| // Copyright 2021 The Tint Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #ifndef SRC_TINT_NUMBER_H_ |
| #define SRC_TINT_NUMBER_H_ |
| |
| #include <stdint.h> |
| #include <cmath> |
| #include <functional> |
| #include <limits> |
| #include <optional> |
| #include <ostream> |
| |
| #include "src/tint/traits.h" |
| #include "src/tint/utils/compiler_macros.h" |
| #include "src/tint/utils/result.h" |
| |
| // Forward declaration |
| namespace tint { |
| /// Number wraps a integer or floating point number, enforcing explicit casting. |
| template <typename T> |
| struct Number; |
| } // namespace tint |
| |
| namespace tint::detail { |
| /// Base template for IsNumber |
| template <typename T> |
| struct IsNumber : std::false_type {}; |
| |
| /// Specialization for IsNumber |
| template <typename T> |
| struct IsNumber<Number<T>> : std::true_type {}; |
| |
| /// An empty structure used as a unique template type for Number when |
| /// specializing for the f16 type. |
| struct NumberKindF16 {}; |
| |
| /// Helper for obtaining the underlying type for a Number. |
| template <typename T> |
| struct NumberUnwrapper { |
| /// When T is not a Number, then type defined to be T. |
| using type = T; |
| }; |
| |
| /// NumberUnwrapper specialization for Number<T>. |
| template <typename T> |
| struct NumberUnwrapper<Number<T>> { |
| /// The Number's underlying type. |
| using type = typename Number<T>::type; |
| }; |
| |
| } // namespace tint::detail |
| |
| namespace tint { |
| |
| /// Evaluates to true iff T is a Number |
| template <typename T> |
| constexpr bool IsNumber = detail::IsNumber<T>::value; |
| |
| /// Resolves to the underlying type for a Number. |
| template <typename T> |
| using UnwrapNumber = typename detail::NumberUnwrapper<T>::type; |
| |
| /// Evaluates to true iff T or Number<T> is a floating-point type or is NumberKindF16. |
| template <typename T> |
| constexpr bool IsFloatingPoint = std::is_floating_point_v<UnwrapNumber<T>> || |
| std::is_same_v<UnwrapNumber<T>, detail::NumberKindF16>; |
| |
| /// Evaluates to true iff T or Number<T> is an integral type. |
| template <typename T> |
| constexpr bool IsIntegral = std::is_integral_v<UnwrapNumber<T>>; |
| |
| /// Evaluates to true iff T or Number<T> is a signed integer type. |
| template <typename T> |
| constexpr bool IsSignedIntegral = |
| std::is_integral_v<UnwrapNumber<T>> && std::is_signed_v<UnwrapNumber<T>>; |
| |
| /// Evaluates to true iff T or Number<T> is an unsigned integer type. |
| template <typename T> |
| constexpr bool IsUnsignedIntegral = |
| std::is_integral_v<UnwrapNumber<T>> && std::is_unsigned_v<UnwrapNumber<T>>; |
| |
| /// Evaluates to true iff T is an integer type, floating-point type or is NumberKindF16. |
| template <typename T> |
| constexpr bool IsNumeric = IsIntegral<T> || IsFloatingPoint<T>; |
| |
| /// Returns the bit width of T |
| template <typename T> |
| constexpr size_t BitWidth = sizeof(UnwrapNumber<T>) * 8; |
| |
| /// NumberBase is a CRTP base class for Number<T> |
| template <typename NumberT> |
| struct NumberBase { |
| /// @returns value of type `Number<T>` with the highest value for that type. |
| static NumberT Highest() { return NumberT(NumberT::kHighestValue); } |
| /// @returns value of type `Number<T>` with the lowest value for that type. |
| static NumberT Lowest() { return NumberT(NumberT::kLowestValue); } |
| /// @returns value of type `Number<T>` with the smallest value for that type. |
| static NumberT Smallest() { return NumberT(NumberT::kSmallestValue); } |
| /// @returns value of type `Number<T>` that represents NaN for that type. |
| static NumberT NaN() { |
| return NumberT(std::numeric_limits<UnwrapNumber<NumberT>>::quiet_NaN()); |
| } |
| /// @returns value of type `Number<T>` that represents infinity for that type. |
| static NumberT Inf() { return NumberT(std::numeric_limits<UnwrapNumber<NumberT>>::infinity()); } |
| }; |
| |
| /// Number wraps a integer or floating point number, enforcing explicit casting. |
| template <typename T> |
| struct Number : NumberBase<Number<T>> { |
| static_assert(IsNumeric<T>, "Number<T> constructed with non-numeric type"); |
| |
| /// type is the underlying type of the Number |
| using type = T; |
| |
| /// Number of bits in the number. |
| static constexpr size_t kNumBits = sizeof(T) * 8; |
| |
| /// Highest finite representable value of this type. |
| static constexpr type kHighestValue = std::numeric_limits<type>::max(); |
| |
| /// Lowest finite representable value of this type. |
| static constexpr type kLowestValue = std::numeric_limits<type>::lowest(); |
| |
| /// Smallest positive normal value of this type. |
| static constexpr type kSmallestValue = |
| std::is_integral_v<type> ? 0 : std::numeric_limits<type>::min(); |
| |
| /// Smallest positive subnormal value of this type, 0 for integral type. |
| static constexpr type kSmallestSubnormalValue = |
| std::is_integral_v<type> ? 0 : std::numeric_limits<type>::denorm_min(); |
| |
| /// Constructor. The value is zero-initialized. |
| Number() = default; |
| |
| /// Constructor. |
| /// @param v the value to initialize this Number to |
| template <typename U> |
| explicit Number(U v) : value(static_cast<T>(v)) {} |
| |
| /// Constructor. |
| /// @param v the value to initialize this Number to |
| template <typename U> |
| explicit Number(Number<U> v) : value(static_cast<T>(v.value)) {} |
| |
| /// Conversion operator |
| /// @returns the value as T |
| operator T() const { return value; } |
| |
| /// Negation operator |
| /// @returns the negative value of the number |
| Number operator-() const { return Number(-value); } |
| |
| /// Assignment operator |
| /// @param v the new value |
| /// @returns this Number so calls can be chained |
| Number& operator=(T v) { |
| value = v; |
| return *this; |
| } |
| |
| /// The number value |
| type value = {}; |
| }; |
| |
| /// Writes the number to the ostream. |
| /// @param out the std::ostream to write to |
| /// @param num the Number |
| /// @return the std::ostream so calls can be chained |
| template <typename T> |
| inline std::ostream& operator<<(std::ostream& out, Number<T> num) { |
| return out << num.value; |
| } |
| |
| /// The partial specification of Number for f16 type, storing the f16 value as float, |
| /// and enforcing proper explicit casting. |
| template <> |
| struct Number<detail::NumberKindF16> : NumberBase<Number<detail::NumberKindF16>> { |
| /// C++ does not have a native float16 type, so we use a 32-bit float instead. |
| using type = float; |
| |
| /// Number of bits in the number. |
| static constexpr size_t kNumBits = 16; |
| |
| /// Highest finite representable value of this type. |
| static constexpr type kHighestValue = 65504.0f; // 2¹⁵ × (1 + 1023/1024) |
| |
| /// Lowest finite representable value of this type. |
| static constexpr type kLowestValue = -65504.0f; |
| |
| /// Smallest positive normal value of this type. |
| /// binary16 0_00001_0000000000, value is 2⁻¹⁴. |
| static constexpr type kSmallestValue = 0x1p-14f; |
| |
| /// Smallest positive subnormal value of this type. |
| /// binary16 0_00000_0000000001, value is 2⁻¹⁴ * 2⁻¹⁰ = 2⁻²⁴. |
| static constexpr type kSmallestSubnormalValue = 0x1p-24f; |
| |
| /// Constructor. The value is zero-initialized. |
| Number() = default; |
| |
| /// Constructor. |
| /// @param v the value to initialize this Number to |
| template <typename U> |
| explicit Number(U v) : value(Quantize(static_cast<type>(v))) {} |
| |
| /// Constructor. |
| /// @param v the value to initialize this Number to |
| template <typename U> |
| explicit Number(Number<U> v) : value(Quantize(static_cast<type>(v.value))) {} |
| |
| /// Conversion operator |
| /// @returns the value as the internal representation type of F16 |
| operator float() const { return value; } |
| |
| /// Negation operator |
| /// @returns the negative value of the number |
| Number operator-() const { return Number<detail::NumberKindF16>(-value); } |
| |
| /// Assignment operator with parameter as native floating point type |
| /// @param v the new value |
| /// @returns this Number so calls can be chained |
| Number& operator=(type v) { |
| value = Quantize(v); |
| return *this; |
| } |
| |
| /// Get the binary16 bit pattern in type uint16_t of this value. |
| /// @returns the binary16 bit pattern, in type uint16_t, of the stored quantized f16 value. If |
| /// the value is NaN, the returned value will be 0x7e00u. If the value is positive infinity, the |
| /// returned value will be 0x7c00u. If the input value is negative infinity, the returned value |
| /// will be 0xfc00u. |
| uint16_t BitsRepresentation() const; |
| |
| /// Creates an f16 value from the uint16_t bit representation. |
| /// @param bits the bits to convert from |
| /// @returns the binary16 value based off the provided bit pattern. |
| static Number<detail::NumberKindF16> FromBits(uint16_t bits); |
| |
| /// @param value the input float32 value |
| /// @returns the float32 value quantized to the smaller float16 value, through truncation of the |
| /// mantissa bits (no rounding). If the float32 value is too large (positive or negative) to be |
| /// represented by a float16 value, then the returned value will be positive or negative |
| /// infinity. |
| static type Quantize(type value); |
| |
| /// The number value, stored as float |
| type value = {}; |
| }; |
| |
| /// `AInt` is a type alias to `Number<int64_t>`. |
| using AInt = Number<int64_t>; |
| /// `AFloat` is a type alias to `Number<double>`. |
| using AFloat = Number<double>; |
| |
| /// `i32` is a type alias to `Number<int32_t>`. |
| using i32 = Number<int32_t>; |
| /// `u32` is a type alias to `Number<uint32_t>`. |
| using u32 = Number<uint32_t>; |
| /// `f32` is a type alias to `Number<float>` |
| using f32 = Number<float>; |
| /// `f16` is a type alias to `Number<detail::NumberKindF16>`, which should be IEEE 754 binary16. |
| /// However since C++ don't have native binary16 type, the value is stored as float. |
| using f16 = Number<detail::NumberKindF16>; |
| |
| template <typename T, traits::EnableIf<IsFloatingPoint<T>>* = nullptr> |
| inline const auto kPi = T(UnwrapNumber<T>(3.14159265358979323846)); |
| |
| /// True iff T is an abstract number type |
| template <typename T> |
| constexpr bool IsAbstract = std::is_same_v<T, AInt> || std::is_same_v<T, AFloat>; |
| |
| /// @returns the friendly name of Number type T |
| template <typename T, traits::EnableIf<IsNumber<T>>* = nullptr> |
| const char* FriendlyName() { |
| if constexpr (std::is_same_v<T, AInt>) { |
| return "abstract-int"; |
| } else if constexpr (std::is_same_v<T, AFloat>) { |
| return "abstract-float"; |
| } else if constexpr (std::is_same_v<T, i32>) { |
| return "i32"; |
| } else if constexpr (std::is_same_v<T, u32>) { |
| return "u32"; |
| } else if constexpr (std::is_same_v<T, f32>) { |
| return "f32"; |
| } else if constexpr (std::is_same_v<T, f16>) { |
| return "f16"; |
| } else { |
| static_assert(!sizeof(T), "Unhandled type"); |
| } |
| } |
| |
| /// @returns the friendly name of T when T is bool |
| template <typename T, traits::EnableIf<std::is_same_v<T, bool>>* = nullptr> |
| const char* FriendlyName() { |
| return "bool"; |
| } |
| |
| /// Enumerator of failure reasons when converting from one number to another. |
| enum class ConversionFailure { |
| kExceedsPositiveLimit, // The value was too big (+'ve) to fit in the target type |
| kExceedsNegativeLimit, // The value was too big (-'ve) to fit in the target type |
| }; |
| |
| /// Writes the conversion failure message to the ostream. |
| /// @param out the std::ostream to write to |
| /// @param failure the ConversionFailure |
| /// @return the std::ostream so calls can be chained |
| std::ostream& operator<<(std::ostream& out, ConversionFailure failure); |
| |
| /// Converts a number from one type to another, checking that the value fits in the target type. |
| /// @returns the resulting value of the conversion, or a failure reason. |
| template <typename TO, typename FROM> |
| utils::Result<TO, ConversionFailure> CheckedConvert(Number<FROM> num) { |
| // Use the highest-precision integer or floating-point type to perform the comparisons. |
| using T = std::conditional_t<IsFloatingPoint<UnwrapNumber<TO>> || IsFloatingPoint<FROM>, |
| AFloat::type, AInt::type>; |
| const auto value = static_cast<T>(num.value); |
| if (value > static_cast<T>(TO::kHighestValue)) { |
| return ConversionFailure::kExceedsPositiveLimit; |
| } |
| if (value < static_cast<T>(TO::kLowestValue)) { |
| return ConversionFailure::kExceedsNegativeLimit; |
| } |
| return TO(value); // Success |
| } |
| |
| /// Equality operator. |
| /// @param a the LHS number |
| /// @param b the RHS number |
| /// @returns true if the numbers `a` and `b` are exactly equal. Also considers sign bit. |
| template <typename A, typename B> |
| bool operator==(Number<A> a, Number<B> b) { |
| // Use the highest-precision integer or floating-point type to perform the comparisons. |
| using T = |
| std::conditional_t<IsFloatingPoint<A> || IsFloatingPoint<B>, AFloat::type, AInt::type>; |
| auto va = static_cast<T>(a.value); |
| auto vb = static_cast<T>(b.value); |
| if constexpr (IsFloatingPoint<T>) { |
| if (std::signbit(va) != std::signbit(vb)) { |
| return false; |
| } |
| } |
| return std::equal_to<T>()(va, vb); |
| } |
| |
| /// Inequality operator. |
| /// @param a the LHS number |
| /// @param b the RHS number |
| /// @returns true if the numbers `a` and `b` are exactly unequal. Also considers sign bit. |
| template <typename A, typename B> |
| bool operator!=(Number<A> a, Number<B> b) { |
| return !(a == b); |
| } |
| |
| /// Equality operator. |
| /// @param a the LHS number |
| /// @param b the RHS number |
| /// @returns true if the numbers `a` and `b` are exactly equal. |
| template <typename A, typename B> |
| std::enable_if_t<IsNumeric<B>, bool> operator==(Number<A> a, B b) { |
| return a == Number<B>(b); |
| } |
| |
| /// Inequality operator. |
| /// @param a the LHS number |
| /// @param b the RHS number |
| /// @returns true if the numbers `a` and `b` are exactly unequal. |
| template <typename A, typename B> |
| std::enable_if_t<IsNumeric<B>, bool> operator!=(Number<A> a, B b) { |
| return !(a == b); |
| } |
| |
| /// Equality operator. |
| /// @param a the LHS number |
| /// @param b the RHS number |
| /// @returns true if the numbers `a` and `b` are exactly equal. |
| template <typename A, typename B> |
| std::enable_if_t<IsNumeric<A>, bool> operator==(A a, Number<B> b) { |
| return Number<A>(a) == b; |
| } |
| |
| /// Inequality operator. |
| /// @param a the LHS number |
| /// @param b the RHS number |
| /// @returns true if the numbers `a` and `b` are exactly unequal. |
| template <typename A, typename B> |
| std::enable_if_t<IsNumeric<A>, bool> operator!=(A a, Number<B> b) { |
| return !(a == b); |
| } |
| |
| /// Define 'TINT_HAS_OVERFLOW_BUILTINS' if the compiler provide overflow checking builtins. |
| /// If the compiler does not support these builtins, then these are emulated with algorithms |
| /// described in: |
| /// https://wiki.sei.cmu.edu/confluence/display/c/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow |
| #if defined(__GNUC__) && __GNUC__ >= 5 |
| #define TINT_HAS_OVERFLOW_BUILTINS |
| #elif defined(__clang__) |
| #if __has_builtin(__builtin_add_overflow) && __has_builtin(__builtin_mul_overflow) |
| #define TINT_HAS_OVERFLOW_BUILTINS |
| #endif |
| #endif |
| |
| // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80635 |
| TINT_BEGIN_DISABLE_WARNING(MAYBE_UNINITIALIZED); |
| |
| /// @returns a + b, or an empty optional if the resulting value overflowed the AInt |
| inline std::optional<AInt> CheckedAdd(AInt a, AInt b) { |
| int64_t result; |
| #ifdef TINT_HAS_OVERFLOW_BUILTINS |
| if (__builtin_add_overflow(a.value, b.value, &result)) { |
| return {}; |
| } |
| #else // TINT_HAS_OVERFLOW_BUILTINS |
| if (a.value >= 0) { |
| if (b.value > AInt::kHighestValue - a.value) { |
| return {}; |
| } |
| } else { |
| if (b.value < AInt::kLowestValue - a.value) { |
| return {}; |
| } |
| } |
| result = a.value + b.value; |
| #endif // TINT_HAS_OVERFLOW_BUILTINS |
| return AInt(result); |
| } |
| |
| /// @returns a + b, or an empty optional if the resulting value overflowed the float value |
| template <typename FloatingPointT, typename = traits::EnableIf<IsFloatingPoint<FloatingPointT>>> |
| inline std::optional<FloatingPointT> CheckedAdd(FloatingPointT a, FloatingPointT b) { |
| auto result = FloatingPointT{a.value + b.value}; |
| if (!std::isfinite(result.value)) { |
| return {}; |
| } |
| return result; |
| } |
| |
| /// @returns a - b, or an empty optional if the resulting value overflowed the AInt |
| inline std::optional<AInt> CheckedSub(AInt a, AInt b) { |
| int64_t result; |
| #ifdef TINT_HAS_OVERFLOW_BUILTINS |
| if (__builtin_sub_overflow(a.value, b.value, &result)) { |
| return {}; |
| } |
| #else // TINT_HAS_OVERFLOW_BUILTINS |
| if (b.value >= 0) { |
| if (a.value < AInt::kLowestValue + b.value) { |
| return {}; |
| } |
| } else { |
| if (a.value > AInt::kHighestValue + b.value) { |
| return {}; |
| } |
| } |
| result = a.value - b.value; |
| #endif // TINT_HAS_OVERFLOW_BUILTINS |
| return AInt(result); |
| } |
| |
| /// @returns a + b, or an empty optional if the resulting value overflowed the float value |
| template <typename FloatingPointT, typename = traits::EnableIf<IsFloatingPoint<FloatingPointT>>> |
| inline std::optional<FloatingPointT> CheckedSub(FloatingPointT a, FloatingPointT b) { |
| auto result = FloatingPointT{a.value - b.value}; |
| if (!std::isfinite(result.value)) { |
| return {}; |
| } |
| return result; |
| } |
| |
| /// @returns a * b, or an empty optional if the resulting value overflowed the AInt |
| inline std::optional<AInt> CheckedMul(AInt a, AInt b) { |
| int64_t result; |
| #ifdef TINT_HAS_OVERFLOW_BUILTINS |
| if (__builtin_mul_overflow(a.value, b.value, &result)) { |
| return {}; |
| } |
| #else // TINT_HAS_OVERFLOW_BUILTINS |
| if (a > 0) { |
| if (b > 0) { |
| if (a > (AInt::kHighestValue / b)) { |
| return {}; |
| } |
| } else { |
| if (b < (AInt::kLowestValue / a)) { |
| return {}; |
| } |
| } |
| } else { |
| if (b > 0) { |
| if (a < (AInt::kLowestValue / b)) { |
| return {}; |
| } |
| } else { |
| if ((a != 0) && (b < (AInt::kHighestValue / a))) { |
| return {}; |
| } |
| } |
| } |
| result = a.value * b.value; |
| #endif // TINT_HAS_OVERFLOW_BUILTINS |
| return AInt(result); |
| } |
| |
| /// @returns a * b, or an empty optional if the resulting value overflowed the float value |
| template <typename FloatingPointT, typename = traits::EnableIf<IsFloatingPoint<FloatingPointT>>> |
| inline std::optional<FloatingPointT> CheckedMul(FloatingPointT a, FloatingPointT b) { |
| auto result = FloatingPointT{a.value * b.value}; |
| if (!std::isfinite(result.value)) { |
| return {}; |
| } |
| return result; |
| } |
| |
| /// @returns a / b, or an empty optional if the resulting value overflowed the AInt |
| inline std::optional<AInt> CheckedDiv(AInt a, AInt b) { |
| if (b == 0) { |
| return {}; |
| } |
| |
| if (b == -1 && a == AInt::Lowest()) { |
| return {}; |
| } |
| |
| return AInt{a.value / b.value}; |
| } |
| |
| /// @returns a / b, or an empty optional if the resulting value overflowed the float value |
| template <typename FloatingPointT, typename = traits::EnableIf<IsFloatingPoint<FloatingPointT>>> |
| inline std::optional<FloatingPointT> CheckedDiv(FloatingPointT a, FloatingPointT b) { |
| auto result = FloatingPointT{a.value / b.value}; |
| if (!std::isfinite(result.value)) { |
| return {}; |
| } |
| return result; |
| } |
| |
| namespace detail { |
| /// @returns the remainder of e1 / e2 |
| template <typename T> |
| inline T Mod(T e1, T e2) { |
| if constexpr (IsIntegral<T>) { |
| return e1 % e2; |
| |
| } else { |
| return e1 - e2 * std::trunc(e1 / e2); |
| } |
| } |
| } // namespace detail |
| |
| /// @returns the remainder of a / b, or an empty optional if the resulting value overflowed the AInt |
| inline std::optional<AInt> CheckedMod(AInt a, AInt b) { |
| if (b == 0) { |
| return {}; |
| } |
| |
| if (b == -1 && a == AInt::Lowest()) { |
| return {}; |
| } |
| |
| return AInt{detail::Mod(a.value, b.value)}; |
| } |
| |
| /// @returns the remainder of a / b, or an empty optional if the resulting value overflowed the |
| /// float value |
| template <typename FloatingPointT, typename = traits::EnableIf<IsFloatingPoint<FloatingPointT>>> |
| inline std::optional<FloatingPointT> CheckedMod(FloatingPointT a, FloatingPointT b) { |
| auto result = FloatingPointT{detail::Mod(a.value, b.value)}; |
| if (!std::isfinite(result.value)) { |
| return {}; |
| } |
| return result; |
| } |
| |
| /// @returns a * b + c, or an empty optional if the value overflowed the AInt |
| inline std::optional<AInt> CheckedMadd(AInt a, AInt b, AInt c) { |
| if (auto mul = CheckedMul(a, b)) { |
| return CheckedAdd(mul.value(), c); |
| } |
| return {}; |
| } |
| |
| /// @returns the value of `base` raised to the power `exp`, or an empty optional if the operation |
| /// cannot be performed. |
| template <typename FloatingPointT, typename = traits::EnableIf<IsFloatingPoint<FloatingPointT>>> |
| inline std::optional<FloatingPointT> CheckedPow(FloatingPointT base, FloatingPointT exp) { |
| static_assert(IsNumber<FloatingPointT>); |
| if ((base < 0) || (base == 0 && exp <= 0)) { |
| return {}; |
| } |
| auto result = FloatingPointT{std::pow(base.value, exp.value)}; |
| if (!std::isfinite(result.value)) { |
| return {}; |
| } |
| return result; |
| } |
| |
| TINT_END_DISABLE_WARNING(MAYBE_UNINITIALIZED); |
| |
| } // namespace tint |
| |
| namespace tint::number_suffixes { |
| |
| /// Literal suffix for abstract integer literals |
| inline AInt operator""_a(unsigned long long int value) { // NOLINT |
| return AInt(static_cast<int64_t>(value)); |
| } |
| |
| /// Literal suffix for abstract float literals |
| inline AFloat operator""_a(long double value) { // NOLINT |
| return AFloat(static_cast<double>(value)); |
| } |
| |
| /// Literal suffix for i32 literals |
| inline i32 operator""_i(unsigned long long int value) { // NOLINT |
| return i32(static_cast<int32_t>(value)); |
| } |
| |
| /// Literal suffix for u32 literals |
| inline u32 operator""_u(unsigned long long int value) { // NOLINT |
| return u32(static_cast<uint32_t>(value)); |
| } |
| |
| /// Literal suffix for f32 literals |
| inline f32 operator""_f(long double value) { // NOLINT |
| return f32(static_cast<double>(value)); |
| } |
| |
| /// Literal suffix for f32 literals |
| inline f32 operator""_f(unsigned long long int value) { // NOLINT |
| return f32(static_cast<double>(value)); |
| } |
| |
| /// Literal suffix for f16 literals |
| inline f16 operator""_h(long double value) { // NOLINT |
| return f16(static_cast<double>(value)); |
| } |
| |
| /// Literal suffix for f16 literals |
| inline f16 operator""_h(unsigned long long int value) { // NOLINT |
| return f16(static_cast<double>(value)); |
| } |
| |
| } // namespace tint::number_suffixes |
| |
| namespace std { |
| |
| /// Custom std::hash specialization for tint::Number<T> |
| template <typename T> |
| class hash<tint::Number<T>> { |
| public: |
| /// @param n the Number |
| /// @return the hash value |
| inline std::size_t operator()(const tint::Number<T>& n) const { |
| return std::hash<decltype(n.value)>()(n.value); |
| } |
| }; |
| |
| } // namespace std |
| |
| #endif // SRC_TINT_NUMBER_H_ |