|  | // Copyright 2021 The Tint Authors. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     http://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #ifndef SRC_TINT_RESOLVER_RESOLVER_TEST_HELPER_H_ | 
|  | #define SRC_TINT_RESOLVER_RESOLVER_TEST_HELPER_H_ | 
|  |  | 
|  | #include <functional> | 
|  | #include <memory> | 
|  | #include <ostream> | 
|  | #include <string> | 
|  | #include <tuple> | 
|  | #include <utility> | 
|  | #include <variant> | 
|  |  | 
|  | #include "gtest/gtest.h" | 
|  | #include "src/tint/program_builder.h" | 
|  | #include "src/tint/resolver/resolver.h" | 
|  | #include "src/tint/sem/expression.h" | 
|  | #include "src/tint/sem/statement.h" | 
|  | #include "src/tint/sem/variable.h" | 
|  | #include "src/tint/traits.h" | 
|  | #include "src/tint/type/abstract_float.h" | 
|  | #include "src/tint/type/abstract_int.h" | 
|  | #include "src/tint/utils/vector.h" | 
|  |  | 
|  | namespace tint::resolver { | 
|  |  | 
|  | /// Helper class for testing | 
|  | class TestHelper : public ProgramBuilder { | 
|  | public: | 
|  | /// Constructor | 
|  | TestHelper(); | 
|  |  | 
|  | /// Destructor | 
|  | ~TestHelper() override; | 
|  |  | 
|  | /// @return a pointer to the Resolver | 
|  | Resolver* r() const { return resolver_.get(); } | 
|  |  | 
|  | /// @return a pointer to the validator | 
|  | const Validator* v() const { return resolver_->GetValidatorForTesting(); } | 
|  |  | 
|  | /// Returns the statement that holds the given expression. | 
|  | /// @param expr the ast::Expression | 
|  | /// @return the ast::Statement of the ast::Expression, or nullptr if the | 
|  | /// expression is not owned by a statement. | 
|  | const ast::Statement* StmtOf(const ast::Expression* expr) { | 
|  | auto* sem_stmt = Sem().Get(expr)->Stmt(); | 
|  | return sem_stmt ? sem_stmt->Declaration() : nullptr; | 
|  | } | 
|  |  | 
|  | /// Returns the BlockStatement that holds the given statement. | 
|  | /// @param stmt the ast::Statement | 
|  | /// @return the ast::BlockStatement that holds the ast::Statement, or nullptr | 
|  | /// if the statement is not owned by a BlockStatement. | 
|  | const ast::BlockStatement* BlockOf(const ast::Statement* stmt) { | 
|  | auto* sem_stmt = Sem().Get(stmt); | 
|  | return sem_stmt ? sem_stmt->Block()->Declaration() : nullptr; | 
|  | } | 
|  |  | 
|  | /// Returns the BlockStatement that holds the given expression. | 
|  | /// @param expr the ast::Expression | 
|  | /// @return the ast::Statement of the ast::Expression, or nullptr if the | 
|  | /// expression is not indirectly owned by a BlockStatement. | 
|  | const ast::BlockStatement* BlockOf(const ast::Expression* expr) { | 
|  | auto* sem_stmt = Sem().Get(expr)->Stmt(); | 
|  | return sem_stmt ? sem_stmt->Block()->Declaration() : nullptr; | 
|  | } | 
|  |  | 
|  | /// Returns the semantic variable for the given identifier expression. | 
|  | /// @param expr the identifier expression | 
|  | /// @return the resolved sem::Variable of the identifier, or nullptr if | 
|  | /// the expression did not resolve to a variable. | 
|  | const sem::Variable* VarOf(const ast::Expression* expr) { | 
|  | auto* sem_ident = Sem().Get(expr)->UnwrapLoad(); | 
|  | auto* var_user = sem_ident ? sem_ident->As<sem::VariableUser>() : nullptr; | 
|  | return var_user ? var_user->Variable() : nullptr; | 
|  | } | 
|  |  | 
|  | /// Checks that all the users of the given variable are as expected | 
|  | /// @param var the variable to check | 
|  | /// @param expected_users the expected users of the variable | 
|  | /// @return true if all users are as expected | 
|  | bool CheckVarUsers(const ast::Variable* var, | 
|  | utils::VectorRef<const ast::Expression*> expected_users) { | 
|  | auto& var_users = Sem().Get(var)->Users(); | 
|  | if (var_users.size() != expected_users.Length()) { | 
|  | return false; | 
|  | } | 
|  | for (size_t i = 0; i < var_users.size(); i++) { | 
|  | if (var_users[i]->Declaration() != expected_users[i]) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// @param type a type | 
|  | /// @returns the name for `type` that closely resembles how it would be | 
|  | /// declared in WGSL. | 
|  | std::string FriendlyName(const ast::Type* type) { return type->FriendlyName(Symbols()); } | 
|  |  | 
|  | /// @param type a type | 
|  | /// @returns the name for `type` that closely resembles how it would be | 
|  | /// declared in WGSL. | 
|  | std::string FriendlyName(const type::Type* type) { return type->FriendlyName(Symbols()); } | 
|  |  | 
|  | private: | 
|  | std::unique_ptr<Resolver> resolver_; | 
|  | }; | 
|  |  | 
|  | class ResolverTest : public TestHelper, public testing::Test {}; | 
|  |  | 
|  | template <typename T> | 
|  | class ResolverTestWithParam : public TestHelper, public testing::TestWithParam<T> {}; | 
|  |  | 
|  | namespace builder { | 
|  |  | 
|  | template <uint32_t N, typename T> | 
|  | struct vec {}; | 
|  |  | 
|  | template <typename T> | 
|  | using vec2 = vec<2, T>; | 
|  |  | 
|  | template <typename T> | 
|  | using vec3 = vec<3, T>; | 
|  |  | 
|  | template <typename T> | 
|  | using vec4 = vec<4, T>; | 
|  |  | 
|  | template <uint32_t N, uint32_t M, typename T> | 
|  | struct mat {}; | 
|  |  | 
|  | template <typename T> | 
|  | using mat2x2 = mat<2, 2, T>; | 
|  |  | 
|  | template <typename T> | 
|  | using mat2x3 = mat<2, 3, T>; | 
|  |  | 
|  | template <typename T> | 
|  | using mat2x4 = mat<2, 4, T>; | 
|  |  | 
|  | template <typename T> | 
|  | using mat3x2 = mat<3, 2, T>; | 
|  |  | 
|  | template <typename T> | 
|  | using mat3x3 = mat<3, 3, T>; | 
|  |  | 
|  | template <typename T> | 
|  | using mat3x4 = mat<3, 4, T>; | 
|  |  | 
|  | template <typename T> | 
|  | using mat4x2 = mat<4, 2, T>; | 
|  |  | 
|  | template <typename T> | 
|  | using mat4x3 = mat<4, 3, T>; | 
|  |  | 
|  | template <typename T> | 
|  | using mat4x4 = mat<4, 4, T>; | 
|  |  | 
|  | template <uint32_t N, typename T> | 
|  | struct array {}; | 
|  |  | 
|  | template <typename TO, int ID = 0> | 
|  | struct alias {}; | 
|  |  | 
|  | template <typename TO> | 
|  | using alias1 = alias<TO, 1>; | 
|  |  | 
|  | template <typename TO> | 
|  | using alias2 = alias<TO, 2>; | 
|  |  | 
|  | template <typename TO> | 
|  | using alias3 = alias<TO, 3>; | 
|  |  | 
|  | template <typename TO> | 
|  | struct ptr {}; | 
|  |  | 
|  | /// A scalar value | 
|  | using Scalar = std::variant<i32, u32, f32, f16, AInt, AFloat, bool>; | 
|  |  | 
|  | /// Returns current variant value in `s` cast to type `T` | 
|  | template <typename T> | 
|  | T As(const Scalar& s) { | 
|  | return std::visit([](auto&& v) { return static_cast<T>(v); }, s); | 
|  | } | 
|  |  | 
|  | using ast_type_func_ptr = const ast::Type* (*)(ProgramBuilder& b); | 
|  | using ast_expr_func_ptr = const ast::Expression* (*)(ProgramBuilder& b, | 
|  | utils::VectorRef<Scalar> args); | 
|  | using ast_expr_from_double_func_ptr = const ast::Expression* (*)(ProgramBuilder& b, double v); | 
|  | using sem_type_func_ptr = const type::Type* (*)(ProgramBuilder& b); | 
|  | using type_name_func_ptr = std::string (*)(); | 
|  |  | 
|  | struct UnspecializedElementType {}; | 
|  |  | 
|  | /// Base template for DataType, specialized below. | 
|  | template <typename T> | 
|  | struct DataType { | 
|  | /// The element type | 
|  | using ElementType = UnspecializedElementType; | 
|  | }; | 
|  |  | 
|  | /// Helper that represents no-type. Returns nullptr for all static methods. | 
|  | template <> | 
|  | struct DataType<void> { | 
|  | /// The element type | 
|  | using ElementType = void; | 
|  |  | 
|  | /// @return nullptr | 
|  | static inline const ast::Type* AST(ProgramBuilder&) { return nullptr; } | 
|  | /// @return nullptr | 
|  | static inline const type::Type* Sem(ProgramBuilder&) { return nullptr; } | 
|  | }; | 
|  |  | 
|  | /// Helper for building bool types and expressions | 
|  | template <> | 
|  | struct DataType<bool> { | 
|  | /// The element type | 
|  | using ElementType = bool; | 
|  |  | 
|  | /// false as bool is not a composite type | 
|  | static constexpr bool is_composite = false; | 
|  |  | 
|  | /// @param b the ProgramBuilder | 
|  | /// @return a new AST bool type | 
|  | static inline const ast::Type* AST(ProgramBuilder& b) { return b.ty.bool_(); } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @return the semantic bool type | 
|  | static inline const type::Type* Sem(ProgramBuilder& b) { return b.create<type::Bool>(); } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @param args args of size 1 with the boolean value to init with | 
|  | /// @return a new AST expression of the bool type | 
|  | static inline const ast::Expression* Expr(ProgramBuilder& b, utils::VectorRef<Scalar> args) { | 
|  | return b.Expr(std::get<bool>(args[0])); | 
|  | } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @param v arg of type double that will be cast to bool. | 
|  | /// @return a new AST expression of the bool type | 
|  | static inline const ast::Expression* ExprFromDouble(ProgramBuilder& b, double v) { | 
|  | return Expr(b, utils::Vector<Scalar, 1>{static_cast<ElementType>(v)}); | 
|  | } | 
|  | /// @returns the WGSL name for the type | 
|  | static inline std::string Name() { return "bool"; } | 
|  | }; | 
|  |  | 
|  | /// Helper for building i32 types and expressions | 
|  | template <> | 
|  | struct DataType<i32> { | 
|  | /// The element type | 
|  | using ElementType = i32; | 
|  |  | 
|  | /// false as i32 is not a composite type | 
|  | static constexpr bool is_composite = false; | 
|  |  | 
|  | /// @param b the ProgramBuilder | 
|  | /// @return a new AST i32 type | 
|  | static inline const ast::Type* AST(ProgramBuilder& b) { return b.ty.i32(); } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @return the semantic i32 type | 
|  | static inline const type::Type* Sem(ProgramBuilder& b) { return b.create<type::I32>(); } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @param args args of size 1 with the i32 value to init with | 
|  | /// @return a new AST i32 literal value expression | 
|  | static inline const ast::Expression* Expr(ProgramBuilder& b, utils::VectorRef<Scalar> args) { | 
|  | return b.Expr(std::get<i32>(args[0])); | 
|  | } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @param v arg of type double that will be cast to i32. | 
|  | /// @return a new AST i32 literal value expression | 
|  | static inline const ast::Expression* ExprFromDouble(ProgramBuilder& b, double v) { | 
|  | return Expr(b, utils::Vector<Scalar, 1>{static_cast<ElementType>(v)}); | 
|  | } | 
|  | /// @returns the WGSL name for the type | 
|  | static inline std::string Name() { return "i32"; } | 
|  | }; | 
|  |  | 
|  | /// Helper for building u32 types and expressions | 
|  | template <> | 
|  | struct DataType<u32> { | 
|  | /// The element type | 
|  | using ElementType = u32; | 
|  |  | 
|  | /// false as u32 is not a composite type | 
|  | static constexpr bool is_composite = false; | 
|  |  | 
|  | /// @param b the ProgramBuilder | 
|  | /// @return a new AST u32 type | 
|  | static inline const ast::Type* AST(ProgramBuilder& b) { return b.ty.u32(); } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @return the semantic u32 type | 
|  | static inline const type::Type* Sem(ProgramBuilder& b) { return b.create<type::U32>(); } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @param args args of size 1 with the u32 value to init with | 
|  | /// @return a new AST u32 literal value expression | 
|  | static inline const ast::Expression* Expr(ProgramBuilder& b, utils::VectorRef<Scalar> args) { | 
|  | return b.Expr(std::get<u32>(args[0])); | 
|  | } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @param v arg of type double that will be cast to u32. | 
|  | /// @return a new AST u32 literal value expression | 
|  | static inline const ast::Expression* ExprFromDouble(ProgramBuilder& b, double v) { | 
|  | return Expr(b, utils::Vector<Scalar, 1>{static_cast<ElementType>(v)}); | 
|  | } | 
|  | /// @returns the WGSL name for the type | 
|  | static inline std::string Name() { return "u32"; } | 
|  | }; | 
|  |  | 
|  | /// Helper for building f32 types and expressions | 
|  | template <> | 
|  | struct DataType<f32> { | 
|  | /// The element type | 
|  | using ElementType = f32; | 
|  |  | 
|  | /// false as f32 is not a composite type | 
|  | static constexpr bool is_composite = false; | 
|  |  | 
|  | /// @param b the ProgramBuilder | 
|  | /// @return a new AST f32 type | 
|  | static inline const ast::Type* AST(ProgramBuilder& b) { return b.ty.f32(); } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @return the semantic f32 type | 
|  | static inline const type::Type* Sem(ProgramBuilder& b) { return b.create<type::F32>(); } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @param args args of size 1 with the f32 value to init with | 
|  | /// @return a new AST f32 literal value expression | 
|  | static inline const ast::Expression* Expr(ProgramBuilder& b, utils::VectorRef<Scalar> args) { | 
|  | return b.Expr(std::get<f32>(args[0])); | 
|  | } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @param v arg of type double that will be cast to f32. | 
|  | /// @return a new AST f32 literal value expression | 
|  | static inline const ast::Expression* ExprFromDouble(ProgramBuilder& b, double v) { | 
|  | return Expr(b, utils::Vector<Scalar, 1>{static_cast<f32>(v)}); | 
|  | } | 
|  | /// @returns the WGSL name for the type | 
|  | static inline std::string Name() { return "f32"; } | 
|  | }; | 
|  |  | 
|  | /// Helper for building f16 types and expressions | 
|  | template <> | 
|  | struct DataType<f16> { | 
|  | /// The element type | 
|  | using ElementType = f16; | 
|  |  | 
|  | /// false as f16 is not a composite type | 
|  | static constexpr bool is_composite = false; | 
|  |  | 
|  | /// @param b the ProgramBuilder | 
|  | /// @return a new AST f16 type | 
|  | static inline const ast::Type* AST(ProgramBuilder& b) { return b.ty.f16(); } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @return the semantic f16 type | 
|  | static inline const type::Type* Sem(ProgramBuilder& b) { return b.create<type::F16>(); } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @param args args of size 1 with the f16 value to init with | 
|  | /// @return a new AST f16 literal value expression | 
|  | static inline const ast::Expression* Expr(ProgramBuilder& b, utils::VectorRef<Scalar> args) { | 
|  | return b.Expr(std::get<f16>(args[0])); | 
|  | } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @param v arg of type double that will be cast to f16. | 
|  | /// @return a new AST f16 literal value expression | 
|  | static inline const ast::Expression* ExprFromDouble(ProgramBuilder& b, double v) { | 
|  | return Expr(b, utils::Vector<Scalar, 1>{static_cast<ElementType>(v)}); | 
|  | } | 
|  | /// @returns the WGSL name for the type | 
|  | static inline std::string Name() { return "f16"; } | 
|  | }; | 
|  |  | 
|  | /// Helper for building abstract float types and expressions | 
|  | template <> | 
|  | struct DataType<AFloat> { | 
|  | /// The element type | 
|  | using ElementType = AFloat; | 
|  |  | 
|  | /// false as AFloat is not a composite type | 
|  | static constexpr bool is_composite = false; | 
|  |  | 
|  | /// @returns nullptr, as abstract floats are un-typeable | 
|  | static inline const ast::Type* AST(ProgramBuilder&) { return nullptr; } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @return the semantic abstract-float type | 
|  | static inline const type::Type* Sem(ProgramBuilder& b) { | 
|  | return b.create<type::AbstractFloat>(); | 
|  | } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @param args args of size 1 with the abstract-float value to init with | 
|  | /// @return a new AST abstract-float literal value expression | 
|  | static inline const ast::Expression* Expr(ProgramBuilder& b, utils::VectorRef<Scalar> args) { | 
|  | return b.Expr(std::get<AFloat>(args[0])); | 
|  | } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @param v arg of type double that will be cast to AFloat. | 
|  | /// @return a new AST abstract-float literal value expression | 
|  | static inline const ast::Expression* ExprFromDouble(ProgramBuilder& b, double v) { | 
|  | return Expr(b, utils::Vector<Scalar, 1>{static_cast<ElementType>(v)}); | 
|  | } | 
|  | /// @returns the WGSL name for the type | 
|  | static inline std::string Name() { return "abstract-float"; } | 
|  | }; | 
|  |  | 
|  | /// Helper for building abstract integer types and expressions | 
|  | template <> | 
|  | struct DataType<AInt> { | 
|  | /// The element type | 
|  | using ElementType = AInt; | 
|  |  | 
|  | /// false as AFloat is not a composite type | 
|  | static constexpr bool is_composite = false; | 
|  |  | 
|  | /// @returns nullptr, as abstract integers are un-typeable | 
|  | static inline const ast::Type* AST(ProgramBuilder&) { return nullptr; } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @return the semantic abstract-int type | 
|  | static inline const type::Type* Sem(ProgramBuilder& b) { return b.create<type::AbstractInt>(); } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @param args args of size 1 with the abstract-int value to init with | 
|  | /// @return a new AST abstract-int literal value expression | 
|  | static inline const ast::Expression* Expr(ProgramBuilder& b, utils::VectorRef<Scalar> args) { | 
|  | return b.Expr(std::get<AInt>(args[0])); | 
|  | } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @param v arg of type double that will be cast to AInt. | 
|  | /// @return a new AST abstract-int literal value expression | 
|  | static inline const ast::Expression* ExprFromDouble(ProgramBuilder& b, double v) { | 
|  | return Expr(b, utils::Vector<Scalar, 1>{static_cast<ElementType>(v)}); | 
|  | } | 
|  | /// @returns the WGSL name for the type | 
|  | static inline std::string Name() { return "abstract-int"; } | 
|  | }; | 
|  |  | 
|  | /// Helper for building vector types and expressions | 
|  | template <uint32_t N, typename T> | 
|  | struct DataType<vec<N, T>> { | 
|  | /// The element type | 
|  | using ElementType = T; | 
|  |  | 
|  | /// true as vectors are a composite type | 
|  | static constexpr bool is_composite = true; | 
|  |  | 
|  | /// @param b the ProgramBuilder | 
|  | /// @return a new AST vector type | 
|  | static inline const ast::Type* AST(ProgramBuilder& b) { | 
|  | return b.ty.vec(DataType<T>::AST(b), N); | 
|  | } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @return the semantic vector type | 
|  | static inline const type::Type* Sem(ProgramBuilder& b) { | 
|  | return b.create<type::Vector>(DataType<T>::Sem(b), N); | 
|  | } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @param args args of size 1 or N with values of type T to initialize with | 
|  | /// @return a new AST vector value expression | 
|  | static inline const ast::Expression* Expr(ProgramBuilder& b, utils::VectorRef<Scalar> args) { | 
|  | return b.Construct(AST(b), ExprArgs(b, std::move(args))); | 
|  | } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @param args args of size 1 or N with values of type T to initialize with | 
|  | /// @return the list of expressions that are used to construct the vector | 
|  | static inline auto ExprArgs(ProgramBuilder& b, utils::VectorRef<Scalar> args) { | 
|  | const bool one_value = args.Length() == 1; | 
|  | utils::Vector<const ast::Expression*, N> r; | 
|  | for (size_t i = 0; i < N; ++i) { | 
|  | r.Push(DataType<T>::Expr(b, utils::Vector<Scalar, 1>{one_value ? args[0] : args[i]})); | 
|  | } | 
|  | return r; | 
|  | } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @param v arg of type double that will be cast to ElementType | 
|  | /// @return a new AST vector value expression | 
|  | static inline const ast::Expression* ExprFromDouble(ProgramBuilder& b, double v) { | 
|  | return Expr(b, utils::Vector<Scalar, 1>{static_cast<ElementType>(v)}); | 
|  | } | 
|  | /// @returns the WGSL name for the type | 
|  | static inline std::string Name() { | 
|  | return "vec" + std::to_string(N) + "<" + DataType<T>::Name() + ">"; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Helper for building matrix types and expressions | 
|  | template <uint32_t N, uint32_t M, typename T> | 
|  | struct DataType<mat<N, M, T>> { | 
|  | /// The element type | 
|  | using ElementType = T; | 
|  |  | 
|  | /// true as matrices are a composite type | 
|  | static constexpr bool is_composite = true; | 
|  |  | 
|  | /// @param b the ProgramBuilder | 
|  | /// @return a new AST matrix type | 
|  | static inline const ast::Type* AST(ProgramBuilder& b) { | 
|  | return b.ty.mat(DataType<T>::AST(b), N, M); | 
|  | } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @return the semantic matrix type | 
|  | static inline const type::Type* Sem(ProgramBuilder& b) { | 
|  | auto* column_type = b.create<type::Vector>(DataType<T>::Sem(b), M); | 
|  | return b.create<type::Matrix>(column_type, N); | 
|  | } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @param args args of size 1 or N*M with values of type T to initialize with | 
|  | /// @return a new AST matrix value expression | 
|  | static inline const ast::Expression* Expr(ProgramBuilder& b, utils::VectorRef<Scalar> args) { | 
|  | return b.Construct(AST(b), ExprArgs(b, std::move(args))); | 
|  | } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @param args args of size 1 or N*M with values of type T to initialize with | 
|  | /// @return a new AST matrix value expression | 
|  | static inline auto ExprArgs(ProgramBuilder& b, utils::VectorRef<Scalar> args) { | 
|  | const bool one_value = args.Length() == 1; | 
|  | size_t next = 0; | 
|  | utils::Vector<const ast::Expression*, N> r; | 
|  | for (uint32_t i = 0; i < N; ++i) { | 
|  | if (one_value) { | 
|  | r.Push(DataType<vec<M, T>>::Expr(b, utils::Vector<Scalar, 1>{args[0]})); | 
|  | } else { | 
|  | utils::Vector<Scalar, M> v; | 
|  | for (size_t j = 0; j < M; ++j) { | 
|  | v.Push(args[next++]); | 
|  | } | 
|  | r.Push(DataType<vec<M, T>>::Expr(b, std::move(v))); | 
|  | } | 
|  | } | 
|  | return r; | 
|  | } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @param v arg of type double that will be cast to ElementType | 
|  | /// @return a new AST matrix value expression | 
|  | static inline const ast::Expression* ExprFromDouble(ProgramBuilder& b, double v) { | 
|  | return Expr(b, utils::Vector<Scalar, 1>{static_cast<ElementType>(v)}); | 
|  | } | 
|  | /// @returns the WGSL name for the type | 
|  | static inline std::string Name() { | 
|  | return "mat" + std::to_string(N) + "x" + std::to_string(M) + "<" + DataType<T>::Name() + | 
|  | ">"; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Helper for building alias types and expressions | 
|  | template <typename T, int ID> | 
|  | struct DataType<alias<T, ID>> { | 
|  | /// The element type | 
|  | using ElementType = typename DataType<T>::ElementType; | 
|  |  | 
|  | /// true if the aliased type is a composite type | 
|  | static constexpr bool is_composite = DataType<T>::is_composite; | 
|  |  | 
|  | /// @param b the ProgramBuilder | 
|  | /// @return a new AST alias type | 
|  | static inline const ast::Type* AST(ProgramBuilder& b) { | 
|  | auto name = b.Symbols().Register("alias_" + std::to_string(ID)); | 
|  | if (!b.AST().LookupType(name)) { | 
|  | auto* type = DataType<T>::AST(b); | 
|  | b.AST().AddTypeDecl(b.ty.alias(name, type)); | 
|  | } | 
|  | return b.create<ast::TypeName>(name); | 
|  | } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @return the semantic aliased type | 
|  | static inline const type::Type* Sem(ProgramBuilder& b) { return DataType<T>::Sem(b); } | 
|  |  | 
|  | /// @param b the ProgramBuilder | 
|  | /// @param args the value nested elements will be initialized with | 
|  | /// @return a new AST expression of the alias type | 
|  | template <bool IS_COMPOSITE = is_composite> | 
|  | static inline traits::EnableIf<!IS_COMPOSITE, const ast::Expression*> Expr( | 
|  | ProgramBuilder& b, | 
|  | utils::VectorRef<Scalar> args) { | 
|  | // Cast | 
|  | return b.Construct(AST(b), DataType<T>::Expr(b, std::move(args))); | 
|  | } | 
|  |  | 
|  | /// @param b the ProgramBuilder | 
|  | /// @param args the value nested elements will be initialized with | 
|  | /// @return a new AST expression of the alias type | 
|  | template <bool IS_COMPOSITE = is_composite> | 
|  | static inline traits::EnableIf<IS_COMPOSITE, const ast::Expression*> Expr( | 
|  | ProgramBuilder& b, | 
|  | utils::VectorRef<Scalar> args) { | 
|  | // Construct | 
|  | return b.Construct(AST(b), DataType<T>::ExprArgs(b, std::move(args))); | 
|  | } | 
|  |  | 
|  | /// @param b the ProgramBuilder | 
|  | /// @param v arg of type double that will be cast to ElementType | 
|  | /// @return a new AST expression of the alias type | 
|  | static inline const ast::Expression* ExprFromDouble(ProgramBuilder& b, double v) { | 
|  | return Expr(b, utils::Vector<Scalar, 1>{static_cast<ElementType>(v)}); | 
|  | } | 
|  |  | 
|  | /// @returns the WGSL name for the type | 
|  | static inline std::string Name() { return "alias_" + std::to_string(ID); } | 
|  | }; | 
|  |  | 
|  | /// Helper for building pointer types and expressions | 
|  | template <typename T> | 
|  | struct DataType<ptr<T>> { | 
|  | /// The element type | 
|  | using ElementType = typename DataType<T>::ElementType; | 
|  |  | 
|  | /// true if the pointer type is a composite type | 
|  | static constexpr bool is_composite = false; | 
|  |  | 
|  | /// @param b the ProgramBuilder | 
|  | /// @return a new AST alias type | 
|  | static inline const ast::Type* AST(ProgramBuilder& b) { | 
|  | return b.create<ast::Pointer>(DataType<T>::AST(b), ast::AddressSpace::kPrivate, | 
|  | ast::Access::kUndefined); | 
|  | } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @return the semantic aliased type | 
|  | static inline const type::Type* Sem(ProgramBuilder& b) { | 
|  | return b.create<type::Pointer>(DataType<T>::Sem(b), ast::AddressSpace::kPrivate, | 
|  | ast::Access::kReadWrite); | 
|  | } | 
|  |  | 
|  | /// @param b the ProgramBuilder | 
|  | /// @return a new AST expression of the pointer type | 
|  | static inline const ast::Expression* Expr(ProgramBuilder& b, | 
|  | utils::VectorRef<Scalar> /*unused*/) { | 
|  | auto sym = b.Symbols().New("global_for_ptr"); | 
|  | b.GlobalVar(sym, DataType<T>::AST(b), ast::AddressSpace::kPrivate); | 
|  | return b.AddressOf(sym); | 
|  | } | 
|  |  | 
|  | /// @param b the ProgramBuilder | 
|  | /// @param v arg of type double that will be cast to ElementType | 
|  | /// @return a new AST expression of the pointer type | 
|  | static inline const ast::Expression* ExprFromDouble(ProgramBuilder& b, double v) { | 
|  | return Expr(b, utils::Vector<Scalar, 1>{static_cast<ElementType>(v)}); | 
|  | } | 
|  |  | 
|  | /// @returns the WGSL name for the type | 
|  | static inline std::string Name() { return "ptr<" + DataType<T>::Name() + ">"; } | 
|  | }; | 
|  |  | 
|  | /// Helper for building array types and expressions | 
|  | template <uint32_t N, typename T> | 
|  | struct DataType<array<N, T>> { | 
|  | /// The element type | 
|  | using ElementType = typename DataType<T>::ElementType; | 
|  |  | 
|  | /// true as arrays are a composite type | 
|  | static constexpr bool is_composite = true; | 
|  |  | 
|  | /// @param b the ProgramBuilder | 
|  | /// @return a new AST array type | 
|  | static inline const ast::Type* AST(ProgramBuilder& b) { | 
|  | if (auto* ast = DataType<T>::AST(b)) { | 
|  | return b.ty.array(ast, u32(N)); | 
|  | } | 
|  | return b.ty.array(nullptr, nullptr); | 
|  | } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @return the semantic array type | 
|  | static inline const type::Type* Sem(ProgramBuilder& b) { | 
|  | auto* el = DataType<T>::Sem(b); | 
|  | const type::ArrayCount* count = nullptr; | 
|  | if (N == 0) { | 
|  | count = b.create<type::RuntimeArrayCount>(); | 
|  | } else { | 
|  | count = b.create<type::ConstantArrayCount>(N); | 
|  | } | 
|  | return b.create<type::Array>( | 
|  | /* element */ el, | 
|  | /* count */ count, | 
|  | /* align */ el->Align(), | 
|  | /* size */ N * el->Size(), | 
|  | /* stride */ el->Align(), | 
|  | /* implicit_stride */ el->Align()); | 
|  | } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @param args args of size 1 or N with values of type T to initialize with | 
|  | /// with | 
|  | /// @return a new AST array value expression | 
|  | static inline const ast::Expression* Expr(ProgramBuilder& b, utils::VectorRef<Scalar> args) { | 
|  | return b.Construct(AST(b), ExprArgs(b, std::move(args))); | 
|  | } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @param args args of size 1 or N with values of type T to initialize with | 
|  | /// @return the list of expressions that are used to construct the array | 
|  | static inline auto ExprArgs(ProgramBuilder& b, utils::VectorRef<Scalar> args) { | 
|  | const bool one_value = args.Length() == 1; | 
|  | utils::Vector<const ast::Expression*, N> r; | 
|  | for (uint32_t i = 0; i < N; i++) { | 
|  | r.Push(DataType<T>::Expr(b, utils::Vector<Scalar, 1>{one_value ? args[0] : args[i]})); | 
|  | } | 
|  | return r; | 
|  | } | 
|  | /// @param b the ProgramBuilder | 
|  | /// @param v arg of type double that will be cast to ElementType | 
|  | /// @return a new AST array value expression | 
|  | static inline const ast::Expression* ExprFromDouble(ProgramBuilder& b, double v) { | 
|  | return Expr(b, utils::Vector<Scalar, 1>{static_cast<ElementType>(v)}); | 
|  | } | 
|  | /// @returns the WGSL name for the type | 
|  | static inline std::string Name() { | 
|  | return "array<" + DataType<T>::Name() + ", " + std::to_string(N) + ">"; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Struct of all creation pointer types | 
|  | struct CreatePtrs { | 
|  | /// ast node type create function | 
|  | ast_type_func_ptr ast; | 
|  | /// ast expression type create function | 
|  | ast_expr_func_ptr expr; | 
|  | /// ast expression type create function from double arg | 
|  | ast_expr_from_double_func_ptr expr_from_double; | 
|  | /// sem type create function | 
|  | sem_type_func_ptr sem; | 
|  | /// type name function | 
|  | type_name_func_ptr name; | 
|  | }; | 
|  |  | 
|  | /// @param o the std::ostream to write to | 
|  | /// @param ptrs the CreatePtrs | 
|  | /// @return the std::ostream so calls can be chained | 
|  | inline std::ostream& operator<<(std::ostream& o, const CreatePtrs& ptrs) { | 
|  | return o << (ptrs.name ? ptrs.name() : "<unknown>"); | 
|  | } | 
|  |  | 
|  | /// Returns a CreatePtrs struct instance with all creation pointer types for | 
|  | /// type `T` | 
|  | template <typename T> | 
|  | constexpr CreatePtrs CreatePtrsFor() { | 
|  | return {DataType<T>::AST, DataType<T>::Expr, DataType<T>::ExprFromDouble, DataType<T>::Sem, | 
|  | DataType<T>::Name}; | 
|  | } | 
|  |  | 
|  | /// True if DataType<T> is specialized for T, false otherwise. | 
|  | template <typename T> | 
|  | const bool IsDataTypeSpecializedFor = | 
|  | !std::is_same_v<typename DataType<T>::ElementType, UnspecializedElementType>; | 
|  |  | 
|  | /// Value is used to create Values with a Scalar vector initializer. | 
|  | struct Value { | 
|  | /// Creates a Value for type T initialized with `args` | 
|  | /// @param args the scalar args | 
|  | /// @returns Value | 
|  | template <typename T> | 
|  | static Value Create(utils::VectorRef<Scalar> args) { | 
|  | static_assert(IsDataTypeSpecializedFor<T>, "No DataType<T> specialization exists"); | 
|  | using EL_TY = typename builder::DataType<T>::ElementType; | 
|  | return Value{ | 
|  | std::move(args),          // | 
|  | CreatePtrsFor<T>(),       // | 
|  | tint::IsAbstract<EL_TY>,  // | 
|  | tint::IsIntegral<EL_TY>,  // | 
|  | tint::FriendlyName<EL_TY>(), | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// Creates an `ast::Expression` for the type T passing in previously stored args | 
|  | /// @param b the ProgramBuilder | 
|  | /// @returns an expression node | 
|  | const ast::Expression* Expr(ProgramBuilder& b) const { return (*create_ptrs.expr)(b, args); } | 
|  |  | 
|  | /// Prints this value to the output stream | 
|  | /// @param o the output stream | 
|  | /// @returns input argument `o` | 
|  | std::ostream& Print(std::ostream& o) const { | 
|  | o << type_name << "("; | 
|  | for (auto& a : args) { | 
|  | std::visit([&](auto& v) { o << v; }, a); | 
|  | if (&a != &args.Back()) { | 
|  | o << ", "; | 
|  | } | 
|  | } | 
|  | o << ")"; | 
|  | return o; | 
|  | } | 
|  |  | 
|  | /// The arguments used to construct the value | 
|  | utils::Vector<Scalar, 4> args; | 
|  | /// CreatePtrs for value's type used to create an expression with `args` | 
|  | builder::CreatePtrs create_ptrs; | 
|  | /// True if the element type is abstract | 
|  | bool is_abstract = false; | 
|  | /// True if the element type is an integer | 
|  | bool is_integral = false; | 
|  | /// The name of the type. | 
|  | const char* type_name = "<invalid>"; | 
|  | }; | 
|  |  | 
|  | /// Prints Value to ostream | 
|  | inline std::ostream& operator<<(std::ostream& o, const Value& value) { | 
|  | return value.Print(o); | 
|  | } | 
|  |  | 
|  | /// True if T is Value, false otherwise | 
|  | template <typename T> | 
|  | constexpr bool IsValue = std::is_same_v<T, Value>; | 
|  |  | 
|  | /// Creates a Value of DataType<T> from a scalar `v` | 
|  | template <typename T> | 
|  | Value Val(T v) { | 
|  | static_assert(traits::IsTypeIn<T, Scalar>, "v must be a Number of bool"); | 
|  | return Value::Create<T>(utils::Vector<Scalar, 1>{v}); | 
|  | } | 
|  |  | 
|  | /// Creates a Value of DataType<vec<N, T>> from N scalar `args` | 
|  | template <typename... Ts> | 
|  | Value Vec(Ts... args) { | 
|  | using FirstT = std::tuple_element_t<0, std::tuple<Ts...>>; | 
|  | static_assert(sizeof...(args) >= 2 && sizeof...(args) <= 4, "Invalid vector size"); | 
|  | static_assert(std::conjunction_v<std::is_same<FirstT, Ts>...>, | 
|  | "Vector args must all be the same type"); | 
|  | constexpr size_t N = sizeof...(args); | 
|  | utils::Vector<Scalar, sizeof...(args)> v{args...}; | 
|  | return Value::Create<vec<N, FirstT>>(std::move(v)); | 
|  | } | 
|  |  | 
|  | /// Creates a Value of DataType<array<N, T>> from N scalar `args` | 
|  | template <typename... Ts> | 
|  | Value Array(Ts... args) { | 
|  | using FirstT = std::tuple_element_t<0, std::tuple<Ts...>>; | 
|  | static_assert(std::conjunction_v<std::is_same<FirstT, Ts>...>, | 
|  | "Array args must all be the same type"); | 
|  | constexpr size_t N = sizeof...(args); | 
|  | utils::Vector<Scalar, sizeof...(args)> v{args...}; | 
|  | return Value::Create<array<N, FirstT>>(std::move(v)); | 
|  | } | 
|  |  | 
|  | /// Creates a Value of DataType<mat<C,R,T> from C*R scalar `args` | 
|  | template <size_t C, size_t R, typename T> | 
|  | Value Mat(const T (&m_in)[C][R]) { | 
|  | utils::Vector<Scalar, C * R> m; | 
|  | for (uint32_t i = 0; i < C; ++i) { | 
|  | for (size_t j = 0; j < R; ++j) { | 
|  | m.Push(m_in[i][j]); | 
|  | } | 
|  | } | 
|  | return Value::Create<mat<C, R, T>>(std::move(m)); | 
|  | } | 
|  |  | 
|  | /// Creates a Value of DataType<mat<2,R,T> from column vectors `c0` and `c1` | 
|  | template <typename T, size_t R> | 
|  | Value Mat(const T (&c0)[R], const T (&c1)[R]) { | 
|  | constexpr size_t C = 2; | 
|  | utils::Vector<Scalar, C * R> m; | 
|  | for (auto v : c0) { | 
|  | m.Push(v); | 
|  | } | 
|  | for (auto v : c1) { | 
|  | m.Push(v); | 
|  | } | 
|  | return Value::Create<mat<C, R, T>>(std::move(m)); | 
|  | } | 
|  |  | 
|  | /// Creates a Value of DataType<mat<3,R,T> from column vectors `c0`, `c1`, and `c2` | 
|  | template <typename T, size_t R> | 
|  | Value Mat(const T (&c0)[R], const T (&c1)[R], const T (&c2)[R]) { | 
|  | constexpr size_t C = 3; | 
|  | utils::Vector<Scalar, C * R> m; | 
|  | for (auto v : c0) { | 
|  | m.Push(v); | 
|  | } | 
|  | for (auto v : c1) { | 
|  | m.Push(v); | 
|  | } | 
|  | for (auto v : c2) { | 
|  | m.Push(v); | 
|  | } | 
|  | return Value::Create<mat<C, R, T>>(std::move(m)); | 
|  | } | 
|  |  | 
|  | /// Creates a Value of DataType<mat<4,R,T> from column vectors `c0`, `c1`, `c2`, and `c3` | 
|  | template <typename T, size_t R> | 
|  | Value Mat(const T (&c0)[R], const T (&c1)[R], const T (&c2)[R], const T (&c3)[R]) { | 
|  | constexpr size_t C = 4; | 
|  | utils::Vector<Scalar, C * R> m; | 
|  | for (auto v : c0) { | 
|  | m.Push(v); | 
|  | } | 
|  | for (auto v : c1) { | 
|  | m.Push(v); | 
|  | } | 
|  | for (auto v : c2) { | 
|  | m.Push(v); | 
|  | } | 
|  | for (auto v : c3) { | 
|  | m.Push(v); | 
|  | } | 
|  | return Value::Create<mat<C, R, T>>(std::move(m)); | 
|  | } | 
|  | }  // namespace builder | 
|  | }  // namespace tint::resolver | 
|  |  | 
|  | #endif  // SRC_TINT_RESOLVER_RESOLVER_TEST_HELPER_H_ |