blob: b120f64f12846b8dcd0cf4c695ff93d146640f84 [file] [log] [blame]
// Copyright 2018 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "dawn_native/vulkan/TextureVk.h"
#include "dawn_native/vulkan/DeviceVk.h"
#include "dawn_native/vulkan/FencedDeleter.h"
namespace dawn_native { namespace vulkan {
namespace {
// Converts an Dawn texture dimension to a Vulkan image type.
// Note that in Vulkan dimensionality is only 1D, 2D, 3D. Arrays and cube maps are expressed
// via the array size and a "cubemap compatible" flag.
VkImageType VulkanImageType(dawn::TextureDimension dimension) {
switch (dimension) {
case dawn::TextureDimension::e2D:
return VK_IMAGE_TYPE_2D;
default:
UNREACHABLE();
}
}
// Converts an Dawn texture dimension to a Vulkan image view type.
// Contrary to image types, image view types include arrayness and cubemapness
VkImageViewType VulkanImageViewType(dawn::TextureViewDimension dimension) {
switch (dimension) {
case dawn::TextureViewDimension::e2D:
return VK_IMAGE_VIEW_TYPE_2D;
case dawn::TextureViewDimension::e2DArray:
return VK_IMAGE_VIEW_TYPE_2D_ARRAY;
case dawn::TextureViewDimension::Cube:
return VK_IMAGE_VIEW_TYPE_CUBE;
case dawn::TextureViewDimension::CubeArray:
return VK_IMAGE_VIEW_TYPE_CUBE_ARRAY;
default:
UNREACHABLE();
}
}
// Computes which vulkan access type could be required for the given Dawn usage.
VkAccessFlags VulkanAccessFlags(dawn::TextureUsageBit usage, dawn::TextureFormat format) {
VkAccessFlags flags = 0;
if (usage & dawn::TextureUsageBit::TransferSrc) {
flags |= VK_ACCESS_TRANSFER_READ_BIT;
}
if (usage & dawn::TextureUsageBit::TransferDst) {
flags |= VK_ACCESS_TRANSFER_WRITE_BIT;
}
if (usage & dawn::TextureUsageBit::Sampled) {
flags |= VK_ACCESS_SHADER_READ_BIT;
}
if (usage & dawn::TextureUsageBit::Storage) {
flags |= VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT;
}
if (usage & dawn::TextureUsageBit::OutputAttachment) {
if (TextureFormatHasDepthOrStencil(format)) {
flags |= VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
} else {
flags |=
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
}
}
if (usage & dawn::TextureUsageBit::Present) {
// There is no access flag for present because the VK_KHR_SWAPCHAIN extension says
// that vkQueuePresentKHR makes the memory of the image visible to the presentation
// engine. There's also a note explicitly saying dstAccessMask should be 0. On the
// other side srcAccessMask can also be 0 because synchronization is required to
// happen with a semaphore instead.
flags |= 0;
}
return flags;
}
// Chooses which Vulkan image layout should be used for the given Dawn usage
VkImageLayout VulkanImageLayout(dawn::TextureUsageBit usage, dawn::TextureFormat format) {
if (usage == dawn::TextureUsageBit::None) {
return VK_IMAGE_LAYOUT_UNDEFINED;
}
if (!dawn::HasZeroOrOneBits(usage)) {
return VK_IMAGE_LAYOUT_GENERAL;
}
// Usage has a single bit so we can switch on its value directly.
switch (usage) {
case dawn::TextureUsageBit::TransferDst:
return VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
case dawn::TextureUsageBit::Sampled:
return VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
// Vulkan texture copy functions require the image to be in _one_ known layout.
// Depending on whether parts of the texture have been transitioned to only
// TransferSrc or a combination with something else, the texture could be in a
// combination of GENERAL and TRANSFER_SRC_OPTIMAL. This would be a problem, so we
// make TransferSrc use GENERAL.
case dawn::TextureUsageBit::TransferSrc:
// Writable storage textures must use general. If we could know the texture is read
// only we could use SHADER_READ_ONLY_OPTIMAL
case dawn::TextureUsageBit::Storage:
return VK_IMAGE_LAYOUT_GENERAL;
case dawn::TextureUsageBit::OutputAttachment:
if (TextureFormatHasDepthOrStencil(format)) {
return VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
} else {
return VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
}
case dawn::TextureUsageBit::Present:
return VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
default:
UNREACHABLE();
}
}
// Computes which Vulkan pipeline stage can access a texture in the given Dawn usage
VkPipelineStageFlags VulkanPipelineStage(dawn::TextureUsageBit usage,
dawn::TextureFormat format) {
VkPipelineStageFlags flags = 0;
if (usage == dawn::TextureUsageBit::None) {
// This only happens when a texture is initially created (and for srcAccessMask) in
// which case there is no need to wait on anything to stop accessing this texture.
return VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
}
if (usage & (dawn::TextureUsageBit::TransferSrc | dawn::TextureUsageBit::TransferDst)) {
flags |= VK_PIPELINE_STAGE_TRANSFER_BIT;
}
if (usage & (dawn::TextureUsageBit::Sampled | dawn::TextureUsageBit::Storage)) {
flags |= VK_PIPELINE_STAGE_VERTEX_SHADER_BIT |
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT |
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT;
}
if (usage & dawn::TextureUsageBit::OutputAttachment) {
if (TextureFormatHasDepthOrStencil(format)) {
flags |= VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT |
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
// TODO(cwallez@chromium.org): This is missing the stage where the depth and
// stencil values are written, but it isn't clear which one it is.
} else {
flags |= VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
}
}
if (usage & dawn::TextureUsageBit::Present) {
// There is no pipeline stage for present but a pipeline stage is required so we use
// "bottom of pipe" to block as little as possible and vkQueuePresentKHR will make
// the memory visible to the presentation engine. The spec explicitly mentions that
// "bottom of pipe" is ok. On the other direction, synchronization happens with a
// semaphore so bottom of pipe is ok too (but maybe it could be "top of pipe" to
// block less?)
flags |= VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
}
// A zero value isn't a valid pipeline stage mask
ASSERT(flags != 0);
return flags;
}
// Computes which Vulkan texture aspects are relevant for the given Dawn format
VkImageAspectFlags VulkanAspectMask(dawn::TextureFormat format) {
bool isDepth = TextureFormatHasDepth(format);
bool isStencil = TextureFormatHasStencil(format);
VkImageAspectFlags flags = 0;
if (isDepth) {
flags |= VK_IMAGE_ASPECT_DEPTH_BIT;
}
if (isStencil) {
flags |= VK_IMAGE_ASPECT_STENCIL_BIT;
}
if (flags != 0) {
return flags;
}
return VK_IMAGE_ASPECT_COLOR_BIT;
}
VkExtent3D VulkanExtent3D(const Extent3D& extent) {
return {extent.width, extent.height, extent.depth};
}
} // namespace
// Converts Dawn texture format to Vulkan formats.
VkFormat VulkanImageFormat(dawn::TextureFormat format) {
switch (format) {
case dawn::TextureFormat::R8G8B8A8Unorm:
return VK_FORMAT_R8G8B8A8_UNORM;
case dawn::TextureFormat::R8G8Unorm:
return VK_FORMAT_R8G8_UNORM;
case dawn::TextureFormat::R8Unorm:
return VK_FORMAT_R8_UNORM;
case dawn::TextureFormat::R8G8B8A8Uint:
return VK_FORMAT_R8G8B8A8_UINT;
case dawn::TextureFormat::R8G8Uint:
return VK_FORMAT_R8G8_UINT;
case dawn::TextureFormat::R8Uint:
return VK_FORMAT_R8_UINT;
case dawn::TextureFormat::B8G8R8A8Unorm:
return VK_FORMAT_B8G8R8A8_UNORM;
case dawn::TextureFormat::D32FloatS8Uint:
return VK_FORMAT_D32_SFLOAT_S8_UINT;
default:
UNREACHABLE();
}
}
// Converts the Dawn usage flags to Vulkan usage flags. Also needs the format to choose
// between color and depth attachment usages.
VkImageUsageFlags VulkanImageUsage(dawn::TextureUsageBit usage, dawn::TextureFormat format) {
VkImageUsageFlags flags = 0;
if (usage & dawn::TextureUsageBit::TransferSrc) {
flags |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
}
if (usage & dawn::TextureUsageBit::TransferDst) {
flags |= VK_IMAGE_USAGE_TRANSFER_DST_BIT;
}
if (usage & dawn::TextureUsageBit::Sampled) {
flags |= VK_IMAGE_USAGE_SAMPLED_BIT;
}
if (usage & dawn::TextureUsageBit::Storage) {
flags |= VK_IMAGE_USAGE_STORAGE_BIT;
}
if (usage & dawn::TextureUsageBit::OutputAttachment) {
if (TextureFormatHasDepthOrStencil(format)) {
flags |= VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
} else {
flags |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
}
}
return flags;
}
Texture::Texture(Device* device, const TextureDescriptor* descriptor)
: TextureBase(device, descriptor) {
// Create the Vulkan image "container". We don't need to check that the format supports the
// combination of sample, usage etc. because validation should have been done in the Dawn
// frontend already based on the minimum supported formats in the Vulkan spec
VkImageCreateInfo createInfo;
createInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
createInfo.pNext = nullptr;
createInfo.flags = 0;
createInfo.imageType = VulkanImageType(GetDimension());
createInfo.format = VulkanImageFormat(GetFormat());
createInfo.extent = VulkanExtent3D(GetSize());
createInfo.mipLevels = GetNumMipLevels();
createInfo.arrayLayers = GetArrayLayers();
createInfo.samples = VK_SAMPLE_COUNT_1_BIT;
createInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
createInfo.usage = VulkanImageUsage(GetUsage(), GetFormat());
createInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
createInfo.queueFamilyIndexCount = 0;
createInfo.pQueueFamilyIndices = nullptr;
createInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
if (GetArrayLayers() >= 6 && GetSize().width == GetSize().height) {
createInfo.flags |= VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
}
if (device->fn.CreateImage(device->GetVkDevice(), &createInfo, nullptr, &mHandle) !=
VK_SUCCESS) {
ASSERT(false);
}
// Create the image memory and associate it with the container
VkMemoryRequirements requirements;
device->fn.GetImageMemoryRequirements(device->GetVkDevice(), mHandle, &requirements);
if (!device->GetMemoryAllocator()->Allocate(requirements, false, &mMemoryAllocation)) {
ASSERT(false);
}
if (device->fn.BindImageMemory(device->GetVkDevice(), mHandle,
mMemoryAllocation.GetMemory(),
mMemoryAllocation.GetMemoryOffset()) != VK_SUCCESS) {
ASSERT(false);
}
}
Texture::Texture(Device* device, const TextureDescriptor* descriptor, VkImage nativeImage)
: TextureBase(device, descriptor), mHandle(nativeImage) {
}
Texture::~Texture() {
Device* device = ToBackend(GetDevice());
// If we own the resource, release it.
if (mMemoryAllocation.GetMemory() != VK_NULL_HANDLE) {
// We need to free both the memory allocation and the container. Memory should be freed
// after the VkImage is destroyed and this is taken care of by the FencedDeleter.
device->GetMemoryAllocator()->Free(&mMemoryAllocation);
if (mHandle != VK_NULL_HANDLE) {
device->GetFencedDeleter()->DeleteWhenUnused(mHandle);
}
}
mHandle = VK_NULL_HANDLE;
}
VkImage Texture::GetHandle() const {
return mHandle;
}
VkImageAspectFlags Texture::GetVkAspectMask() const {
return VulkanAspectMask(GetFormat());
}
void Texture::TransitionUsageNow(VkCommandBuffer commands, dawn::TextureUsageBit usage) {
// Avoid encoding barriers when it isn't needed.
bool lastReadOnly = (mLastUsage & kReadOnlyTextureUsages) == mLastUsage;
if (lastReadOnly && mLastUsage == usage) {
return;
}
dawn::TextureFormat format = GetFormat();
VkPipelineStageFlags srcStages = VulkanPipelineStage(mLastUsage, format);
VkPipelineStageFlags dstStages = VulkanPipelineStage(usage, format);
VkImageMemoryBarrier barrier;
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier.pNext = nullptr;
barrier.srcAccessMask = VulkanAccessFlags(mLastUsage, format);
barrier.dstAccessMask = VulkanAccessFlags(usage, format);
barrier.oldLayout = VulkanImageLayout(mLastUsage, format);
barrier.newLayout = VulkanImageLayout(usage, format);
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.image = mHandle;
// This transitions the whole resource but assumes it is a 2D texture
ASSERT(GetDimension() == dawn::TextureDimension::e2D);
barrier.subresourceRange.aspectMask = VulkanAspectMask(format);
barrier.subresourceRange.baseMipLevel = 0;
barrier.subresourceRange.levelCount = GetNumMipLevels();
barrier.subresourceRange.baseArrayLayer = 0;
barrier.subresourceRange.layerCount = GetArrayLayers();
ToBackend(GetDevice())
->fn.CmdPipelineBarrier(commands, srcStages, dstStages, 0, 0, nullptr, 0, nullptr, 1,
&barrier);
mLastUsage = usage;
}
// TODO(jiawei.shao@intel.com): create texture view by TextureViewDescriptor
TextureView::TextureView(TextureBase* texture, const TextureViewDescriptor* descriptor)
: TextureViewBase(texture, descriptor) {
Device* device = ToBackend(texture->GetDevice());
VkImageViewCreateInfo createInfo;
createInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
createInfo.pNext = nullptr;
createInfo.flags = 0;
createInfo.image = ToBackend(GetTexture())->GetHandle();
createInfo.viewType = VulkanImageViewType(descriptor->dimension);
createInfo.format = VulkanImageFormat(descriptor->format);
createInfo.components = VkComponentMapping{VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G,
VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A};
createInfo.subresourceRange.aspectMask = VulkanAspectMask(descriptor->format);
createInfo.subresourceRange.baseMipLevel = descriptor->baseMipLevel;
createInfo.subresourceRange.levelCount = descriptor->levelCount;
createInfo.subresourceRange.baseArrayLayer = descriptor->baseArrayLayer;
createInfo.subresourceRange.layerCount = descriptor->layerCount;
if (device->fn.CreateImageView(device->GetVkDevice(), &createInfo, nullptr, &mHandle) !=
VK_SUCCESS) {
ASSERT(false);
}
}
TextureView::~TextureView() {
Device* device = ToBackend(GetTexture()->GetDevice());
if (mHandle != VK_NULL_HANDLE) {
device->GetFencedDeleter()->DeleteWhenUnused(mHandle);
mHandle = VK_NULL_HANDLE;
}
}
VkImageView TextureView::GetHandle() const {
return mHandle;
}
}} // namespace dawn_native::vulkan