blob: a2b4e766f01290f60f7c5a34e83bb51c09f1e82e [file] [log] [blame]
// Copyright 2017 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "dawn_native/ShaderModule.h"
#include "common/HashUtils.h"
#include "dawn_native/BindGroupLayout.h"
#include "dawn_native/Device.h"
#include "dawn_native/Pipeline.h"
#include "dawn_native/PipelineLayout.h"
#include <spirv-tools/libspirv.hpp>
#include <spirv_cross.hpp>
#ifdef DAWN_ENABLE_WGSL
// Tint include must be after spirv_cross.hpp, because spirv-cross has its own
// version of spirv_headers.
// clang-format off
#include <tint/tint.h>
// clang-format on
#endif // DAWN_ENABLE_WGSL
#include <sstream>
namespace dawn_native {
namespace {
Format::Type SpirvCrossBaseTypeToFormatType(spirv_cross::SPIRType::BaseType spirvBaseType) {
switch (spirvBaseType) {
case spirv_cross::SPIRType::Float:
return Format::Float;
case spirv_cross::SPIRType::Int:
return Format::Sint;
case spirv_cross::SPIRType::UInt:
return Format::Uint;
default:
UNREACHABLE();
return Format::Other;
}
}
wgpu::TextureViewDimension SpirvDimToTextureViewDimension(spv::Dim dim, bool arrayed) {
switch (dim) {
case spv::Dim::Dim1D:
return wgpu::TextureViewDimension::e1D;
case spv::Dim::Dim2D:
if (arrayed) {
return wgpu::TextureViewDimension::e2DArray;
} else {
return wgpu::TextureViewDimension::e2D;
}
case spv::Dim::Dim3D:
return wgpu::TextureViewDimension::e3D;
case spv::Dim::DimCube:
if (arrayed) {
return wgpu::TextureViewDimension::CubeArray;
} else {
return wgpu::TextureViewDimension::Cube;
}
default:
UNREACHABLE();
return wgpu::TextureViewDimension::Undefined;
}
}
wgpu::TextureViewDimension ToWGPUTextureViewDimension(
shaderc_spvc_texture_view_dimension dim) {
switch (dim) {
case shaderc_spvc_texture_view_dimension_undefined:
return wgpu::TextureViewDimension::Undefined;
case shaderc_spvc_texture_view_dimension_e1D:
return wgpu::TextureViewDimension::e1D;
case shaderc_spvc_texture_view_dimension_e2D:
return wgpu::TextureViewDimension::e2D;
case shaderc_spvc_texture_view_dimension_e2D_array:
return wgpu::TextureViewDimension::e2DArray;
case shaderc_spvc_texture_view_dimension_cube:
return wgpu::TextureViewDimension::Cube;
case shaderc_spvc_texture_view_dimension_cube_array:
return wgpu::TextureViewDimension::CubeArray;
case shaderc_spvc_texture_view_dimension_e3D:
return wgpu::TextureViewDimension::e3D;
}
UNREACHABLE();
}
Format::Type ToDawnFormatType(shaderc_spvc_texture_format_type type) {
switch (type) {
case shaderc_spvc_texture_format_type_float:
return Format::Type::Float;
case shaderc_spvc_texture_format_type_sint:
return Format::Type::Sint;
case shaderc_spvc_texture_format_type_uint:
return Format::Type::Uint;
case shaderc_spvc_texture_format_type_other:
return Format::Type::Other;
}
UNREACHABLE();
}
wgpu::BindingType ToWGPUBindingType(shaderc_spvc_binding_type type) {
switch (type) {
case shaderc_spvc_binding_type_uniform_buffer:
return wgpu::BindingType::UniformBuffer;
case shaderc_spvc_binding_type_storage_buffer:
return wgpu::BindingType::StorageBuffer;
case shaderc_spvc_binding_type_readonly_storage_buffer:
return wgpu::BindingType::ReadonlyStorageBuffer;
case shaderc_spvc_binding_type_sampler:
return wgpu::BindingType::Sampler;
case shaderc_spvc_binding_type_comparison_sampler:
return wgpu::BindingType::ComparisonSampler;
case shaderc_spvc_binding_type_sampled_texture:
return wgpu::BindingType::SampledTexture;
case shaderc_spvc_binding_type_readonly_storage_texture:
return wgpu::BindingType::ReadonlyStorageTexture;
case shaderc_spvc_binding_type_writeonly_storage_texture:
return wgpu::BindingType::WriteonlyStorageTexture;
case shaderc_spvc_binding_type_storage_texture:
return wgpu::BindingType::StorageTexture;
default:
UNREACHABLE();
}
}
SingleShaderStage ToSingleShaderStage(shaderc_spvc_execution_model execution_model) {
switch (execution_model) {
case shaderc_spvc_execution_model_vertex:
return SingleShaderStage::Vertex;
case shaderc_spvc_execution_model_fragment:
return SingleShaderStage::Fragment;
case shaderc_spvc_execution_model_glcompute:
return SingleShaderStage::Compute;
default:
UNREACHABLE();
}
}
wgpu::TextureFormat ToWGPUTextureFormat(spv::ImageFormat format) {
switch (format) {
case spv::ImageFormatR8:
return wgpu::TextureFormat::R8Unorm;
case spv::ImageFormatR8Snorm:
return wgpu::TextureFormat::R8Snorm;
case spv::ImageFormatR8ui:
return wgpu::TextureFormat::R8Uint;
case spv::ImageFormatR8i:
return wgpu::TextureFormat::R8Sint;
case spv::ImageFormatR16ui:
return wgpu::TextureFormat::R16Uint;
case spv::ImageFormatR16i:
return wgpu::TextureFormat::R16Sint;
case spv::ImageFormatR16f:
return wgpu::TextureFormat::R16Float;
case spv::ImageFormatRg8:
return wgpu::TextureFormat::RG8Unorm;
case spv::ImageFormatRg8Snorm:
return wgpu::TextureFormat::RG8Snorm;
case spv::ImageFormatRg8ui:
return wgpu::TextureFormat::RG8Uint;
case spv::ImageFormatRg8i:
return wgpu::TextureFormat::RG8Sint;
case spv::ImageFormatR32f:
return wgpu::TextureFormat::R32Float;
case spv::ImageFormatR32ui:
return wgpu::TextureFormat::R32Uint;
case spv::ImageFormatR32i:
return wgpu::TextureFormat::R32Sint;
case spv::ImageFormatRg16ui:
return wgpu::TextureFormat::RG16Uint;
case spv::ImageFormatRg16i:
return wgpu::TextureFormat::RG16Sint;
case spv::ImageFormatRg16f:
return wgpu::TextureFormat::RG16Float;
case spv::ImageFormatRgba8:
return wgpu::TextureFormat::RGBA8Unorm;
case spv::ImageFormatRgba8Snorm:
return wgpu::TextureFormat::RGBA8Snorm;
case spv::ImageFormatRgba8ui:
return wgpu::TextureFormat::RGBA8Uint;
case spv::ImageFormatRgba8i:
return wgpu::TextureFormat::RGBA8Sint;
case spv::ImageFormatRgb10A2:
return wgpu::TextureFormat::RGB10A2Unorm;
case spv::ImageFormatR11fG11fB10f:
return wgpu::TextureFormat::RG11B10Float;
case spv::ImageFormatRg32f:
return wgpu::TextureFormat::RG32Float;
case spv::ImageFormatRg32ui:
return wgpu::TextureFormat::RG32Uint;
case spv::ImageFormatRg32i:
return wgpu::TextureFormat::RG32Sint;
case spv::ImageFormatRgba16ui:
return wgpu::TextureFormat::RGBA16Uint;
case spv::ImageFormatRgba16i:
return wgpu::TextureFormat::RGBA16Sint;
case spv::ImageFormatRgba16f:
return wgpu::TextureFormat::RGBA16Float;
case spv::ImageFormatRgba32f:
return wgpu::TextureFormat::RGBA32Float;
case spv::ImageFormatRgba32ui:
return wgpu::TextureFormat::RGBA32Uint;
case spv::ImageFormatRgba32i:
return wgpu::TextureFormat::RGBA32Sint;
default:
return wgpu::TextureFormat::Undefined;
}
}
wgpu::TextureFormat ToWGPUTextureFormat(shaderc_spvc_storage_texture_format format) {
switch (format) {
case shaderc_spvc_storage_texture_format_r8unorm:
return wgpu::TextureFormat::R8Unorm;
case shaderc_spvc_storage_texture_format_r8snorm:
return wgpu::TextureFormat::R8Snorm;
case shaderc_spvc_storage_texture_format_r8uint:
return wgpu::TextureFormat::R8Uint;
case shaderc_spvc_storage_texture_format_r8sint:
return wgpu::TextureFormat::R8Sint;
case shaderc_spvc_storage_texture_format_r16uint:
return wgpu::TextureFormat::R16Uint;
case shaderc_spvc_storage_texture_format_r16sint:
return wgpu::TextureFormat::R16Sint;
case shaderc_spvc_storage_texture_format_r16float:
return wgpu::TextureFormat::R16Float;
case shaderc_spvc_storage_texture_format_rg8unorm:
return wgpu::TextureFormat::RG8Unorm;
case shaderc_spvc_storage_texture_format_rg8snorm:
return wgpu::TextureFormat::RG8Snorm;
case shaderc_spvc_storage_texture_format_rg8uint:
return wgpu::TextureFormat::RG8Uint;
case shaderc_spvc_storage_texture_format_rg8sint:
return wgpu::TextureFormat::RG8Sint;
case shaderc_spvc_storage_texture_format_r32float:
return wgpu::TextureFormat::R32Float;
case shaderc_spvc_storage_texture_format_r32uint:
return wgpu::TextureFormat::R32Uint;
case shaderc_spvc_storage_texture_format_r32sint:
return wgpu::TextureFormat::R32Sint;
case shaderc_spvc_storage_texture_format_rg16uint:
return wgpu::TextureFormat::RG16Uint;
case shaderc_spvc_storage_texture_format_rg16sint:
return wgpu::TextureFormat::RG16Sint;
case shaderc_spvc_storage_texture_format_rg16float:
return wgpu::TextureFormat::RG16Float;
case shaderc_spvc_storage_texture_format_rgba8unorm:
return wgpu::TextureFormat::RGBA8Unorm;
case shaderc_spvc_storage_texture_format_rgba8snorm:
return wgpu::TextureFormat::RGBA8Snorm;
case shaderc_spvc_storage_texture_format_rgba8uint:
return wgpu::TextureFormat::RGBA8Uint;
case shaderc_spvc_storage_texture_format_rgba8sint:
return wgpu::TextureFormat::RGBA8Sint;
case shaderc_spvc_storage_texture_format_rgb10a2unorm:
return wgpu::TextureFormat::RGB10A2Unorm;
case shaderc_spvc_storage_texture_format_rg11b10float:
return wgpu::TextureFormat::RG11B10Float;
case shaderc_spvc_storage_texture_format_rg32float:
return wgpu::TextureFormat::RG32Float;
case shaderc_spvc_storage_texture_format_rg32uint:
return wgpu::TextureFormat::RG32Uint;
case shaderc_spvc_storage_texture_format_rg32sint:
return wgpu::TextureFormat::RG32Sint;
case shaderc_spvc_storage_texture_format_rgba16uint:
return wgpu::TextureFormat::RGBA16Uint;
case shaderc_spvc_storage_texture_format_rgba16sint:
return wgpu::TextureFormat::RGBA16Sint;
case shaderc_spvc_storage_texture_format_rgba16float:
return wgpu::TextureFormat::RGBA16Float;
case shaderc_spvc_storage_texture_format_rgba32float:
return wgpu::TextureFormat::RGBA32Float;
case shaderc_spvc_storage_texture_format_rgba32uint:
return wgpu::TextureFormat::RGBA32Uint;
case shaderc_spvc_storage_texture_format_rgba32sint:
return wgpu::TextureFormat::RGBA32Sint;
default:
return wgpu::TextureFormat::Undefined;
}
}
std::string GetShaderDeclarationString(size_t group, uint32_t binding) {
std::ostringstream ostream;
ostream << "the shader module declaration at set " << group << " binding " << binding;
return ostream.str();
}
} // anonymous namespace
MaybeError ValidateSpirv(DeviceBase*, const uint32_t* code, uint32_t codeSize) {
spvtools::SpirvTools spirvTools(SPV_ENV_VULKAN_1_1);
std::ostringstream errorStream;
errorStream << "SPIRV Validation failure:" << std::endl;
spirvTools.SetMessageConsumer([&errorStream](spv_message_level_t level, const char*,
const spv_position_t& position,
const char* message) {
switch (level) {
case SPV_MSG_FATAL:
case SPV_MSG_INTERNAL_ERROR:
case SPV_MSG_ERROR:
errorStream << "error: line " << position.index << ": " << message << std::endl;
break;
case SPV_MSG_WARNING:
errorStream << "warning: line " << position.index << ": " << message
<< std::endl;
break;
case SPV_MSG_INFO:
errorStream << "info: line " << position.index << ": " << message << std::endl;
break;
default:
break;
}
});
if (!spirvTools.Validate(code, codeSize)) {
return DAWN_VALIDATION_ERROR(errorStream.str().c_str());
}
return {};
}
#ifdef DAWN_ENABLE_WGSL
MaybeError ValidateWGSL(const char* source) {
std::ostringstream errorStream;
errorStream << "Tint WGSL failure:" << std::endl;
tint::Context context;
tint::reader::wgsl::Parser parser(&context, source);
if (!parser.Parse()) {
errorStream << "Parser: " << parser.error() << std::endl;
return DAWN_VALIDATION_ERROR(errorStream.str().c_str());
}
tint::ast::Module module = parser.module();
if (!module.IsValid()) {
errorStream << "Invalid module generated..." << std::endl;
return DAWN_VALIDATION_ERROR(errorStream.str().c_str());
}
tint::TypeDeterminer type_determiner(&context, &module);
if (!type_determiner.Determine()) {
errorStream << "Type Determination: " << type_determiner.error();
return DAWN_VALIDATION_ERROR(errorStream.str().c_str());
}
tint::Validator validator;
if (!validator.Validate(module)) {
errorStream << "Validation: " << validator.error() << std::endl;
return DAWN_VALIDATION_ERROR(errorStream.str().c_str());
}
return {};
}
ResultOrError<std::vector<uint32_t>> ConvertWGSLToSPIRV(const char* source) {
std::ostringstream errorStream;
errorStream << "Tint WGSL->SPIR-V failure:" << std::endl;
tint::Context context;
tint::reader::wgsl::Parser parser(&context, source);
// TODO: This is a duplicate parse with ValidateWGSL, need to store
// state between calls to avoid this.
if (!parser.Parse()) {
errorStream << "Parser: " << parser.error() << std::endl;
return DAWN_VALIDATION_ERROR(errorStream.str().c_str());
}
tint::ast::Module module = parser.module();
if (!module.IsValid()) {
errorStream << "Invalid module generated..." << std::endl;
return DAWN_VALIDATION_ERROR(errorStream.str().c_str());
}
tint::TypeDeterminer type_determiner(&context, &module);
if (!type_determiner.Determine()) {
errorStream << "Type Determination: " << type_determiner.error();
return DAWN_VALIDATION_ERROR(errorStream.str().c_str());
}
tint::writer::spirv::Generator generator(std::move(module));
if (!generator.Generate()) {
errorStream << "Generator: " << generator.error() << std::endl;
return DAWN_VALIDATION_ERROR(errorStream.str().c_str());
}
std::vector<uint32_t> spirv = generator.result();
return std::move(spirv);
}
#endif // DAWN_ENABLE_WGSL
MaybeError ValidateShaderModuleDescriptor(DeviceBase* device,
const ShaderModuleDescriptor* descriptor) {
const ChainedStruct* chainedDescriptor = descriptor->nextInChain;
if (chainedDescriptor == nullptr) {
return DAWN_VALIDATION_ERROR("Shader module descriptor missing chained descriptor");
}
// For now only a single SPIRV or WGSL subdescriptor is allowed.
if (chainedDescriptor->nextInChain != nullptr) {
return DAWN_VALIDATION_ERROR(
"Shader module descriptor chained nextInChain must be nullptr");
}
switch (chainedDescriptor->sType) {
case wgpu::SType::ShaderModuleSPIRVDescriptor: {
const auto* spirvDesc =
static_cast<const ShaderModuleSPIRVDescriptor*>(chainedDescriptor);
DAWN_TRY(ValidateSpirv(device, spirvDesc->code, spirvDesc->codeSize));
break;
}
case wgpu::SType::ShaderModuleWGSLDescriptor: {
#ifdef DAWN_ENABLE_WGSL
const auto* wgslDesc =
static_cast<const ShaderModuleWGSLDescriptor*>(chainedDescriptor);
DAWN_TRY(ValidateWGSL(wgslDesc->source));
break;
#else
return DAWN_VALIDATION_ERROR("WGSL not supported (yet)");
#endif // DAWN_ENABLE_WGSL
}
default:
return DAWN_VALIDATION_ERROR("Unsupported sType");
}
return {};
} // namespace
// ShaderModuleBase
ShaderModuleBase::ShaderModuleBase(DeviceBase* device, const ShaderModuleDescriptor* descriptor)
: CachedObject(device), mType(Type::Undefined) {
ASSERT(descriptor->nextInChain != nullptr);
switch (descriptor->nextInChain->sType) {
case wgpu::SType::ShaderModuleSPIRVDescriptor: {
mType = Type::Spirv;
const auto* spirvDesc =
static_cast<const ShaderModuleSPIRVDescriptor*>(descriptor->nextInChain);
mSpirv.assign(spirvDesc->code, spirvDesc->code + spirvDesc->codeSize);
break;
}
case wgpu::SType::ShaderModuleWGSLDescriptor: {
mType = Type::Wgsl;
const auto* wgslDesc =
static_cast<const ShaderModuleWGSLDescriptor*>(descriptor->nextInChain);
mWgsl = std::string(wgslDesc->source);
break;
}
default:
UNREACHABLE();
}
mFragmentOutputFormatBaseTypes.fill(Format::Other);
if (GetDevice()->IsToggleEnabled(Toggle::UseSpvcParser)) {
mSpvcContext.SetUseSpvcParser(true);
}
}
ShaderModuleBase::ShaderModuleBase(DeviceBase* device, ObjectBase::ErrorTag tag)
: CachedObject(device, tag), mType(Type::Undefined) {
}
ShaderModuleBase::~ShaderModuleBase() {
if (IsCachedReference()) {
GetDevice()->UncacheShaderModule(this);
}
}
// static
ShaderModuleBase* ShaderModuleBase::MakeError(DeviceBase* device) {
return new ShaderModuleBase(device, ObjectBase::kError);
}
MaybeError ShaderModuleBase::ExtractSpirvInfo(const spirv_cross::Compiler& compiler) {
ASSERT(!IsError());
if (GetDevice()->IsToggleEnabled(Toggle::UseSpvc)) {
DAWN_TRY(ExtractSpirvInfoWithSpvc());
} else {
DAWN_TRY(ExtractSpirvInfoWithSpirvCross(compiler));
}
return {};
}
MaybeError ShaderModuleBase::ExtractSpirvInfoWithSpvc() {
shaderc_spvc_execution_model execution_model;
DAWN_TRY(CheckSpvcSuccess(mSpvcContext.GetExecutionModel(&execution_model),
"Unable to get execution model for shader."));
mExecutionModel = ToSingleShaderStage(execution_model);
size_t push_constant_buffers_count;
DAWN_TRY(
CheckSpvcSuccess(mSpvcContext.GetPushConstantBufferCount(&push_constant_buffers_count),
"Unable to get push constant buffer count for shader."));
// TODO(rharrison): This should be handled by spirv-val pass in spvc,
// but need to confirm.
if (push_constant_buffers_count > 0) {
return DAWN_VALIDATION_ERROR("Push constants aren't supported.");
}
// Fill in bindingInfo with the SPIRV bindings
auto ExtractResourcesBinding =
[this](std::vector<shaderc_spvc_binding_info> bindings) -> MaybeError {
for (const auto& binding : bindings) {
if (binding.set >= kMaxBindGroups) {
return DAWN_VALIDATION_ERROR("Bind group index over limits in the SPIRV");
}
const auto& it = mBindingInfo[binding.set].emplace(BindingNumber(binding.binding),
ShaderBindingInfo{});
if (!it.second) {
return DAWN_VALIDATION_ERROR("Shader has duplicate bindings");
}
ShaderBindingInfo* info = &it.first->second;
info->id = binding.id;
info->base_type_id = binding.base_type_id;
info->type = ToWGPUBindingType(binding.binding_type);
switch (info->type) {
case wgpu::BindingType::SampledTexture: {
info->multisampled = binding.multisampled;
info->viewDimension = ToWGPUTextureViewDimension(binding.texture_dimension);
info->textureComponentType =
ToDawnFormatType(binding.texture_component_type);
break;
}
case wgpu::BindingType::StorageTexture:
case wgpu::BindingType::ReadonlyStorageTexture:
case wgpu::BindingType::WriteonlyStorageTexture: {
wgpu::TextureFormat storageTextureFormat =
ToWGPUTextureFormat(binding.storage_texture_format);
if (storageTextureFormat == wgpu::TextureFormat::Undefined) {
return DAWN_VALIDATION_ERROR(
"Invalid image format declaration on storage image");
}
const Format& format =
GetDevice()->GetValidInternalFormat(storageTextureFormat);
if (!format.supportsStorageUsage) {
return DAWN_VALIDATION_ERROR(
"The storage texture format is not supported");
}
info->multisampled = binding.multisampled;
info->storageTextureFormat = storageTextureFormat;
info->viewDimension = ToWGPUTextureViewDimension(binding.texture_dimension);
break;
}
default:
break;
}
}
return {};
};
std::vector<shaderc_spvc_binding_info> resource_bindings;
DAWN_TRY(CheckSpvcSuccess(mSpvcContext.GetBindingInfo(
shaderc_spvc_shader_resource_uniform_buffers,
shaderc_spvc_binding_type_uniform_buffer, &resource_bindings),
"Unable to get binding info for uniform buffers from shader"));
DAWN_TRY(ExtractResourcesBinding(resource_bindings));
DAWN_TRY(CheckSpvcSuccess(
mSpvcContext.GetBindingInfo(shaderc_spvc_shader_resource_separate_images,
shaderc_spvc_binding_type_sampled_texture,
&resource_bindings),
"Unable to get binding info for sampled textures from shader"));
DAWN_TRY(ExtractResourcesBinding(resource_bindings));
DAWN_TRY(CheckSpvcSuccess(
mSpvcContext.GetBindingInfo(shaderc_spvc_shader_resource_separate_samplers,
shaderc_spvc_binding_type_sampler, &resource_bindings),
"Unable to get binding info for samples from shader"));
DAWN_TRY(ExtractResourcesBinding(resource_bindings));
DAWN_TRY(CheckSpvcSuccess(mSpvcContext.GetBindingInfo(
shaderc_spvc_shader_resource_storage_buffers,
shaderc_spvc_binding_type_storage_buffer, &resource_bindings),
"Unable to get binding info for storage buffers from shader"));
DAWN_TRY(ExtractResourcesBinding(resource_bindings));
DAWN_TRY(CheckSpvcSuccess(
mSpvcContext.GetBindingInfo(shaderc_spvc_shader_resource_storage_images,
shaderc_spvc_binding_type_storage_texture,
&resource_bindings),
"Unable to get binding info for storage textures from shader"));
DAWN_TRY(ExtractResourcesBinding(resource_bindings));
std::vector<shaderc_spvc_resource_location_info> input_stage_locations;
DAWN_TRY(CheckSpvcSuccess(mSpvcContext.GetInputStageLocationInfo(&input_stage_locations),
"Unable to get input stage location information from shader"));
for (const auto& input : input_stage_locations) {
if (mExecutionModel == SingleShaderStage::Vertex) {
if (input.location >= kMaxVertexAttributes) {
return DAWN_VALIDATION_ERROR("Attribute location over limits in the SPIRV");
}
mUsedVertexAttributes.set(input.location);
} else if (mExecutionModel == SingleShaderStage::Fragment) {
// Without a location qualifier on vertex inputs, spirv_cross::CompilerMSL gives
// them all the location 0, causing a compile error.
if (!input.has_location) {
return DAWN_VALIDATION_ERROR("Need location qualifier on fragment input");
}
}
}
std::vector<shaderc_spvc_resource_location_info> output_stage_locations;
DAWN_TRY(CheckSpvcSuccess(mSpvcContext.GetOutputStageLocationInfo(&output_stage_locations),
"Unable to get output stage location information from shader"));
for (const auto& output : output_stage_locations) {
if (mExecutionModel == SingleShaderStage::Vertex) {
// Without a location qualifier on vertex outputs, spirv_cross::CompilerMSL
// gives them all the location 0, causing a compile error.
if (!output.has_location) {
return DAWN_VALIDATION_ERROR("Need location qualifier on vertex output");
}
} else if (mExecutionModel == SingleShaderStage::Fragment) {
if (output.location >= kMaxColorAttachments) {
return DAWN_VALIDATION_ERROR(
"Fragment output location over limits in the SPIRV");
}
}
}
if (mExecutionModel == SingleShaderStage::Fragment) {
std::vector<shaderc_spvc_resource_type_info> output_types;
DAWN_TRY(CheckSpvcSuccess(mSpvcContext.GetOutputStageTypeInfo(&output_types),
"Unable to get output stage type information from shader"));
for (const auto& output : output_types) {
if (output.type == shaderc_spvc_texture_format_type_other) {
return DAWN_VALIDATION_ERROR("Unexpected Fragment output type");
}
mFragmentOutputFormatBaseTypes[output.location] = ToDawnFormatType(output.type);
}
}
return {};
}
MaybeError ShaderModuleBase::ExtractSpirvInfoWithSpirvCross(
const spirv_cross::Compiler& compiler) {
// TODO(cwallez@chromium.org): make errors here creation errors
// currently errors here do not prevent the shadermodule from being used
const auto& resources = compiler.get_shader_resources();
switch (compiler.get_execution_model()) {
case spv::ExecutionModelVertex:
mExecutionModel = SingleShaderStage::Vertex;
break;
case spv::ExecutionModelFragment:
mExecutionModel = SingleShaderStage::Fragment;
break;
case spv::ExecutionModelGLCompute:
mExecutionModel = SingleShaderStage::Compute;
break;
default:
UNREACHABLE();
return DAWN_VALIDATION_ERROR("Unexpected shader execution model");
}
if (resources.push_constant_buffers.size() > 0) {
return DAWN_VALIDATION_ERROR("Push constants aren't supported.");
}
if (resources.sampled_images.size() > 0) {
return DAWN_VALIDATION_ERROR("Combined images and samplers aren't supported.");
}
// Fill in bindingInfo with the SPIRV bindings
auto ExtractResourcesBinding =
[this](const spirv_cross::SmallVector<spirv_cross::Resource>& resources,
const spirv_cross::Compiler& compiler,
wgpu::BindingType bindingType) -> MaybeError {
for (const auto& resource : resources) {
if (!compiler.get_decoration_bitset(resource.id).get(spv::DecorationBinding)) {
return DAWN_VALIDATION_ERROR("No Binding decoration set for resource");
}
if (!compiler.get_decoration_bitset(resource.id)
.get(spv::DecorationDescriptorSet)) {
return DAWN_VALIDATION_ERROR("No Descriptor Decoration set for resource");
}
BindingNumber bindingNumber(
compiler.get_decoration(resource.id, spv::DecorationBinding));
uint32_t set = compiler.get_decoration(resource.id, spv::DecorationDescriptorSet);
if (set >= kMaxBindGroups) {
return DAWN_VALIDATION_ERROR("Bind group index over limits in the SPIRV");
}
const auto& it = mBindingInfo[set].emplace(bindingNumber, ShaderBindingInfo{});
if (!it.second) {
return DAWN_VALIDATION_ERROR("Shader has duplicate bindings");
}
ShaderBindingInfo* info = &it.first->second;
info->id = resource.id;
info->base_type_id = resource.base_type_id;
switch (bindingType) {
case wgpu::BindingType::SampledTexture: {
spirv_cross::SPIRType::ImageType imageType =
compiler.get_type(info->base_type_id).image;
spirv_cross::SPIRType::BaseType textureComponentType =
compiler.get_type(imageType.type).basetype;
info->multisampled = imageType.ms;
info->viewDimension =
SpirvDimToTextureViewDimension(imageType.dim, imageType.arrayed);
info->textureComponentType =
SpirvCrossBaseTypeToFormatType(textureComponentType);
info->type = bindingType;
break;
}
case wgpu::BindingType::StorageBuffer: {
// Differentiate between readonly storage bindings and writable ones
// based on the NonWritable decoration
spirv_cross::Bitset flags = compiler.get_buffer_block_flags(resource.id);
if (flags.get(spv::DecorationNonWritable)) {
info->type = wgpu::BindingType::ReadonlyStorageBuffer;
} else {
info->type = wgpu::BindingType::StorageBuffer;
}
break;
}
case wgpu::BindingType::StorageTexture: {
spirv_cross::Bitset flags = compiler.get_decoration_bitset(resource.id);
if (flags.get(spv::DecorationNonReadable)) {
info->type = wgpu::BindingType::WriteonlyStorageTexture;
} else if (flags.get(spv::DecorationNonWritable)) {
info->type = wgpu::BindingType::ReadonlyStorageTexture;
} else {
info->type = wgpu::BindingType::StorageTexture;
}
spirv_cross::SPIRType::ImageType imageType =
compiler.get_type(info->base_type_id).image;
wgpu::TextureFormat storageTextureFormat =
ToWGPUTextureFormat(imageType.format);
if (storageTextureFormat == wgpu::TextureFormat::Undefined) {
return DAWN_VALIDATION_ERROR(
"Invalid image format declaration on storage image");
}
const Format& format =
GetDevice()->GetValidInternalFormat(storageTextureFormat);
if (!format.supportsStorageUsage) {
return DAWN_VALIDATION_ERROR(
"The storage texture format is not supported");
}
info->multisampled = imageType.ms;
info->storageTextureFormat = storageTextureFormat;
info->viewDimension =
SpirvDimToTextureViewDimension(imageType.dim, imageType.arrayed);
break;
}
default:
info->type = bindingType;
}
}
return {};
};
DAWN_TRY(ExtractResourcesBinding(resources.uniform_buffers, compiler,
wgpu::BindingType::UniformBuffer));
DAWN_TRY(ExtractResourcesBinding(resources.separate_images, compiler,
wgpu::BindingType::SampledTexture));
DAWN_TRY(ExtractResourcesBinding(resources.separate_samplers, compiler,
wgpu::BindingType::Sampler));
DAWN_TRY(ExtractResourcesBinding(resources.storage_buffers, compiler,
wgpu::BindingType::StorageBuffer));
DAWN_TRY(ExtractResourcesBinding(resources.storage_images, compiler,
wgpu::BindingType::StorageTexture));
// Extract the vertex attributes
if (mExecutionModel == SingleShaderStage::Vertex) {
for (const auto& attrib : resources.stage_inputs) {
if (!(compiler.get_decoration_bitset(attrib.id).get(spv::DecorationLocation))) {
return DAWN_VALIDATION_ERROR(
"Unable to find Location decoration for Vertex input");
}
uint32_t location = compiler.get_decoration(attrib.id, spv::DecorationLocation);
if (location >= kMaxVertexAttributes) {
return DAWN_VALIDATION_ERROR("Attribute location over limits in the SPIRV");
}
mUsedVertexAttributes.set(location);
}
// Without a location qualifier on vertex outputs, spirv_cross::CompilerMSL gives
// them all the location 0, causing a compile error.
for (const auto& attrib : resources.stage_outputs) {
if (!compiler.get_decoration_bitset(attrib.id).get(spv::DecorationLocation)) {
return DAWN_VALIDATION_ERROR("Need location qualifier on vertex output");
}
}
}
if (mExecutionModel == SingleShaderStage::Fragment) {
// Without a location qualifier on vertex inputs, spirv_cross::CompilerMSL gives
// them all the location 0, causing a compile error.
for (const auto& attrib : resources.stage_inputs) {
if (!compiler.get_decoration_bitset(attrib.id).get(spv::DecorationLocation)) {
return DAWN_VALIDATION_ERROR("Need location qualifier on fragment input");
}
}
for (const auto& fragmentOutput : resources.stage_outputs) {
if (!compiler.get_decoration_bitset(fragmentOutput.id)
.get(spv::DecorationLocation)) {
return DAWN_VALIDATION_ERROR(
"Unable to find Location decoration for Fragment output");
}
uint32_t location =
compiler.get_decoration(fragmentOutput.id, spv::DecorationLocation);
if (location >= kMaxColorAttachments) {
return DAWN_VALIDATION_ERROR(
"Fragment output location over limits in the SPIRV");
}
spirv_cross::SPIRType::BaseType shaderFragmentOutputBaseType =
compiler.get_type(fragmentOutput.base_type_id).basetype;
Format::Type formatType =
SpirvCrossBaseTypeToFormatType(shaderFragmentOutputBaseType);
if (formatType == Format::Type::Other) {
return DAWN_VALIDATION_ERROR("Unexpected Fragment output type");
}
mFragmentOutputFormatBaseTypes[location] = formatType;
}
}
return {};
}
const ShaderModuleBase::ModuleBindingInfo& ShaderModuleBase::GetBindingInfo() const {
ASSERT(!IsError());
return mBindingInfo;
}
const std::bitset<kMaxVertexAttributes>& ShaderModuleBase::GetUsedVertexAttributes() const {
ASSERT(!IsError());
return mUsedVertexAttributes;
}
const ShaderModuleBase::FragmentOutputBaseTypes& ShaderModuleBase::GetFragmentOutputBaseTypes()
const {
ASSERT(!IsError());
return mFragmentOutputFormatBaseTypes;
}
SingleShaderStage ShaderModuleBase::GetExecutionModel() const {
ASSERT(!IsError());
return mExecutionModel;
}
MaybeError ShaderModuleBase::ValidateCompatibilityWithPipelineLayout(
const PipelineLayoutBase* layout) const {
ASSERT(!IsError());
for (uint32_t group : IterateBitSet(layout->GetBindGroupLayoutsMask())) {
DAWN_TRY(
ValidateCompatibilityWithBindGroupLayout(group, layout->GetBindGroupLayout(group)));
}
for (uint32_t group : IterateBitSet(~layout->GetBindGroupLayoutsMask())) {
if (mBindingInfo[group].size() > 0) {
std::ostringstream ostream;
ostream << "No bind group layout entry matches the declaration set " << group
<< " in the shader module";
return DAWN_VALIDATION_ERROR(ostream.str());
}
}
return {};
}
MaybeError ShaderModuleBase::ValidateCompatibilityWithBindGroupLayout(
size_t group,
const BindGroupLayoutBase* layout) const {
ASSERT(!IsError());
const BindGroupLayoutBase::BindingMap& bindingMap = layout->GetBindingMap();
// Iterate over all bindings used by this group in the shader, and find the
// corresponding binding in the BindGroupLayout, if it exists.
for (const auto& it : mBindingInfo[group]) {
BindingNumber bindingNumber = it.first;
const ShaderBindingInfo& moduleInfo = it.second;
const auto& bindingIt = bindingMap.find(bindingNumber);
if (bindingIt == bindingMap.end()) {
return DAWN_VALIDATION_ERROR("Missing bind group layout entry for " +
GetShaderDeclarationString(group, bindingNumber));
}
BindingIndex bindingIndex(bindingIt->second);
const BindingInfo& bindingInfo = layout->GetBindingInfo(bindingIndex);
if (bindingInfo.type != moduleInfo.type) {
// Binding mismatch between shader and bind group is invalid. For example, a
// writable binding in the shader with a readonly storage buffer in the bind group
// layout is invalid. However, a readonly binding in the shader with a writable
// storage buffer in the bind group layout is valid.
bool validBindingConversion =
bindingInfo.type == wgpu::BindingType::StorageBuffer &&
moduleInfo.type == wgpu::BindingType::ReadonlyStorageBuffer;
// TODO(crbug.com/dawn/367): Temporarily allow using either a sampler or a
// comparison sampler until we can perform the proper shader analysis of what type
// is used in the shader module.
validBindingConversion |= (bindingInfo.type == wgpu::BindingType::Sampler &&
moduleInfo.type == wgpu::BindingType::ComparisonSampler);
validBindingConversion |=
(bindingInfo.type == wgpu::BindingType::ComparisonSampler &&
moduleInfo.type == wgpu::BindingType::Sampler);
if (!validBindingConversion) {
return DAWN_VALIDATION_ERROR(
"The binding type of the bind group layout entry conflicts " +
GetShaderDeclarationString(group, bindingNumber));
}
}
if ((bindingInfo.visibility & StageBit(mExecutionModel)) == 0) {
return DAWN_VALIDATION_ERROR("The bind group layout entry for " +
GetShaderDeclarationString(group, bindingNumber) +
" is not visible for the shader stage");
}
switch (bindingInfo.type) {
case wgpu::BindingType::SampledTexture: {
if (bindingInfo.textureComponentType != moduleInfo.textureComponentType) {
return DAWN_VALIDATION_ERROR(
"The textureComponentType of the bind group layout entry is different "
"from " +
GetShaderDeclarationString(group, bindingNumber));
}
if (bindingInfo.viewDimension != moduleInfo.viewDimension) {
return DAWN_VALIDATION_ERROR(
"The viewDimension of the bind group layout entry is different "
"from " +
GetShaderDeclarationString(group, bindingNumber));
}
break;
}
case wgpu::BindingType::ReadonlyStorageTexture:
case wgpu::BindingType::WriteonlyStorageTexture: {
ASSERT(bindingInfo.storageTextureFormat != wgpu::TextureFormat::Undefined);
ASSERT(moduleInfo.storageTextureFormat != wgpu::TextureFormat::Undefined);
if (bindingInfo.storageTextureFormat != moduleInfo.storageTextureFormat) {
return DAWN_VALIDATION_ERROR(
"The storageTextureFormat of the bind group layout entry is different "
"from " +
GetShaderDeclarationString(group, bindingNumber));
}
if (bindingInfo.viewDimension != moduleInfo.viewDimension) {
return DAWN_VALIDATION_ERROR(
"The viewDimension of the bind group layout entry is different "
"from " +
GetShaderDeclarationString(group, bindingNumber));
}
break;
}
case wgpu::BindingType::UniformBuffer:
case wgpu::BindingType::ReadonlyStorageBuffer:
case wgpu::BindingType::StorageBuffer:
case wgpu::BindingType::Sampler:
case wgpu::BindingType::ComparisonSampler:
break;
case wgpu::BindingType::StorageTexture:
default:
UNREACHABLE();
return DAWN_VALIDATION_ERROR("Unsupported binding type");
}
}
return {};
}
size_t ShaderModuleBase::HashFunc::operator()(const ShaderModuleBase* module) const {
size_t hash = 0;
for (uint32_t word : module->mSpirv) {
HashCombine(&hash, word);
}
return hash;
}
bool ShaderModuleBase::EqualityFunc::operator()(const ShaderModuleBase* a,
const ShaderModuleBase* b) const {
return a->mSpirv == b->mSpirv;
}
MaybeError ShaderModuleBase::CheckSpvcSuccess(shaderc_spvc_status status,
const char* error_msg) {
if (status != shaderc_spvc_status_success) {
return DAWN_VALIDATION_ERROR(error_msg);
}
return {};
}
shaderc_spvc::Context* ShaderModuleBase::GetContext() {
return &mSpvcContext;
}
const std::vector<uint32_t>& ShaderModuleBase::GetSpirv() const {
return mSpirv;
}
shaderc_spvc::CompileOptions ShaderModuleBase::GetCompileOptions() const {
shaderc_spvc::CompileOptions options;
options.SetValidate(GetDevice()->IsValidationEnabled());
return options;
}
MaybeError ShaderModuleBase::InitializeBase() {
if (mType == Type::Wgsl) {
#ifdef DAWN_ENABLE_WGSL
DAWN_TRY_ASSIGN(mSpirv, ConvertWGSLToSPIRV(mWgsl.c_str()));
#else
return DAWN_VALIDATION_ERROR("WGSL not supported (yet)");
#endif // DAWN_ENABLE_WGSL
}
return {};
}
} // namespace dawn_native