| // Copyright 2021 The Dawn & Tint Authors |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // 1. Redistributions of source code must retain the above copyright notice, this |
| // list of conditions and the following disclaimer. |
| // |
| // 2. Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // |
| // 3. Neither the name of the copyright holder nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
| // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "src/tint/lang/wgsl/resolver/dependency_graph.h" |
| |
| #include <string> |
| #include <utility> |
| #include <variant> |
| #include <vector> |
| |
| #include "src/tint/lang/core/builtin_type.h" |
| #include "src/tint/lang/core/builtin_value.h" |
| #include "src/tint/lang/wgsl/ast/alias.h" |
| #include "src/tint/lang/wgsl/ast/assignment_statement.h" |
| #include "src/tint/lang/wgsl/ast/blend_src_attribute.h" |
| #include "src/tint/lang/wgsl/ast/block_statement.h" |
| #include "src/tint/lang/wgsl/ast/break_if_statement.h" |
| #include "src/tint/lang/wgsl/ast/break_statement.h" |
| #include "src/tint/lang/wgsl/ast/call_statement.h" |
| #include "src/tint/lang/wgsl/ast/color_attribute.h" |
| #include "src/tint/lang/wgsl/ast/compound_assignment_statement.h" |
| #include "src/tint/lang/wgsl/ast/const.h" |
| #include "src/tint/lang/wgsl/ast/continue_statement.h" |
| #include "src/tint/lang/wgsl/ast/diagnostic_attribute.h" |
| #include "src/tint/lang/wgsl/ast/discard_statement.h" |
| #include "src/tint/lang/wgsl/ast/for_loop_statement.h" |
| #include "src/tint/lang/wgsl/ast/id_attribute.h" |
| #include "src/tint/lang/wgsl/ast/identifier.h" |
| #include "src/tint/lang/wgsl/ast/if_statement.h" |
| #include "src/tint/lang/wgsl/ast/increment_decrement_statement.h" |
| #include "src/tint/lang/wgsl/ast/input_attachment_index_attribute.h" |
| #include "src/tint/lang/wgsl/ast/internal_attribute.h" |
| #include "src/tint/lang/wgsl/ast/interpolate_attribute.h" |
| #include "src/tint/lang/wgsl/ast/invariant_attribute.h" |
| #include "src/tint/lang/wgsl/ast/let.h" |
| #include "src/tint/lang/wgsl/ast/location_attribute.h" |
| #include "src/tint/lang/wgsl/ast/loop_statement.h" |
| #include "src/tint/lang/wgsl/ast/must_use_attribute.h" |
| #include "src/tint/lang/wgsl/ast/override.h" |
| #include "src/tint/lang/wgsl/ast/return_statement.h" |
| #include "src/tint/lang/wgsl/ast/stage_attribute.h" |
| #include "src/tint/lang/wgsl/ast/stride_attribute.h" |
| #include "src/tint/lang/wgsl/ast/struct.h" |
| #include "src/tint/lang/wgsl/ast/struct_member_align_attribute.h" |
| #include "src/tint/lang/wgsl/ast/struct_member_offset_attribute.h" |
| #include "src/tint/lang/wgsl/ast/struct_member_size_attribute.h" |
| #include "src/tint/lang/wgsl/ast/switch_statement.h" |
| #include "src/tint/lang/wgsl/ast/templated_identifier.h" |
| #include "src/tint/lang/wgsl/ast/traverse_expressions.h" |
| #include "src/tint/lang/wgsl/ast/var.h" |
| #include "src/tint/lang/wgsl/ast/variable_decl_statement.h" |
| #include "src/tint/lang/wgsl/ast/while_statement.h" |
| #include "src/tint/lang/wgsl/ast/workgroup_attribute.h" |
| #include "src/tint/lang/wgsl/sem/builtin_fn.h" |
| #include "src/tint/utils/containers/map.h" |
| #include "src/tint/utils/containers/scope_stack.h" |
| #include "src/tint/utils/containers/unique_vector.h" |
| #include "src/tint/utils/macros/compiler.h" |
| #include "src/tint/utils/macros/defer.h" |
| #include "src/tint/utils/macros/scoped_assignment.h" |
| #include "src/tint/utils/memory/block_allocator.h" |
| #include "src/tint/utils/rtti/switch.h" |
| #include "src/tint/utils/text/string.h" |
| #include "src/tint/utils/text/string_stream.h" |
| |
| #define TINT_DUMP_DEPENDENCY_GRAPH 0 |
| |
| namespace tint::resolver { |
| namespace { |
| |
| // Forward declaration |
| struct Global; |
| |
| /// Dependency describes how one global depends on another global |
| struct DependencyInfo { |
| /// The source of the symbol that forms the dependency |
| Source source; |
| }; |
| |
| /// DependencyEdge describes the two Globals used to define a dependency |
| /// relationship. |
| struct DependencyEdge { |
| /// The Global that depends on #to |
| const Global* from; |
| /// The Global that is depended on by #from |
| const Global* to; |
| |
| /// @returns the hash code of the DependencyEdge |
| tint::HashCode HashCode() const { return Hash(from, to); } |
| |
| /// Equality operator |
| bool operator==(const DependencyEdge& rhs) const { return from == rhs.from && to == rhs.to; } |
| }; |
| |
| /// A map of DependencyEdge to DependencyInfo |
| using DependencyEdges = Hashmap<DependencyEdge, DependencyInfo, 64>; |
| |
| /// Global describes a module-scope variable, type or function. |
| struct Global { |
| explicit Global(const ast::Node* n) : node(n) {} |
| |
| /// The declaration ast::Node |
| const ast::Node* node; |
| /// A list of dependencies that this global depends on |
| Vector<Global*, 8> deps; |
| }; |
| |
| /// A map of global name to Global |
| using GlobalMap = Hashmap<Symbol, Global*, 16>; |
| |
| /// @returns a new error diagnostic with the given source. |
| diag::Diagnostic& AddError(diag::List& diagnostics, const Source& source) { |
| return diagnostics.AddError(source); |
| } |
| |
| /// @returns a new note diagnostic with the given source. |
| diag::Diagnostic& AddNote(diag::List& diagnostics, const Source& source) { |
| return diagnostics.AddNote(source); |
| } |
| |
| /// DependencyScanner is used to traverse a module to build the list of |
| /// global-to-global dependencies. |
| class DependencyScanner { |
| public: |
| /// Constructor |
| /// @param globals_by_name map of global symbol to Global pointer |
| /// @param diagnostics diagnostic messages, appended with any errors found |
| /// @param graph the dependency graph to populate with resolved symbols |
| /// @param edges the map of globals-to-global dependency edges, which will |
| /// be populated by calls to Scan() |
| DependencyScanner(const GlobalMap& globals_by_name, |
| diag::List& diagnostics, |
| DependencyGraph& graph, |
| DependencyEdges& edges) |
| : globals_(globals_by_name), |
| diagnostics_(diagnostics), |
| graph_(graph), |
| dependency_edges_(edges) { |
| // Register all the globals at global-scope |
| for (auto& it : globals_by_name) { |
| scope_stack_.Set(it.key, it.value->node); |
| } |
| } |
| |
| /// Walks the global declarations, resolving symbols, and determining the |
| /// dependencies of each global. |
| void Scan(Global* global) { |
| TINT_SCOPED_ASSIGNMENT(current_global_, global); |
| Switch( |
| global->node, |
| [&](const ast::Struct* str) { |
| Declare(str->name->symbol, str); |
| for (auto* member : str->members) { |
| TraverseAttributes(member->attributes); |
| TraverseExpression(member->type); |
| } |
| }, |
| [&](const ast::Alias* alias) { |
| Declare(alias->name->symbol, alias); |
| TraverseExpression(alias->type); |
| }, |
| [&](const ast::Function* func) { |
| Declare(func->name->symbol, func); |
| TraverseFunction(func); |
| }, |
| [&](const ast::Variable* v) { |
| Declare(v->name->symbol, v); |
| TraverseVariable(v); |
| }, |
| [&](const ast::DiagnosticDirective*) { |
| // Diagnostic directives do not affect the dependency graph. |
| }, |
| [&](const ast::Enable*) { |
| // Enable directives do not affect the dependency graph. |
| }, |
| [&](const ast::Requires*) { |
| // Requires directives do not affect the dependency graph. |
| }, |
| [&](const ast::ConstAssert* assertion) { |
| TraverseExpression(assertion->condition); |
| }, // |
| TINT_ICE_ON_NO_MATCH); |
| } |
| |
| private: |
| /// Traverses the variable, performing symbol resolution. |
| void TraverseVariable(const ast::Variable* v) { |
| if (auto* var = v->As<ast::Var>()) { |
| TraverseExpression(var->declared_address_space); |
| TraverseExpression(var->declared_access); |
| } |
| TraverseExpression(v->type); |
| TraverseAttributes(v->attributes); |
| TraverseExpression(v->initializer); |
| } |
| |
| /// Traverses the function, performing symbol resolution and determining global dependencies. |
| void TraverseFunction(const ast::Function* func) { |
| TraverseAttributes(func->attributes); |
| TraverseAttributes(func->return_type_attributes); |
| // Perform symbol resolution on all the parameter types before registering |
| // the parameters themselves. This allows the case of declaring a parameter |
| // with the same identifier as its type. |
| for (auto* param : func->params) { |
| TraverseAttributes(param->attributes); |
| TraverseExpression(param->type); |
| } |
| // Resolve the return type |
| TraverseExpression(func->return_type); |
| |
| // Push the scope stack for the parameters and function body. |
| scope_stack_.Push(); |
| TINT_DEFER(scope_stack_.Pop()); |
| |
| for (auto* param : func->params) { |
| if (auto shadows = scope_stack_.Get(param->name->symbol)) { |
| graph_.shadows.Add(param, shadows); |
| } |
| Declare(param->name->symbol, param); |
| } |
| if (func->body) { |
| TraverseStatements(func->body->statements); |
| } |
| } |
| |
| /// Traverses the statements, performing symbol resolution and determining |
| /// global dependencies. |
| void TraverseStatements(VectorRef<const ast::Statement*> stmts) { |
| for (auto* s : stmts) { |
| TraverseStatement(s); |
| } |
| } |
| |
| /// Traverses the statement, performing symbol resolution and determining |
| /// global dependencies. |
| void TraverseStatement(const ast::Statement* stmt) { |
| if (!stmt) { |
| return; |
| } |
| Switch( |
| stmt, // |
| [&](const ast::AssignmentStatement* a) { |
| TraverseExpression(a->lhs); |
| TraverseExpression(a->rhs); |
| }, |
| [&](const ast::BlockStatement* b) { |
| scope_stack_.Push(); |
| TINT_DEFER(scope_stack_.Pop()); |
| TraverseStatements(b->statements); |
| }, |
| [&](const ast::BreakIfStatement* b) { TraverseExpression(b->condition); }, |
| [&](const ast::CallStatement* r) { TraverseExpression(r->expr); }, |
| [&](const ast::CompoundAssignmentStatement* a) { |
| TraverseExpression(a->lhs); |
| TraverseExpression(a->rhs); |
| }, |
| [&](const ast::ForLoopStatement* l) { |
| scope_stack_.Push(); |
| TINT_DEFER(scope_stack_.Pop()); |
| TraverseStatement(l->initializer); |
| TraverseExpression(l->condition); |
| TraverseStatement(l->continuing); |
| TraverseStatement(l->body); |
| }, |
| [&](const ast::IncrementDecrementStatement* i) { TraverseExpression(i->lhs); }, |
| [&](const ast::LoopStatement* l) { |
| scope_stack_.Push(); |
| TINT_DEFER(scope_stack_.Pop()); |
| TraverseStatements(l->body->statements); |
| TraverseStatement(l->continuing); |
| }, |
| [&](const ast::IfStatement* i) { |
| TraverseExpression(i->condition); |
| TraverseStatement(i->body); |
| if (i->else_statement) { |
| TraverseStatement(i->else_statement); |
| } |
| }, |
| [&](const ast::ReturnStatement* r) { TraverseExpression(r->value); }, |
| [&](const ast::SwitchStatement* s) { |
| TraverseExpression(s->condition); |
| for (auto* c : s->body) { |
| for (auto* sel : c->selectors) { |
| TraverseExpression(sel->expr); |
| } |
| TraverseStatement(c->body); |
| } |
| }, |
| [&](const ast::VariableDeclStatement* v) { |
| if (auto* shadows = scope_stack_.Get(v->variable->name->symbol)) { |
| graph_.shadows.Add(v->variable, shadows); |
| } |
| TraverseVariable(v->variable); |
| Declare(v->variable->name->symbol, v->variable); |
| }, |
| [&](const ast::WhileStatement* w) { |
| scope_stack_.Push(); |
| TINT_DEFER(scope_stack_.Pop()); |
| TraverseExpression(w->condition); |
| TraverseStatement(w->body); |
| }, |
| [&](const ast::ConstAssert* assertion) { TraverseExpression(assertion->condition); }, |
| [&](const ast::BreakStatement*) {}, // |
| [&](const ast::ContinueStatement*) {}, // |
| [&](const ast::DiscardStatement*) {}, // |
| TINT_ICE_ON_NO_MATCH); |
| } |
| |
| /// Adds the symbol definition to the current scope, raising an error if two |
| /// symbols collide within the same scope. |
| void Declare(Symbol symbol, const ast::Node* node) { |
| auto* old = scope_stack_.Set(symbol, node); |
| if (old != nullptr && node != old) { |
| auto name = symbol.Name(); |
| AddError(diagnostics_, node->source) << "redeclaration of '" << name << "'"; |
| AddNote(diagnostics_, old->source) << "'" << name << "' previously declared here"; |
| } |
| } |
| |
| /// Traverses the expression @p root_expr, performing symbol resolution and determining global |
| /// dependencies. |
| void TraverseExpression(const ast::Expression* root_expr) { |
| if (!root_expr) { |
| return; |
| } |
| |
| Vector<const ast::Expression*, 8> pending{root_expr}; |
| while (!pending.IsEmpty()) { |
| auto* next = pending.Pop(); |
| bool ok = ast::TraverseExpressions(next, [&](const ast::IdentifierExpression* e) { |
| AddDependency(e->identifier, e->identifier->symbol); |
| return ast::TraverseAction::Descend; |
| }); |
| if (!ok) { |
| AddError(diagnostics_, next->source) << "TraverseExpressions failed"; |
| return; |
| } |
| } |
| } |
| |
| /// Traverses the attribute list, performing symbol resolution and |
| /// determining global dependencies. |
| void TraverseAttributes(VectorRef<const ast::Attribute*> attrs) { |
| for (auto* attr : attrs) { |
| TraverseAttribute(attr); |
| } |
| } |
| |
| /// Traverses the attribute, performing symbol resolution and determining |
| /// global dependencies. |
| void TraverseAttribute(const ast::Attribute* attr) { |
| Switch( |
| attr, // |
| [&](const ast::BindingAttribute* binding) { TraverseExpression(binding->expr); }, |
| [&](const ast::BuiltinAttribute* builtin) { TraverseExpression(builtin->builtin); }, |
| [&](const ast::ColorAttribute* color) { TraverseExpression(color->expr); }, |
| [&](const ast::GroupAttribute* group) { TraverseExpression(group->expr); }, |
| [&](const ast::IdAttribute* id) { TraverseExpression(id->expr); }, |
| [&](const ast::InputAttachmentIndexAttribute* idx) { TraverseExpression(idx->expr); }, |
| [&](const ast::BlendSrcAttribute* index) { TraverseExpression(index->expr); }, |
| [&](const ast::InterpolateAttribute* interpolate) { |
| TraverseExpression(interpolate->type); |
| TraverseExpression(interpolate->sampling); |
| }, |
| [&](const ast::LocationAttribute* loc) { TraverseExpression(loc->expr); }, |
| [&](const ast::StructMemberAlignAttribute* align) { TraverseExpression(align->expr); }, |
| [&](const ast::StructMemberSizeAttribute* size) { TraverseExpression(size->expr); }, |
| [&](const ast::WorkgroupAttribute* wg) { |
| TraverseExpression(wg->x); |
| TraverseExpression(wg->y); |
| TraverseExpression(wg->z); |
| }, |
| [&](const ast::InternalAttribute* i) { |
| for (auto* dep : i->dependencies) { |
| TraverseExpression(dep); |
| } |
| }, |
| [&](Default) { |
| if (!attr->IsAnyOf<ast::BuiltinAttribute, ast::DiagnosticAttribute, |
| ast::InterpolateAttribute, ast::InvariantAttribute, |
| ast::MustUseAttribute, ast::StageAttribute, ast::StrideAttribute, |
| ast::StructMemberOffsetAttribute>()) { |
| TINT_ICE() << "unhandled attribute type: " << attr->TypeInfo().name; |
| } |
| }); |
| } |
| |
| /// The type of builtin that a symbol could represent. |
| enum class BuiltinType { |
| /// No builtin matched |
| kNone = 0, |
| /// Builtin function |
| kFunction, |
| /// Builtin |
| kBuiltin, |
| /// Builtin value |
| kBuiltinValue, |
| /// Address space |
| kAddressSpace, |
| /// Texel format |
| kTexelFormat, |
| /// Access |
| kAccess, |
| /// Interpolation Type |
| kInterpolationType, |
| /// Interpolation Sampling |
| kInterpolationSampling, |
| }; |
| |
| /// BuiltinInfo stores information about the builtin that a symbol represents. |
| struct BuiltinInfo { |
| /// @returns the builtin value |
| template <typename T> |
| T Value() const { |
| return std::get<T>(value); |
| } |
| |
| BuiltinType type = BuiltinType::kNone; |
| std::variant<std::monostate, |
| wgsl::BuiltinFn, |
| core::BuiltinType, |
| core::BuiltinValue, |
| core::AddressSpace, |
| core::TexelFormat, |
| core::Access, |
| core::InterpolationType, |
| core::InterpolationSampling> |
| value = {}; |
| }; |
| |
| /// Get the builtin info for a given symbol. |
| /// @param symbol the symbol |
| /// @returns the builtin info |
| DependencyScanner::BuiltinInfo GetBuiltinInfo(Symbol symbol) { |
| return builtin_info_map.GetOrAdd(symbol, [&] { |
| if (auto builtin_fn = wgsl::ParseBuiltinFn(symbol.NameView()); |
| builtin_fn != wgsl::BuiltinFn::kNone) { |
| return BuiltinInfo{BuiltinType::kFunction, builtin_fn}; |
| } |
| if (auto builtin_ty = core::ParseBuiltinType(symbol.NameView()); |
| builtin_ty != core::BuiltinType::kUndefined) { |
| return BuiltinInfo{BuiltinType::kBuiltin, builtin_ty}; |
| } |
| if (auto builtin_val = core::ParseBuiltinValue(symbol.NameView()); |
| builtin_val != core::BuiltinValue::kUndefined) { |
| return BuiltinInfo{BuiltinType::kBuiltinValue, builtin_val}; |
| } |
| if (auto addr = core::ParseAddressSpace(symbol.NameView()); |
| addr != core::AddressSpace::kUndefined) { |
| return BuiltinInfo{BuiltinType::kAddressSpace, addr}; |
| } |
| if (auto fmt = core::ParseTexelFormat(symbol.NameView()); |
| fmt != core::TexelFormat::kUndefined) { |
| return BuiltinInfo{BuiltinType::kTexelFormat, fmt}; |
| } |
| if (auto access = core::ParseAccess(symbol.NameView()); |
| access != core::Access::kUndefined) { |
| return BuiltinInfo{BuiltinType::kAccess, access}; |
| } |
| if (auto i_type = core::ParseInterpolationType(symbol.NameView()); |
| i_type != core::InterpolationType::kUndefined) { |
| return BuiltinInfo{BuiltinType::kInterpolationType, i_type}; |
| } |
| if (auto i_smpl = core::ParseInterpolationSampling(symbol.NameView()); |
| i_smpl != core::InterpolationSampling::kUndefined) { |
| return BuiltinInfo{BuiltinType::kInterpolationSampling, i_smpl}; |
| } |
| return BuiltinInfo{}; |
| }); |
| } |
| |
| /// Adds the dependency from @p from to @p to, erroring if @p to cannot be resolved. |
| void AddDependency(const ast::Identifier* from, Symbol to) { |
| auto* resolved = scope_stack_.Get(to); |
| if (!resolved) { |
| auto builtin_info = GetBuiltinInfo(to); |
| switch (builtin_info.type) { |
| case BuiltinType::kNone: |
| graph_.resolved_identifiers.Add( |
| from, ResolvedIdentifier::UnresolvedIdentifier{to.Name()}); |
| break; |
| case BuiltinType::kFunction: |
| graph_.resolved_identifiers.Add( |
| from, ResolvedIdentifier(builtin_info.Value<wgsl::BuiltinFn>())); |
| break; |
| case BuiltinType::kBuiltin: |
| graph_.resolved_identifiers.Add( |
| from, ResolvedIdentifier(builtin_info.Value<core::BuiltinType>())); |
| break; |
| case BuiltinType::kBuiltinValue: |
| graph_.resolved_identifiers.Add( |
| from, ResolvedIdentifier(builtin_info.Value<core::BuiltinValue>())); |
| break; |
| case BuiltinType::kAddressSpace: |
| graph_.resolved_identifiers.Add( |
| from, ResolvedIdentifier(builtin_info.Value<core::AddressSpace>())); |
| break; |
| case BuiltinType::kTexelFormat: |
| graph_.resolved_identifiers.Add( |
| from, ResolvedIdentifier(builtin_info.Value<core::TexelFormat>())); |
| break; |
| case BuiltinType::kAccess: |
| graph_.resolved_identifiers.Add( |
| from, ResolvedIdentifier(builtin_info.Value<core::Access>())); |
| break; |
| case BuiltinType::kInterpolationType: |
| graph_.resolved_identifiers.Add( |
| from, ResolvedIdentifier(builtin_info.Value<core::InterpolationType>())); |
| break; |
| case BuiltinType::kInterpolationSampling: |
| graph_.resolved_identifiers.Add( |
| from, |
| ResolvedIdentifier(builtin_info.Value<core::InterpolationSampling>())); |
| break; |
| } |
| return; |
| } |
| |
| if (auto global = globals_.Get(to); global && (*global)->node == resolved) { |
| if (dependency_edges_.Add(DependencyEdge{current_global_, *global}, |
| DependencyInfo{from->source})) { |
| current_global_->deps.Push(*global); |
| } |
| } |
| |
| graph_.resolved_identifiers.Add(from, ResolvedIdentifier(resolved)); |
| } |
| |
| using VariableMap = Hashmap<Symbol, const ast::Variable*, 32>; |
| const GlobalMap& globals_; |
| diag::List& diagnostics_; |
| DependencyGraph& graph_; |
| DependencyEdges& dependency_edges_; |
| |
| ScopeStack<Symbol, const ast::Node*> scope_stack_; |
| Global* current_global_ = nullptr; |
| |
| Hashmap<Symbol, BuiltinInfo, 64> builtin_info_map; |
| }; |
| |
| /// The global dependency analysis system |
| struct DependencyAnalysis { |
| public: |
| /// Constructor |
| DependencyAnalysis(diag::List& diagnostics, DependencyGraph& graph) |
| : diagnostics_(diagnostics), graph_(graph) {} |
| |
| /// Performs global dependency analysis on the module, emitting any errors to |
| /// #diagnostics. |
| /// @returns true if analysis found no errors, otherwise false. |
| bool Run(const ast::Module& module) { |
| // Reserve container memory |
| graph_.resolved_identifiers.Reserve(module.GlobalDeclarations().Length()); |
| sorted_.Reserve(module.GlobalDeclarations().Length()); |
| |
| // Collect all the named globals from the AST module |
| GatherGlobals(module); |
| |
| // Traverse the named globals to build the dependency graph |
| DetermineDependencies(); |
| |
| // Sort the globals into dependency order |
| SortGlobals(); |
| |
| // Dump the dependency graph if TINT_DUMP_DEPENDENCY_GRAPH is non-zero |
| DumpDependencyGraph(); |
| |
| graph_.ordered_globals = sorted_.Release(); |
| |
| return !diagnostics_.ContainsErrors(); |
| } |
| |
| private: |
| /// @param node the ast::Node of the global declaration |
| /// @returns the symbol of the global declaration node |
| /// @note will raise an ICE if the node is not a type, function or variable |
| /// declaration |
| Symbol SymbolOf(const ast::Node* node) const { |
| return Switch( |
| node, // |
| [&](const ast::TypeDecl* td) { return td->name->symbol; }, |
| [&](const ast::Function* func) { return func->name->symbol; }, |
| [&](const ast::Variable* var) { return var->name->symbol; }, |
| [&](const ast::DiagnosticDirective*) { return Symbol(); }, |
| [&](const ast::Enable*) { return Symbol(); }, |
| [&](const ast::Requires*) { return Symbol(); }, |
| [&](const ast::ConstAssert*) { return Symbol(); }, // |
| TINT_ICE_ON_NO_MATCH); |
| } |
| |
| /// @param node the ast::Node of the global declaration |
| /// @returns the name of the global declaration node |
| /// @note will raise an ICE if the node is not a type, function or variable |
| /// declaration |
| std::string NameOf(const ast::Node* node) const { return SymbolOf(node).Name(); } |
| |
| /// @param node the ast::Node of the global declaration |
| /// @returns a string representation of the global declaration kind |
| /// @note will raise an ICE if the node is not a type, function or variable |
| /// declaration |
| std::string KindOf(const ast::Node* node) { |
| return Switch( |
| node, // |
| [&](const ast::Struct*) { return "struct"; }, // |
| [&](const ast::Alias*) { return "alias"; }, // |
| [&](const ast::Function*) { return "function"; }, // |
| [&](const ast::Variable* v) { return v->Kind(); }, // |
| [&](const ast::ConstAssert*) { return "const_assert"; }, // |
| TINT_ICE_ON_NO_MATCH); |
| } |
| |
| /// Traverses `module`, collecting all the global declarations and populating |
| /// the #globals and #declaration_order fields. |
| void GatherGlobals(const ast::Module& module) { |
| for (auto* node : module.GlobalDeclarations()) { |
| auto* global = allocator_.Create(node); |
| if (auto symbol = SymbolOf(node); symbol.IsValid()) { |
| globals_.Add(symbol, global); |
| } |
| declaration_order_.Push(global); |
| } |
| } |
| |
| /// Walks the global declarations, determining the dependencies of each global |
| /// and adding these to each global's Global::deps field. |
| void DetermineDependencies() { |
| DependencyScanner scanner(globals_, diagnostics_, graph_, dependency_edges_); |
| for (auto* global : declaration_order_) { |
| scanner.Scan(global); |
| } |
| } |
| |
| /// Performs a depth-first traversal of `root`'s dependencies, calling `enter` |
| /// as the function decends into each dependency and `exit` when bubbling back |
| /// up towards the root. |
| /// @param enter is a function with the signature: `bool(Global*)`. The |
| /// `enter` function returns true if TraverseDependencies() should traverse |
| /// the dependency, otherwise it will be skipped. |
| /// @param exit is a function with the signature: `void(Global*)`. The `exit` |
| /// function is only called if the corresponding `enter` call returned true. |
| template <typename ENTER, typename EXIT> |
| void TraverseDependencies(const Global* root, ENTER&& enter, EXIT&& exit) { |
| // Entry is a single entry in the traversal stack. Entry points to a |
| // dep_idx'th dependency of Entry::global. |
| struct Entry { |
| const Global* global; // The parent global |
| size_t dep_idx; // The dependency index in `global->deps` |
| }; |
| |
| if (!enter(root)) { |
| return; |
| } |
| |
| Vector<Entry, 16> stack{Entry{root, 0}}; |
| while (true) { |
| auto& entry = stack.Back(); |
| // Have we exhausted the dependencies of entry.global? |
| if (entry.dep_idx < entry.global->deps.Length()) { |
| // No, there's more dependencies to traverse. |
| auto& dep = entry.global->deps[entry.dep_idx]; |
| // Does the caller want to enter this dependency? |
| if (enter(dep)) { // Yes. |
| stack.Push(Entry{dep, 0}); // Enter the dependency. |
| } else { |
| entry.dep_idx++; // No. Skip this node. |
| } |
| } else { |
| // Yes. Time to back up. |
| // Exit this global, pop the stack, and if there's another parent node, |
| // increment its dependency index, and loop again. |
| exit(entry.global); |
| stack.Pop(); |
| if (stack.IsEmpty()) { |
| return; // All done. |
| } |
| stack.Back().dep_idx++; |
| } |
| } |
| } |
| |
| /// SortGlobals sorts the globals into dependency order, erroring if cyclic |
| /// dependencies are found. The sorted dependencies are assigned to #sorted. |
| void SortGlobals() { |
| if (diagnostics_.ContainsErrors()) { |
| return; // This code assumes there are no undeclared identifiers. |
| } |
| |
| // Make sure all directives go before any other global declarations. |
| for (auto* global : declaration_order_) { |
| if (global->node->IsAnyOf<ast::DiagnosticDirective, ast::Enable, ast::Requires>()) { |
| sorted_.Add(global->node); |
| } |
| } |
| |
| for (auto* global : declaration_order_) { |
| if (global->node->IsAnyOf<ast::DiagnosticDirective, ast::Enable, ast::Requires>()) { |
| // Skip directives here, as they are already added. |
| continue; |
| } |
| UniqueVector<const Global*, 8> stack; |
| TraverseDependencies( |
| global, |
| [&](const Global* g) { // Enter |
| if (!stack.Add(g)) { |
| CyclicDependencyFound(g, stack.Release()); |
| return false; |
| } |
| if (sorted_.Contains(g->node)) { |
| // Visited this global already. |
| // stack was pushed, but exit() will not be called when we return |
| // false, so pop here. |
| stack.Pop(); |
| return false; |
| } |
| return true; |
| }, |
| [&](const Global* g) { // Exit. Only called if Enter returned true. |
| sorted_.Add(g->node); |
| stack.Pop(); |
| }); |
| |
| sorted_.Add(global->node); |
| |
| if (TINT_UNLIKELY(!stack.IsEmpty())) { |
| // Each stack.push() must have a corresponding stack.pop_back(). |
| TINT_ICE() << "stack not empty after returning from TraverseDependencies()"; |
| } |
| } |
| } |
| |
| /// DepInfoFor() looks up the global dependency information for the dependency |
| /// of global `from` depending on `to`. |
| /// @note will raise an ICE if the edge is not found. |
| DependencyInfo DepInfoFor(const Global* from, const Global* to) const { |
| auto info = dependency_edges_.Get(DependencyEdge{from, to}); |
| if (TINT_LIKELY(info)) { |
| return *info; |
| } |
| TINT_ICE() << "failed to find dependency info for edge: '" << NameOf(from->node) << "' -> '" |
| << NameOf(to->node) << "'"; |
| } |
| |
| /// CyclicDependencyFound() emits an error diagnostic for a cyclic dependency. |
| /// @param root is the global that starts the cyclic dependency, which must be |
| /// found in `stack`. |
| /// @param stack is the global dependency stack that contains a loop. |
| void CyclicDependencyFound(const Global* root, VectorRef<const Global*> stack) { |
| auto& err = AddError(diagnostics_, root->node->source); |
| err << "cyclic dependency found: "; |
| constexpr size_t kLoopNotStarted = ~0u; |
| size_t loop_start = kLoopNotStarted; |
| for (size_t i = 0; i < stack.Length(); i++) { |
| auto* e = stack[i]; |
| if (loop_start == kLoopNotStarted && e == root) { |
| loop_start = i; |
| } |
| if (loop_start != kLoopNotStarted) { |
| err << "'" << NameOf(e->node) << "' -> "; |
| } |
| } |
| err << "'" << NameOf(root->node) << "'"; |
| |
| for (size_t i = loop_start; i < stack.Length(); i++) { |
| auto* from = stack[i]; |
| auto* to = (i + 1 < stack.Length()) ? stack[i + 1] : stack[loop_start]; |
| auto info = DepInfoFor(from, to); |
| AddNote(diagnostics_, info.source) |
| << KindOf(from->node) + " '" << NameOf(from->node) << "' references " |
| << KindOf(to->node) << " '" << NameOf(to->node) << "' here"; |
| } |
| } |
| |
| void DumpDependencyGraph() { |
| #if TINT_DUMP_DEPENDENCY_GRAPH == 0 |
| if ((true)) { |
| return; |
| } |
| #endif // TINT_DUMP_DEPENDENCY_GRAPH |
| printf("=========================\n"); |
| printf("------ declaration ------ \n"); |
| for (auto* global : declaration_order_) { |
| printf("%s\n", NameOf(global->node).c_str()); |
| } |
| printf("------ dependencies ------ \n"); |
| for (auto* node : sorted_) { |
| auto symbol = SymbolOf(node); |
| auto* global = *globals_.Get(symbol); |
| printf("%s depends on:\n", symbol.Name().c_str()); |
| for (auto* dep : global->deps) { |
| printf(" %s\n", NameOf(dep->node).c_str()); |
| } |
| } |
| printf("=========================\n"); |
| } |
| |
| /// Program diagnostics |
| diag::List& diagnostics_; |
| |
| /// The resulting dependency graph |
| DependencyGraph& graph_; |
| |
| /// Allocator of Globals |
| BlockAllocator<Global> allocator_; |
| |
| /// Global map, keyed by name. Populated by GatherGlobals(). |
| GlobalMap globals_; |
| |
| /// Map of DependencyEdge to DependencyInfo. Populated by DetermineDependencies(). |
| DependencyEdges dependency_edges_; |
| |
| /// Globals in declaration order. Populated by GatherGlobals(). |
| Vector<Global*, 64> declaration_order_; |
| |
| /// Globals in sorted dependency order. Populated by SortGlobals(). |
| UniqueVector<const ast::Node*, 64> sorted_; |
| }; |
| |
| } // namespace |
| |
| DependencyGraph::DependencyGraph() = default; |
| DependencyGraph::DependencyGraph(DependencyGraph&&) = default; |
| DependencyGraph::~DependencyGraph() = default; |
| |
| bool DependencyGraph::Build(const ast::Module& module, |
| diag::List& diagnostics, |
| DependencyGraph& output) { |
| DependencyAnalysis da{diagnostics, output}; |
| return da.Run(module); |
| } |
| |
| std::string ResolvedIdentifier::String() const { |
| if (auto* node = Node()) { |
| return Switch( |
| node, |
| [&](const ast::TypeDecl* n) { // |
| return "type '" + n->name->symbol.Name() + "'"; |
| }, |
| [&](const ast::Var* n) { // |
| return "var '" + n->name->symbol.Name() + "'"; |
| }, |
| [&](const ast::Let* n) { // |
| return "let '" + n->name->symbol.Name() + "'"; |
| }, |
| [&](const ast::Const* n) { // |
| return "const '" + n->name->symbol.Name() + "'"; |
| }, |
| [&](const ast::Override* n) { // |
| return "override '" + n->name->symbol.Name() + "'"; |
| }, |
| [&](const ast::Function* n) { // |
| return "function '" + n->name->symbol.Name() + "'"; |
| }, |
| [&](const ast::Parameter* n) { // |
| return "parameter '" + n->name->symbol.Name() + "'"; |
| }, // |
| TINT_ICE_ON_NO_MATCH); |
| } |
| if (auto builtin_fn = BuiltinFn(); builtin_fn != wgsl::BuiltinFn::kNone) { |
| return "builtin function '" + tint::ToString(builtin_fn) + "'"; |
| } |
| if (auto builtin_ty = BuiltinType(); builtin_ty != core::BuiltinType::kUndefined) { |
| return "builtin type '" + tint::ToString(builtin_ty) + "'"; |
| } |
| if (auto builtin_val = BuiltinValue(); builtin_val != core::BuiltinValue::kUndefined) { |
| return "builtin value '" + tint::ToString(builtin_val) + "'"; |
| } |
| if (auto access = Access(); access != core::Access::kUndefined) { |
| return "access '" + tint::ToString(access) + "'"; |
| } |
| if (auto addr = AddressSpace(); addr != core::AddressSpace::kUndefined) { |
| return "address space '" + tint::ToString(addr) + "'"; |
| } |
| if (auto type = InterpolationType(); type != core::InterpolationType::kUndefined) { |
| return "interpolation type '" + tint::ToString(type) + "'"; |
| } |
| if (auto smpl = InterpolationSampling(); smpl != core::InterpolationSampling::kUndefined) { |
| return "interpolation sampling '" + tint::ToString(smpl) + "'"; |
| } |
| if (auto fmt = TexelFormat(); fmt != core::TexelFormat::kUndefined) { |
| return "texel format '" + tint::ToString(fmt) + "'"; |
| } |
| if (auto* unresolved = Unresolved()) { |
| return "unresolved identifier '" + unresolved->name + "'"; |
| } |
| |
| TINT_UNREACHABLE() << "unhandled ResolvedIdentifier"; |
| } |
| |
| } // namespace tint::resolver |