString(p->program(), ast_body);
auto* expect = R"(if (true) {
let x_1 = 1u;
switch(1u) {
case 0u: {
}
default: {
}
}
let x_3 = x_1;
x_200 = x_3;
}
return;
)";
EXPECT_EQ(expect, got);
}
TEST_F(SpvParserFunctionVarTest,
EmitStatement_CombinatorialNonPointer_Hoisting_DefAndUseFirstBlockIf) {
// In this test, both the defintion and the use are in the first block
// of an IfSelection. No hoisting occurs because hoisting is triggered
// on whether the defining construct contains the last use, rather than
// whether the two constructs are the same.
//
// This example has two SSA IDs which are tempting to hoist but should not:
// %1 is defined and used in the first block of an IfSelection.
// Do not hoist it.
auto assembly = Preamble() + R"(
%cond = OpConstantTrue %bool
%100 = OpFunction %void None %voidfn
; in IfSelection construct, nested in Function construct
%10 = OpLabel
%1 = OpCopyObject %uint %uint_1
%2 = OpCopyObject %uint %1
OpSelectionMerge %99 None
OpBranchConditional %cond %20 %99
%20 = OpLabel ; in IfSelection construct
OpBranch %99
%99 = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
// We don't hoist x_1 into its own mutable variable. It is emitted as
// a const definition.
auto ast_body = fe.ast_body();
auto got = test::ToString(p->program(), ast_body);
auto* expect = R"(let x_1 = 1u;
let x_2 = x_1;
if (true) {
}
return;
)";
EXPECT_EQ(expect, got);
}
TEST_F(SpvParserFunctionVarTest, EmitStatement_Phi_SimultaneousAssignment) {
// Phis must act as if they are simutaneously assigned.
// %101 and %102 should exchange values on each iteration, and never have
// the same value.
auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
OpBranch %20
%20 = OpLabel
%101 = OpPhi %bool %true %10 %102 %20
%102 = OpPhi %bool %false %10 %101 %20
OpLoopMerge %99 %20 None
OpBranchConditional %true %99 %20
%99 = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto got = test::ToString(p->program(), ast_body);
auto* expect = R"(var x_101 : bool;
var x_102 : bool;
x_101 = true;
x_102 = false;
loop {
let x_101_c20 = x_101;
let x_102_c20 = x_102;
x_101 = x_102_c20;
x_102 = x_101_c20;
if (true) {
break;
}
}
return;
)";
EXPECT_EQ(expect, got);
}
TEST_F(SpvParserFunctionVarTest, EmitStatement_Phi_SingleBlockLoopIndex) {
auto assembly = Preamble() + R"(
%pty = OpTypePointer Private %uint
%1 = OpVariable %pty Private
%boolpty = OpTypePointer Private %bool
%7 = OpVariable %boolpty Private
%8 = OpVariable %boolpty Private
%100 = OpFunction %void None %voidfn
%5 = OpLabel
OpBranch %10
; Use an outer loop to show we put the new variable in the
; smallest enclosing scope.
%10 = OpLabel
%101 = OpLoad %bool %7
%102 = OpLoad %bool %8
OpLoopMerge %99 %89 None
OpBranchConditional %101 %99 %20
%20 = OpLabel
%2 = OpPhi %uint %uint_0 %10 %4 %20 ; gets computed value
%3 = OpPhi %uint %uint_1 %10 %3 %20 ; gets itself
%4 = OpIAdd %uint %2 %uint_1
OpLoopMerge %79 %20 None
OpBranchConditional %102 %79 %20
%79 = OpLabel
OpBranch %89
%89 = OpLabel
OpBranch %10
%99 = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto got = test::ToString(p->program(), ast_body);
auto* expect = R"(loop {
var x_2 : u32;
var x_3 : u32;
let x_101 = x_7;
let x_102 = x_8;
x_2 = 0u;
x_3 = 1u;
if (x_101) {
break;
}
loop {
let x_3_c20 = x_3;
x_2 = (x_2 + 1u);
x_3 = x_3_c20;
if (x_102) {
break;
}
}
}
return;
)";
EXPECT_EQ(expect, got);
}
TEST_F(SpvParserFunctionVarTest, EmitStatement_Phi_MultiBlockLoopIndex) {
auto assembly = Preamble() + R"(
%pty = OpTypePointer Private %uint
%1 = OpVariable %pty Private
%boolpty = OpTypePointer Private %bool
%7 = OpVariable %boolpty Private
%8 = OpVariable %boolpty Private
%100 = OpFunction %void None %voidfn
%5 = OpLabel
OpBranch %10
; Use an outer loop to show we put the new variable in the
; smallest enclosing scope.
%10 = OpLabel
%101 = OpLoad %bool %7
%102 = OpLoad %bool %8
OpLoopMerge %99 %89 None
OpBranchConditional %101 %99 %20
%20 = OpLabel
%2 = OpPhi %uint %uint_0 %10 %4 %30 ; gets computed value
%3 = OpPhi %uint %uint_1 %10 %3 %30 ; gets itself
OpLoopMerge %79 %30 None
OpBranchConditional %102 %79 %30
%30 = OpLabel
%4 = OpIAdd %uint %2 %uint_1
OpBranch %20
%79 = OpLabel
OpBranch %89
%89 = OpLabel ; continue target for outer loop
OpBranch %10
%99 = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto got = test::ToString(p->program(), ast_body);
auto* expect = R"(loop {
var x_2 : u32;
var x_3 : u32;
let x_101 = x_7;
let x_102 = x_8;
x_2 = 0u;
x_3 = 1u;
if (x_101) {
break;
}
loop {
var x_4 : u32;
if (x_102) {
break;
}
continuing {
x_4 = (x_2 + 1u);
let x_3_c30 = x_3;
x_2 = x_4;
x_3 = x_3_c30;
}
}
}
return;
)";
EXPECT_EQ(expect, got);
}
TEST_F(SpvParserFunctionVarTest, EmitStatement_Phi_ValueFromLoopBodyAndContinuing) {
auto assembly = Preamble() + R"(
%pty = OpTypePointer Private %uint
%1 = OpVariable %pty Private
%boolpty = OpTypePointer Private %bool
%17 = OpVariable %boolpty Private
%100 = OpFunction %void None %voidfn
%9 = OpLabel
%101 = OpLoad %bool %17
OpBranch %10
; Use an outer loop to show we put the new variable in the
; smallest enclosing scope.
%10 = OpLabel
OpLoopMerge %99 %89 None
OpBranch %20
%20 = OpLabel
%2 = OpPhi %uint %uint_0 %10 %4 %30 ; gets computed value
%5 = OpPhi %uint %uint_1 %10 %7 %30
%4 = OpIAdd %uint %2 %uint_1 ; define %4
%6 = OpIAdd %uint %4 %uint_1 ; use %4
OpLoopMerge %79 %30 None
OpBranchConditional %101 %79 %30
%30 = OpLabel
%7 = OpIAdd %uint %4 %6 ; use %4 again
%8 = OpCopyObject %uint %5 ; use %5
OpBranch %20
%79 = OpLabel
OpBranch %89
%89 = OpLabel
OpBranch %10
%99 = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly << p->error();
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto got = test::ToString(p->program(), ast_body);
auto* expect = R"(let x_101 = x_17;
loop {
var x_2 : u32;
var x_5 : u32;
x_2 = 0u;
x_5 = 1u;
loop {
var x_4 : u32;
var x_6 : u32;
var x_7 : u32;
x_4 = (x_2 + 1u);
x_6 = (x_4 + 1u);
if (x_101) {
break;
}
continuing {
x_7 = (x_4 + x_6);
let x_8 = x_5;
x_2 = x_4;
x_5 = x_7;
}
}
}
return;
)";
EXPECT_EQ(expect, got);
}
TEST_F(SpvParserFunctionVarTest, EmitStatement_Phi_FromElseAndThen) {
auto assembly = Preamble() + R"(
%pty = OpTypePointer Private %uint
%1 = OpVariable %pty Private
%boolpty = OpTypePointer Private %bool
%7 = OpVariable %boolpty Private
%8 = OpVariable %boolpty Private
%100 = OpFunction %void None %voidfn
%5 = OpLabel
%101 = OpLoad %bool %7
%102 = OpLoad %bool %8
OpBranch %10
; Use an outer loop to show we put the new variable in the
; smallest enclosing scope.
%10 = OpLabel
OpLoopMerge %99 %89 None
OpBranchConditional %101 %99 %20
%20 = OpLabel ; if seleciton
OpSelectionMerge %79 None
OpBranchConditional %102 %30 %40
%30 = OpLabel
OpBranch %89
%40 = OpLabel
OpBranch %89
%79 = OpLabel ; disconnected selection merge node
OpBranch %89
%89 = OpLabel
%2 = OpPhi %uint %uint_0 %30 %uint_1 %40 %uint_0 %79
OpStore %1 %2
OpBranch %10
%99 = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto got = test::ToString(p->program(), ast_body);
auto* expect = R"(let x_101 = x_7;
let x_102 = x_8;
loop {
var x_2 : u32;
if (x_101) {
break;
}
if (x_102) {
x_2 = 0u;
continue;
} else {
x_2 = 1u;
continue;
}
x_2 = 0u;
continuing {
x_1 = x_2;
}
}
return;
)";
EXPECT_EQ(expect, got) << got;
}
TEST_F(SpvParserFunctionVarTest, EmitStatement_Phi_FromHeaderAndThen) {
auto assembly = Preamble() + R"(
%pty = OpTypePointer Private %uint
%1 = OpVariable %pty Private
%boolpty = OpTypePointer Private %bool
%7 = OpVariable %boolpty Private
%8 = OpVariable %boolpty Private
%100 = OpFunction %void None %voidfn
%5 = OpLabel
%101 = OpLoad %bool %7
%102 = OpLoad %bool %8
OpBranch %10
; Use an outer loop to show we put the new variable in the
; smallest enclosing scope.
%10 = OpLabel
OpLoopMerge %99 %89 None
OpBranchConditional %101 %99 %20
%20 = OpLabel ; if seleciton
OpSelectionMerge %79 None
OpBranchConditional %102 %30 %89
%30 = OpLabel
OpBranch %89
%79 = OpLabel ; disconnected selection merge node
OpUnreachable
%89 = OpLabel
%2 = OpPhi %uint %uint_0 %20 %uint_1 %30
OpStore %1 %2
OpBranch %10
%99 = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto got = test::ToString(p->program(), ast_body);
auto* expect = R"(let x_101 = x_7;
let x_102 = x_8;
loop {
var x_2 : u32;
if (x_101) {
break;
}
x_2 = 0u;
if (x_102) {
x_2 = 1u;
continue;
} else {
continue;
}
return;
continuing {
x_1 = x_2;
}
}
return;
)";
EXPECT_EQ(expect, got) << got;
}
TEST_F(SpvParserFunctionVarTest, EmitStatement_Phi_UseInPhiCountsAsUse) {
// From crbug.com/215
// If the only use of a combinatorially computed ID is as the value
// in an OpPhi, then we still have to emit it. The algorithm fix
// is to always count uses in Phis.
// This is the reduced case from the bug report.
//
// The only use of %12 is in the phi.
// The only use of %11 is in %12.
// Both definintions need to be emitted to the output.
auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
%11 = OpLogicalAnd %bool %true %true
%12 = OpLogicalNot %bool %11 ;
OpSelectionMerge %99 None
OpBranchConditional %true %20 %99
%20 = OpLabel
OpBranch %99
%99 = OpLabel
%101 = OpPhi %bool %11 %10 %12 %20
%102 = OpCopyObject %bool %101 ;; ensure a use of %101
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto got = test::ToString(p->program(), ast_body);
auto* expect = R"(var x_101 : bool;
let x_11 = (true & true);
let x_12 = !(x_11);
x_101 = x_11;
if (true) {
x_101 = x_12;
}
let x_102 = x_101;
return;
)";
EXPECT_EQ(expect, got);
}
TEST_F(SpvParserFunctionVarTest, EmitStatement_Phi_PhiInLoopHeader_FedByHoistedVar_PhiUnused) {
// From investigation into crbug.com/1649
//
// Value %999 is defined deep in control flow, then we arrange for
// it to dominate the backedge of the outer loop. The %999 value is then
// fed back into the phi in the loop header. So %999 needs to be hoisted
// out of the loop. The phi assignment needs to use the hoisted variable.
// The hoisted variable needs to be placed such that its scope encloses
// that phi in the header of the outer loop. The compiler needs
// to "see" that there is an implicit use of %999 in the backedge block
// of that outer loop.
auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
OpBranch %20
%20 = OpLabel
%101 = OpPhi %bool %true %10 %999 %80
OpLoopMerge %99 %80 None
OpBranchConditional %true %30 %99
%30 = OpLabel
OpSelectionMerge %50 None
OpBranchConditional %true %40 %50
%40 = OpLabel
%999 = OpCopyObject %bool %true
OpBranch %60
%50 = OpLabel
OpReturn
%60 = OpLabel ; if merge
OpBranch %80
%80 = OpLabel ; continue target
OpBranch %20
%99 = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto got = test::ToString(p->program(), ast_body);
auto* expect = R"(loop {
var x_999 : bool;
if (true) {
} else {
break;
}
if (true) {
x_999 = true;
continue;
}
return;
}
return;
)";
EXPECT_EQ(expect, got);
}
TEST_F(SpvParserFunctionVarTest, EmitStatement_Phi_PhiInLoopHeader_FedByHoistedVar_PhiUsed) {
// From investigation into crbug.com/1649
//
// Value %999 is defined deep in control flow, then we arrange for
// it to dominate the backedge of the outer loop. The %999 value is then
// fed back into the phi in the loop header. So %999 needs to be hoisted
// out of the loop. The phi assignment needs to use the hoisted variable.
// The hoisted variable needs to be placed such that its scope encloses
// that phi in the header of the outer loop. The compiler needs
// to "see" that there is an implicit use of %999 in the backedge block
// of that outer loop.
auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
OpBranch %20
%20 = OpLabel
%101 = OpPhi %bool %true %10 %999 %80
OpLoopMerge %99 %80 None
OpBranchConditional %true %30 %99
%30 = OpLabel
OpSelectionMerge %50 None
OpBranchConditional %true %40 %50
%40 = OpLabel
%999 = OpCopyObject %bool %true
OpBranch %60
%50 = OpLabel
OpReturn
%60 = OpLabel ; if merge
OpBranch %80
%80 = OpLabel ; continue target
OpBranch %20
%99 = OpLabel
%1000 = OpCopyObject %bool %101
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto got = test::ToString(p->program(), ast_body);
auto* expect = R"(var x_101 : bool;
x_101 = true;
loop {
var x_999 : bool;
if (true) {
} else {
break;
}
if (true) {
x_999 = true;
continue;
}
return;
continuing {
x_101 = x_999;
}
}
let x_1000 = x_101;
return;
)";
EXPECT_EQ(expect, got);
}
TEST_F(SpvParserFunctionVarTest, EmitStatement_Phi_PhiInLoopHeader_FedByPhi_PhiUnused) {
// From investigation into crbug.com/1649
//
// This is a reduction of one of the hard parts of test case
// vk-gl-cts/graphicsfuzz/stable-binarysearch-tree-false-if-discard-loop/1.spvasm
// In particular, see the data flow around %114 in that case.
//
// Here value %999 is is a *phi* defined deep in control flow, then we
// arrange for it to dominate the backedge of the outer loop. The %999
// value is then fed back into the phi in the loop header. The variable
// generated to hold the %999 value needs to be placed such that its scope
// encloses that phi in the header of the outer loop. The compiler needs
// to "see" that there is an implicit use of %999 in the backedge block
// of that outer loop.
auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
OpBranch %20
%20 = OpLabel
%101 = OpPhi %bool %true %10 %999 %80
OpLoopMerge %99 %80 None
OpBranchConditional %true %99 %30
%30 = OpLabel
OpLoopMerge %70 %60 None
OpBranch %40
%40 = OpLabel
OpBranchConditional %true %60 %50
%50 = OpLabel
OpBranch %60
%60 = OpLabel ; inner continue
%999 = OpPhi %bool %true %40 %false %50
OpBranchConditional %true %70 %30
%70 = OpLabel ; inner merge
OpBranch %80
%80 = OpLabel ; outer continue target
OpBranch %20
%99 = OpLabel
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto got = test::ToString(p->program(), ast_body);
auto* expect = R"(loop {
var x_999 : bool;
if (true) {
break;
}
loop {
x_999 = true;
if (true) {
continue;
}
x_999 = false;
continuing {
break if true;
}
}
}
return;
)";
EXPECT_EQ(expect, got);
}
TEST_F(SpvParserFunctionVarTest, EmitStatement_Phi_PhiInLoopHeader_FedByPhi_PhiUsed) {
// From investigation into crbug.com/1649
//
// This is a reduction of one of the hard parts of test case
// vk-gl-cts/graphicsfuzz/stable-binarysearch-tree-false-if-discard-loop/1.spvasm
// In particular, see the data flow around %114 in that case.
//
// Here value %999 is is a *phi* defined deep in control flow, then we
// arrange for it to dominate the backedge of the outer loop. The %999
// value is then fed back into the phi in the loop header. The variable
// generated to hold the %999 value needs to be placed such that its scope
// encloses that phi in the header of the outer loop. The compiler needs
// to "see" that there is an implicit use of %999 in the backedge block
// of that outer loop.
auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
OpBranch %20
%20 = OpLabel
%101 = OpPhi %bool %true %10 %999 %80
OpLoopMerge %99 %80 None
OpBranchConditional %true %99 %30
%30 = OpLabel
OpLoopMerge %70 %60 None
OpBranch %40
%40 = OpLabel
OpBranchConditional %true %60 %50
%50 = OpLabel
OpBranch %60
%60 = OpLabel ; inner continue
%999 = OpPhi %bool %true %40 %false %50
OpBranchConditional %true %70 %30
%70 = OpLabel ; inner merge
OpBranch %80
%80 = OpLabel ; outer continue target
OpBranch %20
%99 = OpLabel
%1000 = OpCopyObject %bool %101
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto got = test::ToString(p->program(), ast_body);
auto* expect = R"(var x_101 : bool;
x_101 = true;
loop {
var x_999 : bool;
if (true) {
break;
}
loop {
x_999 = true;
if (true) {
continue;
}
x_999 = false;
continuing {
break if true;
}
}
continuing {
x_101 = x_999;
}
}
let x_1000 = x_101;
return;
)";
EXPECT_EQ(expect, got);
}
TEST_F(SpvParserFunctionVarTest, EmitStatement_Hoist_CompositeInsert) {
// From crbug.com/tint/804
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
OpSelectionMerge %50 None
OpBranchConditional %true %20 %30
%20 = OpLabel
%200 = OpCompositeInsert %v2int %int_0 %v2int_null 0
OpBranch %50
%30 = OpLabel
OpReturn
%50 = OpLabel ; dominated by %20, but %200 needs to be hoisted
%201 = OpCopyObject %v2int %200
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
const auto* expected = R"(var x_200 : vec2i;
if (true) {
x_200 = vec2i();
x_200.x = 0i;
} else {
return;
}
let x_201 = x_200;
return;
)";
auto ast_body = fe.ast_body();
const auto got = test::ToString(p->program(), ast_body);
EXPECT_EQ(got, expected);
}
TEST_F(SpvParserFunctionVarTest, EmitStatement_Hoist_VectorInsertDynamic) {
// Spawned from crbug.com/tint/804
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
OpSelectionMerge %50 None
OpBranchConditional %true %20 %30
%20 = OpLabel
%200 = OpVectorInsertDynamic %v2int %v2int_null %int_3 %int_1
OpBranch %50
%30 = OpLabel
OpReturn
%50 = OpLabel ; dominated by %20, but %200 needs to be hoisted
%201 = OpCopyObject %v2int %200
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
const auto got = test::ToString(p->program(), ast_body);
const auto* expected = R"(var x_200 : vec2i;
if (true) {
x_200 = vec2i();
x_200[1i] = 3i;
} else {
return;
}
let x_201 = x_200;
return;
)";
EXPECT_EQ(got, expected) << got;
}
TEST_F(SpvParserFunctionVarTest, EmitStatement_Hoist_UsedAsNonPtrArg) {
// Spawned from crbug.com/tint/804
const auto assembly = Preamble() + R"(
%fn_int = OpTypeFunction %void %int
%500 = OpFunction %void None %fn_int
%501 = OpFunctionParameter %int
%502 = OpLabel
OpReturn
OpFunctionEnd
%100 = OpFunction %void None %voidfn
%10 = OpLabel
OpSelectionMerge %50 None
OpBranchConditional %true %20 %30
%20 = OpLabel
%200 = OpCopyObject %int %int_1
OpBranch %50
%30 = OpLabel
OpReturn
%50 = OpLabel ; dominated by %20, but %200 needs to be hoisted
%201 = OpFunctionCall %void %500 %200
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
const auto got = test::ToString(p->program(), ast_body);
const auto* expected = R"(var x_200 : i32;
if (true) {
x_200 = 1i;
} else {
return;
}
x_500(x_200);
return;
)";
EXPECT_EQ(got, expected) << got;
}
TEST_F(SpvParserFunctionVarTest, DISABLED_EmitStatement_Hoist_UsedAsPtrArg) {
// Spawned from crbug.com/tint/804
// Blocked by crbug.com/tint/98: hoisting pointer types
const auto assembly = Preamble() + R"(
%fn_int = OpTypeFunction %void %ptr_int
%500 = OpFunction %void None %fn_int
%501 = OpFunctionParameter %ptr_int
%502 = OpLabel
OpReturn
OpFunctionEnd
%100 = OpFunction %void None %voidfn
%10 = OpLabel
%199 = OpVariable %ptr_int Function
OpSelectionMerge %50 None
OpBranchConditional %true %20 %30
%20 = OpLabel
%200 = OpCopyObject %ptr_int %199
OpBranch %50
%30 = OpLabel
OpReturn
%50 = OpLabel ; dominated by %20, but %200 needs to be hoisted
%201 = OpFunctionCall %void %500 %200
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModule()) << p->error() << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
const auto got = test::ToString(p->program(), ast_body);
const auto* expected = R"(xxxxxxxxxxxxxxxxxxxxx)";
EXPECT_EQ(got, expected) << got;
}
TEST_F(SpvParserFunctionVarTest, EmitStatement_Phi_UnreachableLoopMerge) {
// A phi in an unreachable block may have no operands.
auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
OpBranch %99
%99 = OpLabel
OpLoopMerge %101 %99 None
OpBranch %99
%101 = OpLabel
%102 = OpPhi %uint
OpUnreachable
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto got = test::ToString(p->program(), ast_body);
auto* expect = R"(loop {
}
return;
)";
EXPECT_EQ(expect, got);
}
} // namespace
} // namespace tint::spirv::reader::ast_parser