| // Copyright 2022 The Dawn & Tint Authors |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // 1. Redistributions of source code must retain the above copyright notice, this |
| // list of conditions and the following disclaimer. |
| // |
| // 2. Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // |
| // 3. Neither the name of the copyright holder nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
| // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #ifndef SRC_TINT_LANG_CORE_IR_BUILDER_H_ |
| #define SRC_TINT_LANG_CORE_IR_BUILDER_H_ |
| |
| #include <utility> |
| |
| #include "src/tint/lang/core/constant/composite.h" |
| #include "src/tint/lang/core/constant/scalar.h" |
| #include "src/tint/lang/core/constant/splat.h" |
| #include "src/tint/lang/core/ir/access.h" |
| #include "src/tint/lang/core/ir/bitcast.h" |
| #include "src/tint/lang/core/ir/block_param.h" |
| #include "src/tint/lang/core/ir/break_if.h" |
| #include "src/tint/lang/core/ir/constant.h" |
| #include "src/tint/lang/core/ir/construct.h" |
| #include "src/tint/lang/core/ir/continue.h" |
| #include "src/tint/lang/core/ir/convert.h" |
| #include "src/tint/lang/core/ir/core_binary.h" |
| #include "src/tint/lang/core/ir/core_builtin_call.h" |
| #include "src/tint/lang/core/ir/core_unary.h" |
| #include "src/tint/lang/core/ir/discard.h" |
| #include "src/tint/lang/core/ir/exit_if.h" |
| #include "src/tint/lang/core/ir/exit_loop.h" |
| #include "src/tint/lang/core/ir/exit_switch.h" |
| #include "src/tint/lang/core/ir/function.h" |
| #include "src/tint/lang/core/ir/function_param.h" |
| #include "src/tint/lang/core/ir/if.h" |
| #include "src/tint/lang/core/ir/instruction_result.h" |
| #include "src/tint/lang/core/ir/let.h" |
| #include "src/tint/lang/core/ir/load.h" |
| #include "src/tint/lang/core/ir/load_vector_element.h" |
| #include "src/tint/lang/core/ir/loop.h" |
| #include "src/tint/lang/core/ir/module.h" |
| #include "src/tint/lang/core/ir/multi_in_block.h" |
| #include "src/tint/lang/core/ir/next_iteration.h" |
| #include "src/tint/lang/core/ir/return.h" |
| #include "src/tint/lang/core/ir/store.h" |
| #include "src/tint/lang/core/ir/store_vector_element.h" |
| #include "src/tint/lang/core/ir/switch.h" |
| #include "src/tint/lang/core/ir/swizzle.h" |
| #include "src/tint/lang/core/ir/terminate_invocation.h" |
| #include "src/tint/lang/core/ir/unreachable.h" |
| #include "src/tint/lang/core/ir/user_call.h" |
| #include "src/tint/lang/core/ir/value.h" |
| #include "src/tint/lang/core/ir/var.h" |
| #include "src/tint/lang/core/type/array.h" |
| #include "src/tint/lang/core/type/bool.h" |
| #include "src/tint/lang/core/type/f16.h" |
| #include "src/tint/lang/core/type/f32.h" |
| #include "src/tint/lang/core/type/i32.h" |
| #include "src/tint/lang/core/type/matrix.h" |
| #include "src/tint/lang/core/type/pointer.h" |
| #include "src/tint/lang/core/type/u32.h" |
| #include "src/tint/lang/core/type/vector.h" |
| #include "src/tint/lang/core/type/void.h" |
| #include "src/tint/utils/ice/ice.h" |
| #include "src/tint/utils/macros/scoped_assignment.h" |
| #include "src/tint/utils/rtti/switch.h" |
| |
| namespace tint::core::ir { |
| |
| /// Builds an ir::Module |
| class Builder { |
| /// Evaluates to true if T is a non-reference instruction pointer. |
| template <typename T> |
| static constexpr bool IsNonRefInstPtr = |
| std::is_pointer_v<T> && std::is_base_of_v<ir::Instruction, std::remove_pointer_t<T>>; |
| |
| /// static_assert()s that ARGS contains no more than one non-reference instruction pointer. |
| /// This is used to detect patterns where C++ non-deterministic evaluation order may cause |
| /// instruction ordering bugs. |
| template <typename... ARGS> |
| static constexpr void CheckForNonDeterministicEvaluation() { |
| constexpr bool possibly_non_deterministic_eval = |
| ((IsNonRefInstPtr<ARGS> ? 1 : 0) + ...) > 1; |
| static_assert(!possibly_non_deterministic_eval, |
| "Detected possible non-deterministic ordering of instructions. " |
| "Consider hoisting Builder call arguments to separate statements."); |
| } |
| |
| /// A helper used to enable overloads if the first type in `TYPES` is a Vector or |
| /// VectorRef. |
| template <typename... TYPES> |
| using EnableIfVectorLike = tint::traits::EnableIf< |
| tint::IsVectorLike<tint::traits::Decay<tint::traits::NthTypeOf<0, TYPES..., void>>>>; |
| |
| /// A helper used to disable overloads if the first type in `TYPES` is a Vector or |
| /// VectorRef. |
| template <typename... TYPES> |
| using DisableIfVectorLike = tint::traits::EnableIf< |
| !tint::IsVectorLike<tint::traits::Decay<tint::traits::NthTypeOf<0, TYPES..., void>>>>; |
| |
| /// A namespace for the various instruction insertion method |
| struct InsertionPoints { |
| /// Insertion point method that does no insertion |
| struct NoInsertion { |
| /// The insertion point function |
| void operator()(ir::Instruction*) {} |
| }; |
| /// Insertion point method that inserts the instruction to the end of #block |
| struct AppendToBlock { |
| /// The block to insert new instructions to the end of |
| ir::Block* block = nullptr; |
| /// The insertion point function |
| /// @param i the instruction to insert |
| void operator()(ir::Instruction* i) { block->Append(i); } |
| }; |
| /// Insertion point method that inserts the instruction to the front of #block |
| struct PrependToBlock { |
| /// The block to insert new instructions to the front of |
| ir::Block* block = nullptr; |
| /// The insertion point function |
| /// @param i the instruction to insert |
| void operator()(ir::Instruction* i) { block->Prepend(i); } |
| }; |
| /// Insertion point method that inserts the instruction after #after |
| struct InsertAfter { |
| /// The instruction to insert new instructions after |
| ir::Instruction* after = nullptr; |
| /// The insertion point function |
| /// @param i the instruction to insert |
| void operator()(ir::Instruction* i) { i->InsertAfter(after); } |
| }; |
| /// Insertion point method that inserts the instruction before #before |
| struct InsertBefore { |
| /// The instruction to insert new instructions before |
| ir::Instruction* before = nullptr; |
| /// The insertion point function |
| /// @param i the instruction to insert |
| void operator()(ir::Instruction* i) { i->InsertBefore(before); } |
| }; |
| }; |
| |
| /// A variant of different instruction insertion methods |
| using InsertionPoint = std::variant<InsertionPoints::NoInsertion, |
| InsertionPoints::AppendToBlock, |
| InsertionPoints::PrependToBlock, |
| InsertionPoints::InsertAfter, |
| InsertionPoints::InsertBefore>; |
| |
| /// The insertion method used for new instructions. |
| InsertionPoint insertion_point_{InsertionPoints::NoInsertion{}}; |
| |
| public: |
| /// Constructor |
| /// @param mod the ir::Module to wrap with this builder |
| explicit Builder(Module& mod); |
| /// Constructor |
| /// @param mod the ir::Module to wrap with this builder |
| /// @param block the block to append to |
| Builder(Module& mod, ir::Block* block); |
| /// Destructor |
| ~Builder(); |
| |
| /// Creates a new builder that will append to the given block |
| /// @param b the block to append new instructions to |
| /// @returns the builder |
| Builder Append(ir::Block* b) { return Builder(ir, b); } |
| |
| /// Calls @p cb with the builder appending to block @p b |
| /// @param b the block to set as the block to append to |
| /// @param cb the function to call with the builder appending to block @p b |
| template <typename FUNCTION> |
| void Append(ir::Block* b, FUNCTION&& cb) { |
| TINT_SCOPED_ASSIGNMENT(insertion_point_, InsertionPoints::AppendToBlock{b}); |
| cb(); |
| } |
| |
| /// Calls @p cb with the builder prepending to block @p b |
| /// @param b the block to set as the block to prepend to |
| /// @param cb the function to call with the builder prepending to block @p b |
| template <typename FUNCTION> |
| void Prepend(ir::Block* b, FUNCTION&& cb) { |
| TINT_SCOPED_ASSIGNMENT(insertion_point_, InsertionPoints::PrependToBlock{b}); |
| cb(); |
| } |
| |
| /// Calls @p cb with the builder inserting after @p ip |
| /// @param ip the insertion point for new instructions |
| /// @param cb the function to call with the builder inserting new instructions after @p ip |
| template <typename FUNCTION> |
| void InsertAfter(ir::Instruction* ip, FUNCTION&& cb) { |
| TINT_SCOPED_ASSIGNMENT(insertion_point_, InsertionPoints::InsertAfter{ip}); |
| cb(); |
| } |
| |
| /// Calls @p cb with the builder inserting before @p ip |
| /// @param ip the insertion point for new instructions |
| /// @param cb the function to call with the builder inserting new instructions before @p ip |
| template <typename FUNCTION> |
| void InsertBefore(ir::Instruction* ip, FUNCTION&& cb) { |
| TINT_SCOPED_ASSIGNMENT(insertion_point_, InsertionPoints::InsertBefore{ip}); |
| cb(); |
| } |
| |
| /// Calls @p cb with the builder inserting after @p val |
| /// @param val the insertion point for new instructions |
| /// @param cb the function to call with the builder inserting new instructions after @p val |
| template <typename FUNCTION> |
| void InsertAfter(ir::Value* val, FUNCTION&& cb) { |
| tint::Switch( |
| val, |
| [&](core::ir::InstructionResult* result) { |
| const TINT_SCOPED_ASSIGNMENT(insertion_point_, |
| InsertionPoints::InsertAfter{result->Instruction()}); |
| cb(); |
| }, |
| [&](core::ir::FunctionParam* param) { |
| auto* body = param->Function()->Block(); |
| if (body->IsEmpty()) { |
| Append(body, cb); |
| } else { |
| InsertBefore(body->Front(), cb); |
| } |
| }, |
| [&](core::ir::BlockParam* param) { |
| auto* block = param->Block(); |
| if (block->IsEmpty()) { |
| Append(block, cb); |
| } else { |
| InsertBefore(block->Front(), cb); |
| } |
| }, |
| TINT_ICE_ON_NO_MATCH); |
| } |
| |
| /// Adds and returns the instruction @p instruction to the current insertion point. If there |
| /// is no current insertion point set, then @p instruction is just returned. |
| /// @param instruction the instruction to append |
| /// @returns the instruction |
| template <typename T> |
| T* Append(T* instruction) { |
| std::visit([instruction](auto&& mode) { mode(instruction); }, insertion_point_); |
| return instruction; |
| } |
| |
| /// @returns a new block |
| ir::Block* Block(); |
| |
| /// @returns a new multi-in block |
| ir::MultiInBlock* MultiInBlock(); |
| |
| /// Creates an unnamed function |
| /// @param return_type the function return type |
| /// @param stage the function stage |
| /// @param wg_size the workgroup_size |
| /// @returns the function |
| ir::Function* Function(const core::type::Type* return_type, |
| Function::PipelineStage stage = Function::PipelineStage::kUndefined, |
| std::optional<std::array<uint32_t, 3>> wg_size = {}); |
| |
| /// Creates a function |
| /// @param name the function name |
| /// @param return_type the function return type |
| /// @param stage the function stage |
| /// @param wg_size the workgroup_size |
| /// @returns the function |
| ir::Function* Function(std::string_view name, |
| const core::type::Type* return_type, |
| Function::PipelineStage stage = Function::PipelineStage::kUndefined, |
| std::optional<std::array<uint32_t, 3>> wg_size = {}); |
| |
| /// Creates an if instruction |
| /// @param condition the if condition |
| /// @returns the instruction |
| template <typename T> |
| ir::If* If(T&& condition) { |
| auto* cond_val = Value(std::forward<T>(condition)); |
| return Append(ir.allocators.instructions.Create<ir::If>(cond_val, Block(), Block())); |
| } |
| |
| /// Creates a loop instruction |
| /// @returns the instruction |
| ir::Loop* Loop(); |
| |
| /// Creates a switch instruction |
| /// @param condition the switch condition |
| /// @returns the instruction |
| template <typename T> |
| ir::Switch* Switch(T&& condition) { |
| auto* cond_val = Value(std::forward<T>(condition)); |
| return Append(ir.allocators.instructions.Create<ir::Switch>(cond_val)); |
| } |
| |
| /// Creates a default case for the switch @p s |
| /// @param s the switch to create the case into |
| /// @returns the start block for the case instruction |
| ir::Block* DefaultCase(ir::Switch* s); |
| |
| /// Creates a case for the switch @p s with the given selectors |
| /// @param s the switch to create the case into |
| /// @param values the case selector values for the case statement |
| /// @returns the start block for the case instruction |
| ir::Block* Case(ir::Switch* s, VectorRef<ir::Constant*> values); |
| |
| /// Creates a case for the switch @p s with the given selectors |
| /// @param s the switch to create the case into |
| /// @param values the case selector values for the case statement |
| /// @returns the start block for the case instruction |
| ir::Block* Case(ir::Switch* s, std::initializer_list<ir::Constant*> values); |
| |
| /// Creates a new ir::Constant |
| /// @param val the constant value |
| /// @returns the new constant |
| ir::Constant* Constant(const core::constant::Value* val) { |
| return ir.constants.GetOrAdd( |
| val, [&] { return ir.allocators.values.Create<ir::Constant>(val); }); |
| } |
| |
| /// Creates a ir::Constant for an i32 Scalar |
| /// @param v the value |
| /// @returns the new constant |
| ir::Constant* Constant(core::i32 v) { return Constant(ConstantValue(v)); } |
| |
| /// Creates a ir::Constant for a u32 Scalar |
| /// @param v the value |
| /// @returns the new constant |
| ir::Constant* Constant(core::u32 v) { return Constant(ConstantValue(v)); } |
| |
| /// Creates a ir::Constant for a f32 Scalar |
| /// @param v the value |
| /// @returns the new constant |
| ir::Constant* Constant(core::f32 v) { return Constant(ConstantValue(v)); } |
| |
| /// Creates a ir::Constant for a f16 Scalar |
| /// @param v the value |
| /// @returns the new constant |
| ir::Constant* Constant(core::f16 v) { return Constant(ConstantValue(v)); } |
| |
| /// Creates a ir::Constant for a bool Scalar |
| /// @param v the value |
| /// @returns the new constant |
| template <typename BOOL, typename = std::enable_if_t<std::is_same_v<BOOL, bool>>> |
| ir::Constant* Constant(BOOL v) { |
| return Constant(ConstantValue(v)); |
| } |
| |
| /// Retrieves the inner constant from an ir::Constant |
| /// @param constant the ir constant |
| /// @returns the core::constant::Value inside the constant |
| const core::constant::Value* ConstantValue(ir::Constant* constant) { return constant->Value(); } |
| |
| /// Creates a core::constant::Value for an i32 Scalar |
| /// @param v the value |
| /// @returns the new constant |
| const core::constant::Value* ConstantValue(core::i32 v) { return ir.constant_values.Get(v); } |
| |
| /// Creates a core::constant::Value for a u32 Scalar |
| /// @param v the value |
| /// @returns the new constant |
| const core::constant::Value* ConstantValue(core::u32 v) { return ir.constant_values.Get(v); } |
| |
| /// Creates a core::constant::Value for a f32 Scalar |
| /// @param v the value |
| /// @returns the new constant |
| const core::constant::Value* ConstantValue(core::f32 v) { return ir.constant_values.Get(v); } |
| |
| /// Creates a core::constant::Value for a f16 Scalar |
| /// @param v the value |
| /// @returns the new constant |
| const core::constant::Value* ConstantValue(core::f16 v) { return ir.constant_values.Get(v); } |
| |
| /// Creates a core::constant::Value for a bool Scalar |
| /// @param v the value |
| /// @returns the new constant |
| template <typename BOOL, typename = std::enable_if_t<std::is_same_v<BOOL, bool>>> |
| const core::constant::Value* ConstantValue(BOOL v) { |
| return ir.constant_values.Get(v); |
| } |
| |
| /// Creates a new ir::Constant |
| /// @param ty the splat type |
| /// @param value the splat value |
| /// @param size the number of items |
| /// @returns the new constant |
| template <typename ARG> |
| ir::Constant* Splat(const core::type::Type* ty, ARG&& value, size_t size) { |
| return Constant( |
| ir.constant_values.Splat(ty, ConstantValue(std::forward<ARG>(value)), size)); |
| } |
| |
| /// Creates a new ir::Constant |
| /// @tparam TYPE the splat type |
| /// @param value the splat value |
| /// @param size the number of items |
| /// @returns the new constant |
| template <typename TYPE, typename ARG> |
| ir::Constant* Splat(ARG&& value, size_t size) { |
| auto* type = ir.Types().Get<TYPE>(); |
| return Splat(type, std::forward<ARG>(value), size); |
| } |
| |
| /// Creates a new ir::Constant |
| /// @param ty the constant type |
| /// @param values the composite values |
| /// @returns the new constant |
| template <typename... ARGS, typename = DisableIfVectorLike<ARGS...>> |
| ir::Constant* Composite(const core::type::Type* ty, ARGS&&... values) { |
| return Constant( |
| ir.constant_values.Composite(ty, Vector{ConstantValue(std::forward<ARGS>(values))...})); |
| } |
| |
| /// Creates a new ir::Constant |
| /// @tparam TYPE the constant type |
| /// @param values the composite values |
| /// @returns the new constant |
| template <typename TYPE, typename... ARGS, typename = DisableIfVectorLike<ARGS...>> |
| ir::Constant* Composite(ARGS&&... values) { |
| auto* type = ir.Types().Get<TYPE>(); |
| return Composite(type, std::forward<ARGS>(values)...); |
| } |
| |
| /// Creates a new zero-value ir::Constant |
| /// @param ty the constant type |
| /// @returns the new constant |
| ir::Constant* Zero(const core::type::Type* ty) { return Constant(ir.constant_values.Zero(ty)); } |
| |
| /// @param in the input value. One of: nullptr, ir::Value*, ir::Instruction* or a numeric value. |
| /// @returns an ir::Value* from the given argument. |
| template <typename T> |
| ir::Value* Value(T&& in) { |
| using D = std::decay_t<T>; |
| constexpr bool is_null = std::is_same_v<T, std::nullptr_t>; |
| constexpr bool is_ptr = std::is_pointer_v<D>; |
| constexpr bool is_numeric = core::IsNumeric<D>; |
| static_assert(is_null || is_ptr || is_numeric, "invalid argument type for Value()"); |
| |
| if constexpr (is_null) { |
| return nullptr; |
| } else if constexpr (is_ptr) { |
| using P = std::remove_pointer_t<D>; |
| constexpr bool is_value = std::is_base_of_v<ir::Value, P>; |
| constexpr bool is_instruction = std::is_base_of_v<ir::Instruction, P>; |
| static_assert(is_value || is_instruction, "invalid pointer type for Value()"); |
| |
| if constexpr (is_value) { |
| return in; /// Pass-through |
| } else if constexpr (is_instruction) { |
| /// Extract the first result from the instruction |
| auto results = in->Results(); |
| TINT_ASSERT(results.Length() == 1); |
| return results[0]; |
| } |
| } else if constexpr (is_numeric) { |
| /// Creates a value from the given number |
| return Constant(in); |
| } |
| } |
| |
| /// Pass-through overload for Values() with vector-like argument |
| /// @param vec the vector of ir::Value* |
| /// @return @p vec |
| template <typename VEC, typename = EnableIfVectorLike<tint::traits::Decay<VEC>>> |
| auto Values(VEC&& vec) { |
| return std::forward<VEC>(vec); |
| } |
| |
| /// Overload for Values() with tint::Empty argument |
| /// @return tint::Empty |
| tint::EmptyType Values(tint::EmptyType) { return tint::Empty; } |
| |
| /// Overload for Values() with no arguments |
| /// @return tint::Empty |
| tint::EmptyType Values() { return tint::Empty; } |
| |
| /// @param args the arguments to pass to Value() |
| /// @returns a vector of ir::Value* built from transforming the arguments with Value() |
| template <typename... ARGS, typename = DisableIfVectorLike<ARGS...>> |
| auto Values(ARGS&&... args) { |
| CheckForNonDeterministicEvaluation<ARGS...>(); |
| return Vector{Value(std::forward<ARGS>(args))...}; |
| } |
| |
| /// Creates an op for `lhs kind rhs` |
| /// @param op the binary operator |
| /// @param type the result type of the binary expression |
| /// @param lhs the left-hand-side of the operation |
| /// @param rhs the right-hand-side of the operation |
| /// @returns the operation |
| template <typename LHS, typename RHS> |
| ir::CoreBinary* Binary(BinaryOp op, const core::type::Type* type, LHS&& lhs, RHS&& rhs) { |
| CheckForNonDeterministicEvaluation<LHS, RHS>(); |
| auto* lhs_val = Value(std::forward<LHS>(lhs)); |
| auto* rhs_val = Value(std::forward<RHS>(rhs)); |
| return Append(ir.allocators.instructions.Create<ir::CoreBinary>(InstructionResult(type), op, |
| lhs_val, rhs_val)); |
| } |
| |
| /// Creates an And operation |
| /// @param type the result type of the expression |
| /// @param lhs the lhs of the add |
| /// @param rhs the rhs of the add |
| /// @returns the operation |
| template <typename LHS, typename RHS> |
| ir::CoreBinary* And(const core::type::Type* type, LHS&& lhs, RHS&& rhs) { |
| return Binary(BinaryOp::kAnd, type, std::forward<LHS>(lhs), std::forward<RHS>(rhs)); |
| } |
| |
| /// Creates an And operation |
| /// @tparam TYPE the result type of the expression |
| /// @param lhs the lhs of the add |
| /// @param rhs the rhs of the add |
| /// @returns the operation |
| template <typename TYPE, typename LHS, typename RHS> |
| ir::CoreBinary* And(LHS&& lhs, RHS&& rhs) { |
| auto* type = ir.Types().Get<TYPE>(); |
| return And(type, std::forward<LHS>(lhs), std::forward<RHS>(rhs)); |
| } |
| |
| /// Creates an Or operation |
| /// @param type the result type of the expression |
| /// @param lhs the lhs of the add |
| /// @param rhs the rhs of the add |
| /// @returns the operation |
| template <typename LHS, typename RHS> |
| ir::CoreBinary* Or(const core::type::Type* type, LHS&& lhs, RHS&& rhs) { |
| return Binary(BinaryOp::kOr, type, std::forward<LHS>(lhs), std::forward<RHS>(rhs)); |
| } |
| |
| /// Creates an Or operation |
| /// @tparam TYPE the result type of the expression |
| /// @param lhs the lhs of the add |
| /// @param rhs the rhs of the add |
| /// @returns the operation |
| template <typename TYPE, typename LHS, typename RHS> |
| ir::CoreBinary* Or(LHS&& lhs, RHS&& rhs) { |
| auto* type = ir.Types().Get<TYPE>(); |
| return Or(type, std::forward<LHS>(lhs), std::forward<RHS>(rhs)); |
| } |
| |
| /// Creates an Xor operation |
| /// @param type the result type of the expression |
| /// @param lhs the lhs of the add |
| /// @param rhs the rhs of the add |
| /// @returns the operation |
| template <typename LHS, typename RHS> |
| ir::CoreBinary* Xor(const core::type::Type* type, LHS&& lhs, RHS&& rhs) { |
| return Binary(BinaryOp::kXor, type, std::forward<LHS>(lhs), std::forward<RHS>(rhs)); |
| } |
| |
| /// Creates an Xor operation |
| /// @tparam TYPE the result type of the expression |
| /// @param lhs the lhs of the add |
| /// @param rhs the rhs of the add |
| /// @returns the operation |
| template <typename TYPE, typename LHS, typename RHS> |
| ir::CoreBinary* Xor(LHS&& lhs, RHS&& rhs) { |
| auto* type = ir.Types().Get<TYPE>(); |
| return Xor(type, std::forward<LHS>(lhs), std::forward<RHS>(rhs)); |
| } |
| |
| /// Creates an Equal operation |
| /// @param type the result type of the expression |
| /// @param lhs the lhs of the add |
| /// @param rhs the rhs of the add |
| /// @returns the operation |
| template <typename LHS, typename RHS> |
| ir::CoreBinary* Equal(const core::type::Type* type, LHS&& lhs, RHS&& rhs) { |
| return Binary(BinaryOp::kEqual, type, std::forward<LHS>(lhs), std::forward<RHS>(rhs)); |
| } |
| |
| /// Creates an Equal operation |
| /// @tparam TYPE the result type of the expression |
| /// @param lhs the lhs of the add |
| /// @param rhs the rhs of the add |
| /// @returns the operation |
| template <typename TYPE, typename LHS, typename RHS> |
| ir::CoreBinary* Equal(LHS&& lhs, RHS&& rhs) { |
| auto* type = ir.Types().Get<TYPE>(); |
| return Equal(type, std::forward<LHS>(lhs), std::forward<RHS>(rhs)); |
| } |
| |
| /// Creates an NotEqual operation |
| /// @param type the result type of the expression |
| /// @param lhs the lhs of the add |
| /// @param rhs the rhs of the add |
| /// @returns the operation |
| template <typename LHS, typename RHS> |
| ir::CoreBinary* NotEqual(const core::type::Type* type, LHS&& lhs, RHS&& rhs) { |
| return Binary(BinaryOp::kNotEqual, type, std::forward<LHS>(lhs), std::forward<RHS>(rhs)); |
| } |
| |
| /// Creates an NotEqual operation |
| /// @tparam TYPE the result type of the expression |
| /// @param lhs the lhs of the add |
| /// @param rhs the rhs of the add |
| /// @returns the operation |
| template <typename TYPE, typename LHS, typename RHS> |
| ir::CoreBinary* NotEqual(LHS&& lhs, RHS&& rhs) { |
| auto* type = ir.Types().Get<TYPE>(); |
| return NotEqual(type, std::forward<LHS>(lhs), std::forward<RHS>(rhs)); |
| } |
| |
| /// Creates an LessThan operation |
| /// @param type the result type of the expression |
| /// @param lhs the lhs of the add |
| /// @param rhs the rhs of the add |
| /// @returns the operation |
| template <typename LHS, typename RHS> |
| ir::CoreBinary* LessThan(const core::type::Type* type, LHS&& lhs, RHS&& rhs) { |
| return Binary(BinaryOp::kLessThan, type, std::forward<LHS>(lhs), std::forward<RHS>(rhs)); |
| } |
| |
| /// Creates an LessThan operation |
| /// @tparam TYPE the result type of the expression |
| /// @param lhs the lhs of the add |
| /// @param rhs the rhs of the add |
| /// @returns the operation |
| template <typename TYPE, typename LHS, typename RHS> |
| ir::CoreBinary* LessThan(LHS&& lhs, RHS&& rhs) { |
| auto* type = ir.Types().Get<TYPE>(); |
| return LessThan(type, std::forward<LHS>(lhs), std::forward<RHS>(rhs)); |
| } |
| |
| /// Creates an GreaterThan operation |
| /// @param type the result type of the expression |
| /// @param lhs the lhs of the add |
| /// @param rhs the rhs of the add |
| /// @returns the operation |
| template <typename LHS, typename RHS> |
| ir::CoreBinary* GreaterThan(const core::type::Type* type, LHS&& lhs, RHS&& rhs) { |
| return Binary(BinaryOp::kGreaterThan, type, std::forward<LHS>(lhs), std::forward<RHS>(rhs)); |
| } |
| |
| /// Creates an GreaterThan operation |
| /// @tparam TYPE the result type of the expression |
| /// @param lhs the lhs of the add |
| /// @param rhs the rhs of the add |
| /// @returns the operation |
| template <typename TYPE, typename LHS, typename RHS> |
| ir::CoreBinary* GreaterThan(LHS&& lhs, RHS&& rhs) { |
| auto* type = ir.Types().Get<TYPE>(); |
| return GreaterThan(type, std::forward<LHS>(lhs), std::forward<RHS>(rhs)); |
| } |
| |
| /// Creates an LessThanEqual operation |
| /// @param type the result type of the expression |
| /// @param lhs the lhs of the add |
| /// @param rhs the rhs of the add |
| /// @returns the operation |
| template <typename LHS, typename RHS> |
| ir::CoreBinary* LessThanEqual(const core::type::Type* type, LHS&& lhs, RHS&& rhs) { |
| return Binary(BinaryOp::kLessThanEqual, type, std::forward<LHS>(lhs), |
| std::forward<RHS>(rhs)); |
| } |
| |
| /// Creates an LessThanEqual operation |
| /// @tparam TYPE the result type of the expression |
| /// @param lhs the lhs of the add |
| /// @param rhs the rhs of the add |
| /// @returns the operation |
| template <typename TYPE, typename LHS, typename RHS> |
| ir::CoreBinary* LessThanEqual(LHS&& lhs, RHS&& rhs) { |
| auto* type = ir.Types().Get<TYPE>(); |
| return LessThanEqual(type, std::forward<LHS>(lhs), std::forward<RHS>(rhs)); |
| } |
| |
| /// Creates an GreaterThanEqual operation |
| /// @param type the result type of the expression |
| /// @param lhs the lhs of the add |
| /// @param rhs the rhs of the add |
| /// @returns the operation |
| template <typename LHS, typename RHS> |
| ir::CoreBinary* GreaterThanEqual(const core::type::Type* type, LHS&& lhs, RHS&& rhs) { |
| return Binary(BinaryOp::kGreaterThanEqual, type, std::forward<LHS>(lhs), |
| std::forward<RHS>(rhs)); |
| } |
| |
| /// Creates an GreaterThanEqual operation |
| /// @tparam TYPE the result type of the expression |
| /// @param lhs the lhs of the add |
| /// @param rhs the rhs of the add |
| /// @returns the operation |
| template <typename TYPE, typename LHS, typename RHS> |
| ir::CoreBinary* GreaterThanEqual(LHS&& lhs, RHS&& rhs) { |
| auto* type = ir.Types().Get<TYPE>(); |
| return GreaterThanEqual(type, std::forward<LHS>(lhs), std::forward<RHS>(rhs)); |
| } |
| |
| /// Creates an ShiftLeft operation |
| /// @param type the result type of the expression |
| /// @param lhs the lhs of the add |
| /// @param rhs the rhs of the add |
| /// @returns the operation |
| template <typename LHS, typename RHS> |
| ir::CoreBinary* ShiftLeft(const core::type::Type* type, LHS&& lhs, RHS&& rhs) { |
| return Binary(BinaryOp::kShiftLeft, type, std::forward<LHS>(lhs), std::forward<RHS>(rhs)); |
| } |
| |
| /// Creates an ShiftLeft operation |
| /// @tparam TYPE the result type of the expression |
| /// @param lhs the lhs of the add |
| /// @param rhs the rhs of the add |
| /// @returns the operation |
| template <typename TYPE, typename LHS, typename RHS> |
| ir::CoreBinary* ShiftLeft(LHS&& lhs, RHS&& rhs) { |
| auto* type = ir.Types().Get<TYPE>(); |
| return ShiftLeft(type, std::forward<LHS>(lhs), std::forward<RHS>(rhs)); |
| } |
| |
| /// Creates an ShiftRight operation |
| /// @param type the result type of the expression |
| /// @param lhs the lhs of the add |
| /// @param rhs the rhs of the add |
| /// @returns the operation |
| template <typename LHS, typename RHS> |
| ir::CoreBinary* ShiftRight(const core::type::Type* type, LHS&& lhs, RHS&& rhs) { |
| return Binary(BinaryOp::kShiftRight, type, std::forward<LHS>(lhs), std::forward<RHS>(rhs)); |
| } |
| |
| /// Creates an ShiftRight operation |
| /// @tparam TYPE the result type of the expression |
| /// @param lhs the lhs of the add |
| /// @param rhs the rhs of the add |
| /// @returns the operation |
| template <typename TYPE, typename LHS, typename RHS> |
| ir::CoreBinary* ShiftRight(LHS&& lhs, RHS&& rhs) { |
| auto* type = ir.Types().Get<TYPE>(); |
| return ShiftRight(type, std::forward<LHS>(lhs), std::forward<RHS>(rhs)); |
| } |
| |
| /// Creates an Add operation |
| /// @param type the result type of the expression |
| /// @param lhs the lhs of the add |
| /// @param rhs the rhs of the add |
| /// @returns the operation |
| template <typename LHS, typename RHS> |
| ir::CoreBinary* Add(const core::type::Type* type, LHS&& lhs, RHS&& rhs) { |
| return Binary(BinaryOp::kAdd, type, std::forward<LHS>(lhs), std::forward<RHS>(rhs)); |
| } |
| |
| /// Creates an Add operation |
| /// @tparam TYPE the result type of the expression |
| /// @param lhs the lhs of the add |
| /// @param rhs the rhs of the add |
| /// @returns the operation |
| template <typename TYPE, typename LHS, typename RHS> |
| ir::CoreBinary* Add(LHS&& lhs, RHS&& rhs) { |
| auto* type = ir.Types().Get<TYPE>(); |
| return Add(type, std::forward<LHS>(lhs), std::forward<RHS>(rhs)); |
| } |
| |
| /// Creates an Subtract operation |
| /// @param type the result type of the expression |
| /// @param lhs the lhs of the add |
| /// @param rhs the rhs of the add |
| /// @returns the operation |
| template <typename LHS, typename RHS> |
| ir::CoreBinary* Subtract(const core::type::Type* type, LHS&& lhs, RHS&& rhs) { |
| return Binary(BinaryOp::kSubtract, type, std::forward<LHS>(lhs), std::forward<RHS>(rhs)); |
| } |
| |
| /// Creates an Subtract operation |
| /// @tparam TYPE the result type of the expression |
| /// @param lhs the lhs of the add |
| /// @param rhs the rhs of the add |
| /// @returns the operation |
| template <typename TYPE, typename LHS, typename RHS> |
| ir::CoreBinary* Subtract(LHS&& lhs, RHS&& rhs) { |
| auto* type = ir.Types().Get<TYPE>(); |
| return Subtract(type, std::forward<LHS>(lhs), std::forward<RHS>(rhs)); |
| } |
| |
| /// Creates an Multiply operation |
| /// @param type the result type of the expression |
| /// @param lhs the lhs of the add |
| /// @param rhs the rhs of the add |
| /// @returns the operation |
| template <typename LHS, typename RHS> |
| ir::CoreBinary* Multiply(const core::type::Type* type, LHS&& lhs, RHS&& rhs) { |
| return Binary(BinaryOp::kMultiply, type, std::forward<LHS>(lhs), std::forward<RHS>(rhs)); |
| } |
| |
| /// Creates an Multiply operation |
| /// @tparam TYPE the result type of the expression |
| /// @param lhs the lhs of the add |
| /// @param rhs the rhs of the add |
| /// @returns the operation |
| template <typename TYPE, typename LHS, typename RHS> |
| ir::CoreBinary* Multiply(LHS&& lhs, RHS&& rhs) { |
| auto* type = ir.Types().Get<TYPE>(); |
| return Multiply(type, std::forward<LHS>(lhs), std::forward<RHS>(rhs)); |
| } |
| |
| /// Creates an Divide operation |
| /// @param type the result type of the expression |
| /// @param lhs the lhs of the add |
| /// @param rhs the rhs of the add |
| /// @returns the operation |
| template <typename LHS, typename RHS> |
| ir::CoreBinary* Divide(const core::type::Type* type, LHS&& lhs, RHS&& rhs) { |
| return Binary(BinaryOp::kDivide, type, std::forward<LHS>(lhs), std::forward<RHS>(rhs)); |
| } |
| |
| /// Creates an Divide operation |
| /// @tparam TYPE the result type of the expression |
| /// @param lhs the lhs of the add |
| /// @param rhs the rhs of the add |
| /// @returns the operation |
| template <typename TYPE, typename LHS, typename RHS> |
| ir::CoreBinary* Divide(LHS&& lhs, RHS&& rhs) { |
| auto* type = ir.Types().Get<TYPE>(); |
| return Divide(type, std::forward<LHS>(lhs), std::forward<RHS>(rhs)); |
| } |
| |
| /// Creates an Modulo operation |
| /// @param type the result type of the expression |
| /// @param lhs the lhs of the add |
| /// @param rhs the rhs of the add |
| /// @returns the operation |
| template <typename LHS, typename RHS> |
| ir::CoreBinary* Modulo(const core::type::Type* type, LHS&& lhs, RHS&& rhs) { |
| return Binary(BinaryOp::kModulo, type, std::forward<LHS>(lhs), std::forward<RHS>(rhs)); |
| } |
| |
| /// Creates an Modulo operation |
| /// @tparam TYPE the result type of the expression |
| /// @param lhs the lhs of the add |
| /// @param rhs the rhs of the add |
| /// @returns the operation |
| template <typename TYPE, typename LHS, typename RHS> |
| ir::CoreBinary* Modulo(LHS&& lhs, RHS&& rhs) { |
| auto* type = ir.Types().Get<TYPE>(); |
| return Modulo(type, std::forward<LHS>(lhs), std::forward<RHS>(rhs)); |
| } |
| |
| /// Creates an op for `op val` |
| /// @param op the unary operator |
| /// @param type the result type of the binary expression |
| /// @param val the value of the operation |
| /// @returns the operation |
| template <typename VAL> |
| ir::CoreUnary* Unary(UnaryOp op, const core::type::Type* type, VAL&& val) { |
| auto* value = Value(std::forward<VAL>(val)); |
| return Append( |
| ir.allocators.instructions.Create<ir::CoreUnary>(InstructionResult(type), op, value)); |
| } |
| |
| /// Creates an op for `op val` |
| /// @param op the unary operator |
| /// @tparam TYPE the result type of the binary expression |
| /// @param val the value of the operation |
| /// @returns the operation |
| template <typename TYPE, typename VAL> |
| ir::CoreUnary* Unary(UnaryOp op, VAL&& val) { |
| auto* type = ir.Types().Get<TYPE>(); |
| return Unary(op, type, std::forward<VAL>(val)); |
| } |
| |
| /// Creates a Complement operation |
| /// @param type the result type of the expression |
| /// @param val the value |
| /// @returns the operation |
| template <typename VAL> |
| ir::CoreUnary* Complement(const core::type::Type* type, VAL&& val) { |
| return Unary(UnaryOp::kComplement, type, std::forward<VAL>(val)); |
| } |
| |
| /// Creates a Complement operation |
| /// @tparam TYPE the result type of the expression |
| /// @param val the value |
| /// @returns the operation |
| template <typename TYPE, typename VAL> |
| ir::CoreUnary* Complement(VAL&& val) { |
| auto* type = ir.Types().Get<TYPE>(); |
| return Complement(type, std::forward<VAL>(val)); |
| } |
| |
| /// Creates a Negation operation |
| /// @param type the result type of the expression |
| /// @param val the value |
| /// @returns the operation |
| template <typename VAL> |
| ir::CoreUnary* Negation(const core::type::Type* type, VAL&& val) { |
| return Unary(UnaryOp::kNegation, type, std::forward<VAL>(val)); |
| } |
| |
| /// Creates a Negation operation |
| /// @tparam TYPE the result type of the expression |
| /// @param val the value |
| /// @returns the operation |
| template <typename TYPE, typename VAL> |
| ir::CoreUnary* Negation(VAL&& val) { |
| auto* type = ir.Types().Get<TYPE>(); |
| return Negation(type, std::forward<VAL>(val)); |
| } |
| |
| /// Creates a Not operation |
| /// @param type the result type of the expression |
| /// @param val the value |
| /// @returns the operation |
| template <typename VAL> |
| ir::CoreBinary* Not(const core::type::Type* type, VAL&& val) { |
| if (auto* vec = type->As<core::type::Vector>()) { |
| return Equal(type, std::forward<VAL>(val), Splat(vec, false, vec->Width())); |
| } else { |
| return Equal(type, std::forward<VAL>(val), Constant(false)); |
| } |
| } |
| |
| /// Creates a Not operation |
| /// @tparam TYPE the result type of the expression |
| /// @param val the value |
| /// @returns the operation |
| template <typename TYPE, typename VAL> |
| ir::CoreBinary* Not(VAL&& val) { |
| auto* type = ir.Types().Get<TYPE>(); |
| return Not(type, std::forward<VAL>(val)); |
| } |
| |
| /// Creates a bitcast instruction |
| /// @param type the result type of the bitcast |
| /// @param val the value being bitcast |
| /// @returns the instruction |
| template <typename VAL> |
| ir::Bitcast* Bitcast(const core::type::Type* type, VAL&& val) { |
| auto* value = Value(std::forward<VAL>(val)); |
| return Append( |
| ir.allocators.instructions.Create<ir::Bitcast>(InstructionResult(type), value)); |
| } |
| |
| /// Creates a bitcast instruction |
| /// @tparam TYPE the result type of the bitcast |
| /// @param val the value being bitcast |
| /// @returns the instruction |
| template <typename TYPE, typename VAL> |
| ir::Bitcast* Bitcast(VAL&& val) { |
| auto* type = ir.Types().Get<TYPE>(); |
| auto* value = Value(std::forward<VAL>(val)); |
| return Bitcast(type, value); |
| } |
| |
| /// Creates a discard instruction |
| /// @returns the instruction |
| ir::Discard* Discard(); |
| |
| /// Creates a user function call instruction with an existing instruction result |
| /// @param result the instruction result to use |
| /// @param func the function to call |
| /// @param args the call arguments |
| /// @returns the instruction |
| template <typename... ARGS> |
| ir::UserCall* CallWithResult(ir::InstructionResult* result, |
| ir::Function* func, |
| ARGS&&... args) { |
| return Append(ir.allocators.instructions.Create<ir::UserCall>( |
| result, func, Values(std::forward<ARGS>(args)...))); |
| } |
| |
| /// Creates a user function call instruction |
| /// @param func the function to call |
| /// @param args the call arguments |
| /// @returns the instruction |
| template <typename... ARGS> |
| ir::UserCall* Call(ir::Function* func, ARGS&&... args) { |
| return Call(func->ReturnType(), func, std::forward<ARGS>(args)...); |
| } |
| |
| /// Creates a user function call instruction |
| /// @param type the return type of the call |
| /// @param func the function to call |
| /// @param args the call arguments |
| /// @returns the instruction |
| template <typename... ARGS> |
| ir::UserCall* Call(const core::type::Type* type, ir::Function* func, ARGS&&... args) { |
| return CallWithResult(InstructionResult(type), func, Values(std::forward<ARGS>(args)...)); |
| } |
| |
| /// Creates a user function call instruction |
| /// @tparam TYPE the return type of the call |
| /// @param func the function to call |
| /// @param args the call arguments |
| /// @returns the instruction |
| template <typename TYPE, typename... ARGS> |
| ir::UserCall* Call(ir::Function* func, ARGS&&... args) { |
| auto* type = ir.Types().Get<TYPE>(); |
| return CallWithResult(InstructionResult(type), func, Values(std::forward<ARGS>(args)...)); |
| } |
| |
| /// Creates a core builtin call instruction with an existing instruction result |
| /// @param result the instruction result to use |
| /// @param func the builtin function to call |
| /// @param args the call arguments |
| /// @returns the instruction |
| template <typename... ARGS> |
| ir::CoreBuiltinCall* CallWithResult(core::ir::InstructionResult* result, |
| core::BuiltinFn func, |
| ARGS&&... args) { |
| return Append(ir.allocators.instructions.Create<ir::CoreBuiltinCall>( |
| result, func, Values(std::forward<ARGS>(args)...))); |
| } |
| |
| /// Creates a core builtin call instruction |
| /// @param type the return type of the call |
| /// @param func the builtin function to call |
| /// @param args the call arguments |
| /// @returns the instruction |
| template <typename... ARGS> |
| ir::CoreBuiltinCall* Call(const core::type::Type* type, core::BuiltinFn func, ARGS&&... args) { |
| return CallWithResult(InstructionResult(type), func, Values(std::forward<ARGS>(args)...)); |
| } |
| |
| /// Creates a core builtin call instruction |
| /// @tparam TYPE the return type of the call |
| /// @param func the builtin function to call |
| /// @param args the call arguments |
| /// @returns the instruction |
| template <typename TYPE, typename... ARGS> |
| ir::CoreBuiltinCall* Call(core::BuiltinFn func, ARGS&&... args) { |
| auto* type = ir.Types().Get<TYPE>(); |
| return CallWithResult(InstructionResult(type), func, Values(std::forward<ARGS>(args)...)); |
| } |
| |
| /// Creates a builtin call instruction with an existing instruction result |
| /// @param result the instruction result to use |
| /// @param func the builtin function to call |
| /// @param args the call arguments |
| /// @returns the instruction |
| template <typename KLASS, typename FUNC, typename... ARGS> |
| tint::traits::EnableIf<tint::traits::IsTypeOrDerived<KLASS, ir::BuiltinCall>, KLASS*> |
| CallWithResult(ir::InstructionResult* result, FUNC func, ARGS&&... args) { |
| return Append(ir.allocators.instructions.Create<KLASS>( |
| result, func, Values(std::forward<ARGS>(args)...))); |
| } |
| |
| /// Creates a builtin call instruction |
| /// @param type the return type of the call |
| /// @param func the builtin function to call |
| /// @param args the call arguments |
| /// @returns the instruction |
| template <typename KLASS, typename FUNC, typename... ARGS> |
| tint::traits::EnableIf<tint::traits::IsTypeOrDerived<KLASS, ir::BuiltinCall>, KLASS*> |
| Call(const core::type::Type* type, FUNC func, ARGS&&... args) { |
| return CallWithResult<KLASS>(InstructionResult(type), func, |
| Values(std::forward<ARGS>(args)...)); |
| } |
| |
| /// Creates a value conversion instruction to the template type T |
| /// @param val the value to be converted |
| /// @returns the instruction |
| template <typename T, typename VAL> |
| ir::Convert* Convert(VAL&& val) { |
| auto* type = ir.Types().Get<T>(); |
| return Convert(type, std::forward<VAL>(val)); |
| } |
| |
| /// Creates a value conversion instruction |
| /// @param to the type converted to |
| /// @param val the value to be converted |
| /// @returns the instruction |
| template <typename VAL> |
| ir::Convert* Convert(const core::type::Type* to, VAL&& val) { |
| return Append(ir.allocators.instructions.Create<ir::Convert>( |
| InstructionResult(to), Value(std::forward<VAL>(val)))); |
| } |
| |
| /// Creates a value constructor instruction with an existing instruction result |
| /// @param result the instruction result to use |
| /// @param args the arguments to the constructor |
| /// @returns the instruction |
| template <typename... ARGS> |
| ir::Construct* ConstructWithResult(ir::InstructionResult* result, ARGS&&... args) { |
| return Append(ir.allocators.instructions.Create<ir::Construct>( |
| result, Values(std::forward<ARGS>(args)...))); |
| } |
| |
| /// Creates a value constructor instruction to the template type T |
| /// @param args the arguments to the constructor |
| /// @returns the instruction |
| template <typename T, typename... ARGS> |
| ir::Construct* Construct(ARGS&&... args) { |
| auto* type = ir.Types().Get<T>(); |
| return Construct(type, std::forward<ARGS>(args)...); |
| } |
| |
| /// Creates a value constructor instruction |
| /// @param type the type to constructed |
| /// @param args the arguments to the constructor |
| /// @returns the instruction |
| template <typename... ARGS> |
| ir::Construct* Construct(const core::type::Type* type, ARGS&&... args) { |
| return ConstructWithResult(InstructionResult(type), Values(std::forward<ARGS>(args)...)); |
| } |
| |
| /// Creates a load instruction with an existing result |
| /// @param result the instruction result to use |
| /// @param from the expression being loaded from |
| /// @returns the instruction |
| template <typename VAL> |
| ir::Load* LoadWithResult(ir::InstructionResult* result, VAL&& from) { |
| auto* value = Value(std::forward<VAL>(from)); |
| return Append(ir.allocators.instructions.Create<ir::Load>(result, value)); |
| } |
| |
| /// Creates a load instruction |
| /// @param from the expression being loaded from |
| /// @returns the instruction |
| template <typename VAL> |
| ir::Load* Load(VAL&& from) { |
| auto* value = Value(std::forward<VAL>(from)); |
| return LoadWithResult(InstructionResult(value->Type()->UnwrapPtrOrRef()), value); |
| } |
| |
| /// Creates a store instruction |
| /// @param to the expression being stored too |
| /// @param from the expression being stored |
| /// @returns the instruction |
| template <typename TO, typename FROM> |
| ir::Store* Store(TO&& to, FROM&& from) { |
| CheckForNonDeterministicEvaluation<TO, FROM>(); |
| auto* to_val = Value(std::forward<TO>(to)); |
| auto* from_val = Value(std::forward<FROM>(from)); |
| return Append(ir.allocators.instructions.Create<ir::Store>(to_val, from_val)); |
| } |
| |
| /// Creates a store vector element instruction |
| /// @param to the vector pointer expression being stored too |
| /// @param index the new vector element index |
| /// @param value the new vector element expression |
| /// @returns the instruction |
| template <typename TO, typename INDEX, typename VALUE> |
| ir::StoreVectorElement* StoreVectorElement(TO&& to, INDEX&& index, VALUE&& value) { |
| CheckForNonDeterministicEvaluation<TO, INDEX, VALUE>(); |
| auto* to_val = Value(std::forward<TO>(to)); |
| auto* index_val = Value(std::forward<INDEX>(index)); |
| auto* value_val = Value(std::forward<VALUE>(value)); |
| return Append(ir.allocators.instructions.Create<ir::StoreVectorElement>(to_val, index_val, |
| value_val)); |
| } |
| |
| /// Creates a load vector element instruction with an existing instruction result |
| /// @param result the instruction result to use |
| /// @param from the vector pointer expression being loaded from |
| /// @param index the new vector element index |
| /// @returns the instruction |
| template <typename FROM, typename INDEX> |
| ir::LoadVectorElement* LoadVectorElementWithResult(ir::InstructionResult* result, |
| FROM&& from, |
| INDEX&& index) { |
| CheckForNonDeterministicEvaluation<FROM, INDEX>(); |
| auto* from_val = Value(std::forward<FROM>(from)); |
| auto* index_val = Value(std::forward<INDEX>(index)); |
| return Append( |
| ir.allocators.instructions.Create<ir::LoadVectorElement>(result, from_val, index_val)); |
| } |
| |
| /// Creates a load vector element instruction |
| /// @param from the vector pointer expression being loaded from |
| /// @param index the new vector element index |
| /// @returns the instruction |
| template <typename FROM, typename INDEX> |
| ir::LoadVectorElement* LoadVectorElement(FROM&& from, INDEX&& index) { |
| CheckForNonDeterministicEvaluation<FROM, INDEX>(); |
| auto* from_val = Value(std::forward<FROM>(from)); |
| auto* index_val = Value(std::forward<INDEX>(index)); |
| auto* res = InstructionResult(VectorPtrElementType(from_val->Type())); |
| return LoadVectorElementWithResult(res, from_val, index_val); |
| } |
| |
| /// Creates a new `var` declaration |
| /// @param type the var type |
| /// @returns the instruction |
| ir::Var* Var(const core::type::MemoryView* type); |
| |
| /// Creates a new `var` declaration with a name |
| /// @param name the var name |
| /// @param type the var type |
| /// @returns the instruction |
| ir::Var* Var(std::string_view name, const core::type::MemoryView* type); |
| |
| /// Creates a new `var` declaration with a name and initializer value |
| /// @tparam SPACE the var's address space |
| /// @tparam ACCESS the var's access mode |
| /// @param name the var name |
| /// @param init the var initializer |
| /// @returns the instruction |
| template < |
| core::AddressSpace SPACE = core::AddressSpace::kFunction, |
| core::Access ACCESS = core::Access::kReadWrite, |
| typename VALUE = void, |
| typename = std::enable_if_t< |
| !traits::IsTypeOrDerived<std::remove_pointer_t<std::decay_t<VALUE>>, core::type::Type>>> |
| ir::Var* Var(std::string_view name, VALUE&& init) { |
| auto* val = Value(std::forward<VALUE>(init)); |
| if (TINT_UNLIKELY(!val)) { |
| TINT_ASSERT(val); |
| return nullptr; |
| } |
| auto* var = Var(name, ir.Types().ptr(SPACE, val->Type(), ACCESS)); |
| var->SetInitializer(val); |
| ir.SetName(var->Result(0), name); |
| return var; |
| } |
| |
| /// Creates a new `var` declaration |
| /// @tparam SPACE the var's address space |
| /// @tparam T the storage pointer's element type |
| /// @tparam ACCESS the var's access mode |
| /// @returns the instruction |
| template <core::AddressSpace SPACE, |
| typename T, |
| core::Access ACCESS = core::type::DefaultAccessFor(SPACE)> |
| ir::Var* Var() { |
| return Var(ir.Types().ptr<SPACE, T, ACCESS>()); |
| } |
| |
| /// Creates a new `var` declaration with a name |
| /// @tparam SPACE the var's address space |
| /// @tparam T the storage pointer's element type |
| /// @tparam ACCESS the var's access mode |
| /// @param name the var name |
| /// @returns the instruction |
| template <core::AddressSpace SPACE, |
| typename T, |
| core::Access ACCESS = core::type::DefaultAccessFor(SPACE)> |
| ir::Var* Var(std::string_view name) { |
| return Var(name, ir.Types().ptr<SPACE, T, ACCESS>()); |
| } |
| |
| /// Creates a new `let` declaration |
| /// @param name the let name |
| /// @param value the let value |
| /// @returns the instruction |
| template <typename VALUE> |
| ir::Let* Let(std::string_view name, VALUE&& value) { |
| auto* val = Value(std::forward<VALUE>(value)); |
| if (TINT_UNLIKELY(!val)) { |
| TINT_ASSERT(val); |
| return nullptr; |
| } |
| auto* let = |
| Append(ir.allocators.instructions.Create<ir::Let>(InstructionResult(val->Type()), val)); |
| ir.SetName(let->Result(0), name); |
| return let; |
| } |
| |
| /// Creates a new `let` declaration, with an unassigned value |
| /// @param type the let type |
| /// @returns the instruction |
| ir::Let* Let(const type::Type* type) { |
| auto* let = ir.allocators.instructions.Create<ir::Let>(InstructionResult(type), nullptr); |
| Append(let); |
| return let; |
| } |
| |
| /// Creates a return instruction |
| /// @param func the function being returned |
| /// @returns the instruction |
| ir::Return* Return(ir::Function* func) { |
| return Append(ir.allocators.instructions.Create<ir::Return>(func)); |
| } |
| |
| /// Creates a return instruction |
| /// @param func the function being returned |
| /// @param value the return value |
| /// @returns the instruction |
| template <typename ARG> |
| ir::Return* Return(ir::Function* func, ARG&& value) { |
| if constexpr (std::is_same_v<std::decay_t<ARG>, ir::Value*>) { |
| if (value == nullptr) { |
| return Append(ir.allocators.instructions.Create<ir::Return>(func)); |
| } |
| } |
| auto* val = Value(std::forward<ARG>(value)); |
| return Append(ir.allocators.instructions.Create<ir::Return>(func, val)); |
| } |
| |
| /// Creates a loop next iteration instruction |
| /// @param loop the loop being iterated |
| /// @param args the arguments for the target MultiInBlock |
| /// @returns the instruction |
| template <typename... ARGS> |
| ir::NextIteration* NextIteration(ir::Loop* loop, ARGS&&... args) { |
| return Append(ir.allocators.instructions.Create<ir::NextIteration>( |
| loop, Values(std::forward<ARGS>(args)...))); |
| } |
| |
| /// Creates a loop break-if instruction |
| /// @param condition the break condition |
| /// @param loop the loop being iterated |
| /// @param args the arguments for the target MultiInBlock |
| /// @returns the instruction |
| template <typename CONDITION, typename... ARGS> |
| ir::BreakIf* BreakIf(ir::Loop* loop, CONDITION&& condition, ARGS&&... args) { |
| CheckForNonDeterministicEvaluation<CONDITION, ARGS...>(); |
| auto* cond_val = Value(std::forward<CONDITION>(condition)); |
| return Append(ir.allocators.instructions.Create<ir::BreakIf>( |
| cond_val, loop, Values(std::forward<ARGS>(args)...))); |
| } |
| |
| /// Creates a continue instruction |
| /// @param loop the loop being continued |
| /// @param args the arguments for the target MultiInBlock |
| /// @returns the instruction |
| template <typename... ARGS> |
| ir::Continue* Continue(ir::Loop* loop, ARGS&&... args) { |
| return Append(ir.allocators.instructions.Create<ir::Continue>( |
| loop, Values(std::forward<ARGS>(args)...))); |
| } |
| |
| /// Creates an exit switch instruction |
| /// @param sw the switch being exited |
| /// @param args the arguments for the target MultiInBlock |
| /// @returns the instruction |
| template <typename... ARGS> |
| ir::ExitSwitch* ExitSwitch(ir::Switch* sw, ARGS&&... args) { |
| return Append(ir.allocators.instructions.Create<ir::ExitSwitch>( |
| sw, Values(std::forward<ARGS>(args)...))); |
| } |
| |
| /// Creates an exit loop instruction |
| /// @param loop the loop being exited |
| /// @param args the arguments for the target MultiInBlock |
| /// @returns the instruction |
| template <typename... ARGS> |
| ir::ExitLoop* ExitLoop(ir::Loop* loop, ARGS&&... args) { |
| return Append(ir.allocators.instructions.Create<ir::ExitLoop>( |
| loop, Values(std::forward<ARGS>(args)...))); |
| } |
| |
| /// Creates an exit if instruction |
| /// @param i the if being exited |
| /// @param args the arguments for the target MultiInBlock |
| /// @returns the instruction |
| template <typename... ARGS> |
| ir::ExitIf* ExitIf(ir::If* i, ARGS&&... args) { |
| return Append( |
| ir.allocators.instructions.Create<ir::ExitIf>(i, Values(std::forward<ARGS>(args)...))); |
| } |
| |
| /// Creates an exit instruction for the given control instruction |
| /// @param inst the control instruction being exited |
| /// @param args the arguments for the target MultiInBlock |
| /// @returns the exit instruction, or nullptr if the control instruction is not supported. |
| template <typename... ARGS> |
| ir::Exit* Exit(ir::ControlInstruction* inst, ARGS&&... args) { |
| return tint::Switch( |
| inst, // |
| [&](ir::If* i) { return ExitIf(i, std::forward<ARGS>(args)...); }, |
| [&](ir::Loop* i) { return ExitLoop(i, std::forward<ARGS>(args)...); }, |
| [&](ir::Switch* i) { return ExitSwitch(i, std::forward<ARGS>(args)...); }); |
| } |
| |
| /// Creates a new `BlockParam` |
| /// @param type the parameter type |
| /// @returns the value |
| ir::BlockParam* BlockParam(const core::type::Type* type); |
| |
| /// Creates a new `BlockParam` with a name. |
| /// @param name the parameter name |
| /// @param type the parameter type |
| /// @returns the value |
| ir::BlockParam* BlockParam(std::string_view name, const core::type::Type* type); |
| |
| /// Creates a new `BlockParam` with a name. |
| /// @tparam TYPE the parameter type |
| /// @param name the parameter name |
| /// @returns the value |
| template <typename TYPE> |
| ir::BlockParam* BlockParam(std::string_view name) { |
| auto* type = ir.Types().Get<TYPE>(); |
| return BlockParam(name, type); |
| } |
| |
| /// Creates a new `FunctionParam` |
| /// @param type the parameter type |
| /// @returns the value |
| ir::FunctionParam* FunctionParam(const core::type::Type* type); |
| |
| /// Creates a new `FunctionParam` with a name. |
| /// @param name the parameter name |
| /// @param type the parameter type |
| /// @returns the value |
| ir::FunctionParam* FunctionParam(std::string_view name, const core::type::Type* type); |
| |
| /// Creates a new `FunctionParam` with a name. |
| /// @tparam TYPE the parameter type |
| /// @param name the parameter name |
| /// @returns the value |
| template <typename TYPE> |
| ir::FunctionParam* FunctionParam(std::string_view name) { |
| auto* type = ir.Types().Get<TYPE>(); |
| return FunctionParam(name, type); |
| } |
| |
| /// Creates a new `FunctionParam` |
| /// @tparam TYPE the parameter type |
| /// @returns the value |
| template <typename TYPE> |
| ir::FunctionParam* FunctionParam() { |
| auto* type = ir.Types().Get<TYPE>(); |
| return FunctionParam(type); |
| } |
| |
| /// Creates a new `Access` with an existing instruction result |
| /// @param result the instruction result to use |
| /// @param object the object being accessed |
| /// @param indices the access indices |
| /// @returns the instruction |
| template <typename OBJ, typename... ARGS> |
| ir::Access* AccessWithResult(ir::InstructionResult* result, OBJ&& object, ARGS&&... indices) { |
| CheckForNonDeterministicEvaluation<OBJ, ARGS...>(); |
| auto* obj_val = Value(std::forward<OBJ>(object)); |
| return Append(ir.allocators.instructions.Create<ir::Access>( |
| result, obj_val, Values(std::forward<ARGS>(indices)...))); |
| } |
| |
| /// Creates a new `Access` |
| /// @param type the return type |
| /// @param object the object being accessed |
| /// @param indices the access indices |
| /// @returns the instruction |
| template <typename OBJ, typename... ARGS> |
| ir::Access* Access(const core::type::Type* type, OBJ&& object, ARGS&&... indices) { |
| return AccessWithResult(InstructionResult(type), std::forward<OBJ>(object), |
| Values(std::forward<ARGS>(indices)...)); |
| } |
| |
| /// Creates a new `Access` |
| /// @tparam TYPE the return type |
| /// @param object the object being accessed |
| /// @param indices the access indices |
| /// @returns the instruction |
| template <typename TYPE, typename OBJ, typename... ARGS> |
| ir::Access* Access(OBJ&& object, ARGS&&... indices) { |
| auto* type = ir.Types().Get<TYPE>(); |
| return Access(type, std::forward<OBJ>(object), std::forward<ARGS>(indices)...); |
| } |
| |
| /// Creates a new `Swizzle` |
| /// @param type the return type |
| /// @param object the object being swizzled |
| /// @param indices the swizzle indices |
| /// @returns the instruction |
| template <typename OBJ> |
| ir::Swizzle* Swizzle(const core::type::Type* type, OBJ&& object, VectorRef<uint32_t> indices) { |
| auto* obj_val = Value(std::forward<OBJ>(object)); |
| return Append(ir.allocators.instructions.Create<ir::Swizzle>(InstructionResult(type), |
| obj_val, std::move(indices))); |
| } |
| |
| /// Creates a new `Swizzle` |
| /// @tparam TYPE the return type |
| /// @param object the object being swizzled |
| /// @param indices the swizzle indices |
| /// @returns the instruction |
| template <typename TYPE, typename OBJ> |
| ir::Swizzle* Swizzle(OBJ&& object, VectorRef<uint32_t> indices) { |
| auto* type = ir.Types().Get<TYPE>(); |
| return Swizzle(type, std::forward<OBJ>(object), std::move(indices)); |
| } |
| |
| /// Creates a new `Swizzle` |
| /// @param type the return type |
| /// @param object the object being swizzled |
| /// @param indices the swizzle indices |
| /// @returns the instruction |
| template <typename OBJ> |
| ir::Swizzle* Swizzle(const core::type::Type* type, |
| OBJ&& object, |
| std::initializer_list<uint32_t> indices) { |
| auto* obj_val = Value(std::forward<OBJ>(object)); |
| return Append(ir.allocators.instructions.Create<ir::Swizzle>( |
| InstructionResult(type), obj_val, Vector<uint32_t, 4>(indices))); |
| } |
| |
| /// Name names the value or instruction with @p name |
| /// @param name the new name for the value or instruction |
| /// @param object the value or instruction |
| /// @return @p object |
| template <typename OBJECT> |
| OBJECT* Name(std::string_view name, OBJECT* object) { |
| ir.SetName(object, name); |
| return object; |
| } |
| |
| /// Creates a terminate invocation instruction |
| /// @returns the instruction |
| ir::TerminateInvocation* TerminateInvocation(); |
| |
| /// Creates an unreachable instruction |
| /// @returns the instruction |
| ir::Unreachable* Unreachable(); |
| |
| /// Creates a new runtime value |
| /// @param type the return type |
| /// @returns the value |
| ir::InstructionResult* InstructionResult(const core::type::Type* type) { |
| return ir.allocators.values.Create<ir::InstructionResult>(type); |
| } |
| |
| /// Creates a new runtime value |
| /// @tparam TYPE the return type |
| /// @returns the value |
| template <typename TYPE> |
| ir::InstructionResult* InstructionResult() { |
| auto* type = ir.Types().Get<TYPE>(); |
| return InstructionResult(type); |
| } |
| |
| /// Create a ranged loop with a callback to build the loop body. |
| /// @param ty the type manager to use for new types |
| /// @param start the first loop index |
| /// @param end one past the last loop index |
| /// @param step the loop index step amount |
| /// @param cb the callback to call for the loop body |
| template <typename START, typename END, typename STEP, typename FUNCTION> |
| void LoopRange(core::type::Manager& ty, START&& start, END&& end, STEP&& step, FUNCTION&& cb) { |
| auto* start_value = Value(std::forward<START>(start)); |
| auto* end_value = Value(std::forward<END>(end)); |
| auto* step_value = Value(std::forward<STEP>(step)); |
| |
| auto* loop = Loop(); |
| auto* idx = BlockParam("idx", start_value->Type()); |
| loop->Body()->SetParams({idx}); |
| Append(loop->Initializer(), [&] { |
| // Start the loop with `idx = start`. |
| NextIteration(loop, start_value); |
| }); |
| Append(loop->Body(), [&] { |
| // Loop until `idx == end`. |
| auto* breakif = If(GreaterThanEqual(ty.bool_(), idx, end_value)); |
| Append(breakif->True(), [&] { // |
| ExitLoop(loop); |
| }); |
| |
| cb(idx); |
| |
| Continue(loop); |
| }); |
| Append(loop->Continuing(), [&] { |
| // Update the index with `idx += step` and go to the next iteration. |
| auto* new_idx = Add(idx->Type(), idx, step_value); |
| NextIteration(loop, new_idx); |
| }); |
| } |
| |
| /// The IR module. |
| Module& ir; |
| |
| private: |
| /// @returns the element type of the vector-pointer type |
| /// Asserts and return i32 if @p type is not a pointer to a vector |
| const core::type::Type* VectorPtrElementType(const core::type::Type* type); |
| }; |
| |
| } // namespace tint::core::ir |
| |
| #endif // SRC_TINT_LANG_CORE_IR_BUILDER_H_ |